
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Yuan Zhang,
China Medical University, China

REVIEWED BY

Sahyun Pak,
Hallym University, Republic of Korea
Ahmad Khusairi Azemi,
Universiti Malaysia Terengganu, Malaysia
Betul Karademir Yilmaz,
Marmara University, Türkiye

*CORRESPONDENCE

Xingcheng Gao

xchgao@gzmu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 05 November 2022
ACCEPTED 22 February 2023

PUBLISHED 10 March 2023

CITATION

Cen S, Jiang D, Lv D, Xu R, Hou J, Yang Z,
Wu P, Xiong X and Gao X (2023)
Comprehensive analysis of the
biological functions of endoplasmic
reticulum stress in prostate cancer.
Front. Endocrinol. 14:1090277.
doi: 10.3389/fendo.2023.1090277

COPYRIGHT

© 2023 Cen, Jiang, Lv, Xu, Hou, Yang, Wu,
Xiong and Gao. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 10 March 2023

DOI 10.3389/fendo.2023.1090277
Comprehensive analysis
of the biological functions
of endoplasmic reticulum
stress in prostate cancer

Shengren Cen1†, Dongmei Jiang2†, Daojun Lv3†, Ran Xu1,
Jiamao Hou1, Zixiang Yang1, Peng Wu1,
Xinhao Xiong1 and Xingcheng Gao1*

1Department of Urology, The First Affiliated Hospital of Guangzhou Medical University,
Guangzhou, China, 2Department of Pathology, The First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China, 3Department of Urology, The Third Affiliated Hospital of Guangzhou
Medical University, Guangzhou, China
Introduction: Endoplasmic reticulum stress (ERS) has sizeable affect on cancer

proliferation, metastasis, immunotherapy and chemoradiotherapy resistance.

However, the effect of ERS on the biochemical recurrence (BCR) of prostate

cancer patients remains elusive. Here, we generated an ERS-related genes risk

signature to evaluate the physiological function of ERS in PCa with BCR.

Methods: We collected the ERS-related genes from the GeneCards. The edgeR

package was used to screen the differential ERS-related genes in PCa from TCGA

datasets. ERS-related gene risk signature was then established using LASSO and

multivariate Cox regression models and validated by GEO data sets. Nomogram

was developed to assess BCR-free survival possibility. Meanwhile, the

correlations between ERS-related signature, gene mutations, drug sensitivity

and tumor microenvironment were also investigated.

Results: We obtained an ERS risk signature consisting of five genes (AFP,

COL10A1, DNAJB1, EGF and PTGS2). Kaplan Meier survival analysis and ROC

Curve analysis indicated that the high risk score of ERS-related gene signature

was associated with poor BCR-free prognosis in PCa patients. Besides, immune

cell infiltration and immune checkpoint expression levels differed between high-

and low-risk scoring subgroups. Moreover, drug sensitivity analyzed indicated

that high-risk score group may be involved in apoptosis pathway.

Discussion: This study comprehensively analyzed the characteristics of ERS

related genes in PCa, and created a five-gene signature, which could

effectively predict the BCR time of PCa patients. Targeting ERS related genes

and pathways may provide potential guidance for the treatment of PCa.

KEYWORDS

prostate cancer, endoplasmic reticulum stress, BCR, immune environment,
drug sensitivity
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1 Introduction

Prostate cancer (PCa) is the most prevalent tumor in the male

reproductive system. The estimated number of new cases of PCa

diagnosed in 2022 is 268,490, with a 6% annual increase in the

incidence of distant-stage disease since 2011 (1). To make matters

worse, the 5-year survival rate for those cases with distant

metastases dropped dramatically, to almost 30% (2). For localized

PCa, radical prostatectomy and radiotherapy are the recommended

interventions, and although this treatment strategy can benefit a

large amount of patients with PCa, some patients are still at risk for

biochemical recurrence (BCR) (3, 4). Therefore, a better

understanding of the BCR of PCa may contribute to effective

early diagnosis and targeted therapy. In the present study, we pay

attention to the biological function and prognostic value of PCa

endoplasmic reticulum stress (ERS).

ERS is an imbalance in endoplasmic reticulum (ER)

homeostasis caused by the accumulation of unfolded or misfolded

proteins and changes in Ca2+ concentration (5). The normal

function of ER requires a stable cellular microenvironment, and

the dysfunction of ER has an important effect on various cellular

processes (6). More than 30% of all proteins made in the cell

required ER for synthesis, folding, and structural maturation (7).

Plenty of studies have shown that ERS participated in the

occurrence and development of many human malignancies (8).

ERS has also been reported to play a crucial role in the proliferation

and apoptosis of cancer cells in a hypoxic environment and has

been associated with resistance to radiotherapy and chemotherapy

(9, 10). In PCa, IRE1a, PERK, and ATF6H are activated when

cellular stress is detected in the ER to trigger unfolded protein

responses leading to survival-friendly effects (11), suggesting a

critical function of ERS in PCa progression. However, the critical

functions of ER stress and its downstream signaling pathways in

PCa progression are not well understood and still deserve further

clarification. A comprehensive investigation of ERS may help to

develop a sound PCa diagnosis and treatment strategy.

Currently, we have collected the sequencing and clinical data of

PCa from The Cancer Genome Atlas (TCGA) and obtained ERS-

related genes from GeneCards. Next, we calculated the differential

expression of ERS-related genes between PCa tissue and

paracancerous tissue. Based on these genes, we divided patients

into two groups using the ConsensusClusterPlus package. Then, we

developed a five-ERS-related-gene signature by least absolute

shrinkage and selection operator (LASSO) and Cox regression to

evaluate BCR-free prognosis of PCa patients in the TCGA and Gene

Expression Omnibus (GEO) datasets. We also constructed a

nomogram to predict the BCR possibility using risk score and

other related clinical parameters. Furthermore, we divided the

patients into two subgroups based on the risk score of the ERS

signature and found significant differences in the level of immune

cell infiltration, somatic mutations, expression level of immune

checkpoints, and drug responses between the two risk groups. In

conclusion, these results provide evidence that ERS signaling is

critical for the progression of PCa, and elucidating the function of

ERS signaling may provide new insights into the treatment of PCa.
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2 Materials and methods

2.1 Data collection and processing

The transcriptome profiling and clinical data of PCa were

obtained from TCGA (https://portal.gdc.cancer.gov) with

TCGAbiolinks (HTSeq-Counts). Two other datasets (GSE21034

and GSE70770) were acce s s ed f rom GEO (ht tp s : / /

www.ncbi.nlm.nih.gov/geo/). The TCGA-PRAD dataset was

selected by the following steps: (1) The follow-up was more than

20 days. (2) Samples without complete BCR follow-up clinical

information were removed. We obtained 411 PCa patients with

complete BCR follow-up information and 406 patients with

complete clinical information (Table S1). The EdgeR package was

used to analyze differentially expressed genes (DEGs) between

tumor and paracancerous tissue on the R 4.1.3 platform, and

FDR < 0.05 and |log2-fold change| ≥ 1 were considered to be

statistically significant. ERS-associated genes were collected from

GeneCards (https://www.genecards.org/), and the correlation score

≥ 7 was selected, as Huang et al. reported (12).
2.2 Functional enrichment analysis

Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), and gene set enrichment analysis (GSEA)

were used to perform enrichment analysis of the DEGs with the

“ClusterProfiler” package (13). Gene Set Variation Analysis was

carried out with “GSVA” packages.
2.3 Consensus clustering analysis of ERS-
related genes

The ConsensusClusterPlus package (14) was used to perform

unsupervised hierarchical clustering to identify differentially

expressed ERS-related clusters via pam algorithms. A total of

1,000 iterations were carried out to ensure the stability of these

categories. The “proportion of ambiguous clustering” (PAC) was

applied to infer the optimal number of clusters, where the K value

has the lowest PAC.
2.4 Development of the ERS-associated
BCR prognostic signature

The common genes in TCGA-PRAD DEGs and ERS-related

genes were selected for univariate Cox regression analysis. Then,

these BCR-related genes were retained for the LASSO model with

the glmnet package, and 10-fold cross-validation was accepted to

select the minimal penalty term. Then, the remaining genes were

used to establish an optimal ER stress-related risk model, using the

Akaike information criterion (AIC) method of multivariate Cox

regression analysis. The ERS signature risk score was calculated as

follows: risk_score = ∑i=1
n (Coefi × Expi), where Coefi is the
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corresponding regression coefficient evaluated by multivariate Cox

regression model and Expi is the expression value of the ERS-

related genes. We divided patients into high-risk and low-risk

groups based on the median risk score. Additionally, the TCGA-

PRAD cohort was used as a training set to evaluate the prognostic

value of BCR-dependent receiver operating characteristic (ROC)

curves at 1, 3, and 5 years; GSE21034 and GSE70770 were utilized

for the validation cohorts.
2.5 Drug sensitivity prediction

Drug-response prediction was evaluated based on the V2

database (809 cell lines and 198 compounds) of the Genomics of

Drug Sensitivity in Cancer (GDSC) (15), using the “oncoPredict”

package (16), and the half-maximum inhibitory concentration (IC50)

of each patient was assessed using the Ridge Regression model.
2.6 Mutation analysis of the risk
score model

The R package “TCGAmutations” was used to calculate the total

somatic mutation of TCGA-PRAD between different risk score

subgroups. The online tool Sangerbox (17) (http://vip.sangerbox.

com) was adopted to map an oncoplot to show the mutation

landscape in high-risk and low-risk groups.
2.7 Establishment of a
predictive nomogram

Based on the TCGA-PRAD dataset, a nomogram was

established to predict the 1-, 3-, and 5-year BCR prognosis of

PCa patients with ERS-related risk score and other related clinical

parameters, using the “rms” package. Decision curve analysis and

C-index were used to validate the clinical reliability of the

nomogram model.
2.8 BCR prognostic validation of risk score

Univariate Cox and multivariate Cox regression were

performed with risk score and other clinical variables to identify

whether the ERS score was an independent prognostic predictor.

The correlation of ERS-related genes’ risk score and age, Gleason

score, and T stage were calculated.
2.9 Tumor immune microenvironment
in PRAD

The ESTIMATE package was used to evaluate the immune and

stromal scores of PCa. The MCPcounter and CIBERSORT packages

were used to detect the infiltration level of 22 immune cells and two
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stromal cells. Additionally, we also analyzed the tumor immune

dysfunction and exclusion (TIDE) and MSI score for PCa patients

in the two groups via TIDE tool (http://tide.dfci.harvard.edu). The

immune checkpoints SIGLEC15, CTLA4, CD274, IDO1, PDCD1,

HAVCR2, PDCD1LG2, and LAG3 between two groups were

also analyzed.
2.10 Statistical analyses

The bioinformatics analysis was performed with R 4.1.3

(https://www.r-project.org/). Mann–Whitney–Wilcoxon tests or

Student t-tests were carried out to analyze continuous variables.

Survival plots were calculated by a log-rank test using the

“survival” packages. The drug response was tested with

Spearman’s correlation analysis. We chose p < 0.05 as the

statistical significance.
3 Results

3.1 Exploration of endoplasmic reticulum
stress-related genes

To characterize the role of ERS-related genes, we extracted 787

ERS-related genes with correlation scores ≥7 from the GeneCards,

as reported by Zhang et al. (12). We then analyzed the DEGs of

these ERS-related genes in the TCGA cohort. As shown in

Figure 1A, we obtain 108 DEGs. GO and KEGG enrichment

analysis suggested that these DEGs were mainly enriched in the

calcium ion homeostasis , calcium signal ing pathway,

glycosaminoglycan binding, PI3K-Akt signaling pathway, and ER

lumen and adrenergic signaling in cardiomyocytes (Figures 1B, C).

Additionally, based on the ERS-related DEGs, we classified PCa

patients into two clusters with consensus clustering (Figure 1D).

The cumulative density function and PAC method were used to

identify the optimal k value (Figures 1E, F). We further performed

survival analysis on these two clusters and found that the trend of

BCR survival was worse in cluster 1 than in cluster 2 (Figure 1G),

but not statistically significant, probably because of the number of

queues, which requires further study.
3.2 Development of five endoplasmic
reticulum stress-related gene
risk signature

To further construct the BCR prognostic model, we performed

univariate Cox regression on ERS-related DEGs and identified 18

genes that were associated with BCR prognosis (Figure 2A).

Furthermore, we analyzed these 18 genes by LASSO regression

and derived 5 genes based on the minimum partial likelihood

deviation (Figures 2B, C). Next, a five-gene BCR prognostic risk

model was constructed by multivariate Cox regression analysis

based on the AIC value (Figure 2D). Subsequently, the PCa
frontiersin.org
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cohort was divided into two subgroups based on the median risk

score according to the risk model, and the expression of these five

genes was shown in the heatmap (Figure 2E). BCR-free survival was

analyzed using Kaplan–Meier and log-rank tests, and the results

showed that the high-risk group had a shorter BCR-free time than

the low-risk group (Figure 2F). In addition, the ROC curve was

applied to assess the predictive efficiency of the model. The area

under the ROC curve (AUC) was 0.775, 0.794, and 0.701 for 1, 3,

and 5 years, respectively (Figure 2G), which indicated that the

model performed well in predicting BCR-free survival in the

TCGA cohort.
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3.3 Validation of the ERS-related gene
model with the external dataset

To better evaluate the predictive efficiency of the ERS-related

gene model, we selected GEO datasets GSE70770 and GSE21034 for

further validation. Risk scores were calculated for all patients in

both datasets according to the same formula. We then divided the

two datasets into high-risk and low-risk groups according to the

median risk score. The edgeR package was then accepted to evaluate

the expression patterns of these five genes in two GEO datasets and

was found to be similar to TCGA (Figures 3A, D). As expected,
A B

D

E F G

C

FIGURE 1

Exploration of endoplasmic reticulum stress-related genes. (A) Volcano plot shows differentially expressed endoplasmic reticulum stress-related
genes between tumor and adjacent normal tissue in the TCGA database. (B) GO analysis terms of reticulum stress-related DEGs. (C) The top 10
most enriched KEGG pathways of ERS-related DEGs. (D) Consensus matrices of the TCGA-PRAD cohort for k = 2. (E) Consensus values range from
0 to 1. (F) The corresponding area under the cumulative distribution function (CDF) curve changes relatively as the number of clusters changes from
k to k + 1. k ranges from 2 to 7, optimal k = 2. (G) Survival analysis of patients between cluster 1 and cluster 2.
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survival time without BCR was significantly shorter in the high-risk

group compared to the low-risk group (Figures 3B, E).

Furthermore, we detected the predictive efficiency of this five-

gene risk model utilizing ROC curves in GSE70770 and

GSE21034, and the AUCs of 1, 3, and 5 years in both datasets

suggested that the model was stable (Figures 3C, F).
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3.4 Integrated analysis of risk models and
clinical characteristics

To investigate the function of this ERS-related gene risk model

in the clinical characteristics of PCa, we assessed the association

between risk scores and clinical features. Results showed that
A B

D

E F

G

C

FIGURE 2

Development of five endoplasmic reticulum stress-related gene BCR signature. (A) Univariate Cox regression revealed 18 ERS-related genes
associated with BCR. (B) Eighteen ERS-related genes were penalized by LASSO Cox regression analysis. (C) Tenfold cross-validation for the
optimal parameter selection in the LASSO Cox regression. (D) A five-gene model was constructed with a stepwise regression model using the
Akaike Information Criterion (AIC) method. (E) The risk score distribution, BCR status, and five-gene expression trend in the TCGA PRAD dataset.
(F) KM survival curve of the five-gene signature in the TCGA PRAD dataset. (G) ROC curves for BCR-free survival prediction models at 1, 3, and 5
years. (*p < 0.05; **p < 0.01; ***p < 0.001).
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compared with the low-risk group, the high-risk group had a higher

tumor Gleason score and a more aggressive tumor stage

(Figures 4A, C). The age of high-risk cohort patients was higher

than that of the low-risk group (Figure 4B). In addition, univariate

and multivariate Cox regression analysis suggested that the risk

score was an independent prognostic factor in the TCGA dataset
Frontiers in Endocrinology 06
(Figures 4D, E) and extra GEO cohorts (Figures S1D–G). To better

predict the BCR-free survival of PCa, we constructed a nomogram

with ERS-related genes’ risk scores, age, tumor stage, and Gleason

scores (Figure 4F). ROC curves were used to estimate the

performance of nomogram, age, risk score, and tumor stage in

predicting 1-, 3-, and 5-year BCR-free survival (Figures S1A–C).
A B

D E

C

F

FIGURE 3

Validation of the ERS-related genes model with the external dataset. (A, D) The risk score distribution, BCR status, and five-gene expression trend in
GSE70770 and GSE21034. (B, E) KM survival curve of the five-gene signature model in GSE7070. (C, F) ROC curves for BCR-free survival prediction
models at 1, 3, and 5 years. The risk score in both datasets was calculated by the same formula and divided into high-risk and low-risk groups based
on the median risk score.
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The calibration curves were utilized to assess the predictive

performance of this nomogram with respect to the actual

observed BCR-free survival rate (Figure 4G). The DCA curves

indicated that the ERS-related gene risk signature had a favorable

predictive efficiency (Figure 4H).
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3.5 Functional enrichment analysis
between different risk types

To identify the underlying mechanisms in different risk groups,

we analyzed the DEGs in different risk subgroups in the TCGA
A B

D E

F

G H

C

FIGURE 4

Correlations between risk models and clinical characteristics based on the TCGA PRAD dataset. Violin plot shows different ERS risk score
between different pathological stage (A), age (B), and Gleason score (C) of the TCGA PRAD cohort. Univariate (D) and multivariate (E) Cox
regression analyses were used to explore the prediction of ERS-associated risk signature in the TCGA PCa dataset. (F) A nomogram with ERS-
related risk scores, age, T stage, and Gleason scores for predicting the probability of BCR-free survival in patients. (G) The calibration curves of
the nomogram. (H) The decision curve analysis (DCA) for median BCR-free survival time prediction.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1090277
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cen et al. 10.3389/fendo.2023.1090277
cohort, and obtained 547 DEGs (|logFC| ≥ 1, p-value < 0.05)

(Figure 5A). GO enrichment analysis was performed to assess the

function of these DEGs, and the result showed that they were

mainly involved in signaling receptor activator activity, receptor
Frontiers in Endocrinology 08
ligand activity, and hormone activity (Figure 5B). In addition,

KEGG and GSEA showed that these ERS-related DEGs were

mainly enriched in the IL-17 signaling pathway, ER protein

processing, and TNF signaling pathway (Figures 5C, D).
A B

D

E

C

FIGURE 5

Functional enrichment analysis between risk types. (A) Volcano plot of differentially expressed genes between high- and low-risk groups. (B) Bubble
chart showing GO terms of differentially expressed genes between different risk types. (C) Top 10 KEGG pathways of differentially expressed genes
between different risk types. (D) GSEA results between high-risk and low-risk groups. (E) The heatmap shows the top 10 upregulated and top 10
downregulated GSVA scores for KEGG pathways grouped by high- and low-risk group.
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Furthermore, gene set variation analysis showed that the high-risk

group was enriched in inflammatory and immune-related

pathways, such as primary immunodeficiency and the Nod-like

receptor signal pathway. Pathways related to histidine metabolism,

phenylalanine metabolism, and calcium signaling were also varied

in two groups (Figure 5E). The above results show that these DEGs

participate in various processes including immune activity.
3.6 Integrated analysis of ERS risk signature
and immune cell infiltration in PCa

To further understand the potential characteristics of these two

populations, we analyzed the top 15 individual cell mutation genes

in both the high- and low-risk groups. TP53, TTN, SPOP, SYNE1,

and KMT2D were the top five genes with the highest mutation

frequency in the high-risk group, while in the low-risk group, they

were SPOP, TTN, TP53, MUC16, and FOXA1 (Figures 6A, B).

Meanwhile, patients in the high-risk group had higher levels of total

mutational burden (TMB) than those in the low-risk group

(Figure 6C). These results suggested that ERS-related genes may

act through genetic mutations. Gene mutations can generate new

antigens, and we wanted to know if the expression of immune

checkpoints and immune infiltrating cells differed in the two tumor

immune environments. We uncovered that PCa in the high-risk

group had higher stromal and immune score (Figures 6D, E).

MCPcounter showed that the high-risk group PCa had a higher

abundance of T cells, NK cells, monocyte lines, and neutrophils

(Figure 6F). CIBERSORT suggested that resting dendritic cells,

Tregs, and macrophages M1 and M2 were significantly enriched

in the low-risk group (Figures 6G, S2). TIMER analysis showed that

DNAJB1, COL10A1, PTGS2, AFP, and EGF were correlated with

tumor-infiltrating lymphocytes (Figure S3). Taken together, these

data indicated that the different BCR-free prognosis may be related

to the infiltrating immune cells.
3.7 Relationship between ERS risk score
and immune response and drug sensitivity

Since the current study indicates that ERS-associated signature

scores are associated with immune cell infiltration, we sought to

find a link between ERS-associated gene risk scores and immune

responses. This study evaluated the immune checkpoints in

different subgroups based on risk score. The results showed that

the expression levels of many immune checkpoints were lower in

the low-risk subgroup than in the high-risk subgroup (Figure 7A).

Moreover, the current study calculated TIDE scores between these

two risk types, and the data showed that the low-risk group had a

higher MSI score but a lower TIDE score and a lower T-cell

dysfunction score (Figures 7B–E), indicating that the T-cell

immune checkpoint inhibitor may be more effective in patients

with a low-risk score. Furthermore, based on the GDSC database,

the current study uses the “oncoPredict” package to look for

compounds that may interact with ERS-related pathways. The

results showed that ERS risk score-related drug sensitivity was
Frontiers in Endocrinology 09
related to apoptosis regulation (MIM1, WEHI-539, and ABT737),

cell cycle (AZD7762), and WNT (WIKI4). ERS risk score-related

drug resistance was associated with ERK MAPK (Selumetinib,

SCH772984 and PD0325901), PI3K/MTOR (AZD2014), and

EGFR (Gefitinib) (Figures 7F, G).
4 Discussion

PCa has been ranked first in incidence and second in estimated

mortality among men (18). Although PCa progresses relatively

slowly in its early stages compared to other cancers,

approximately 35% of patients will experience BCR within 10

years of radical prostatectomy (19). BCR is characterized by a

continuous postoperative PSA ≥ 0.2 ng/ml and is universally

accepted for monitoring the prognosis of PCa patients (20).

When PCa undergoes BCR, it usually becomes more aggressive,

even metastatic, and life-threatening, especially if the Gleason score

is high (21, 22). Therefore, there is great clinical value in identifying

appropriate biomarker signatures to predict early BCR after radical

prostatectomy. Clinicopathological features, such as the clinical

stage (T), Gleason score, and PSA, are the key risk factors for

BCR after radical prostatectomy (4, 23). Over the past decade, ERS

has become an increasingly compelling area of research for various

human cancers (24), which could become a new strategy for the

therapy of PCa.

The ER is an important organelle, known for protein synthesis

and intracellular calcium storage, and is involved in various cellular

signaling pathways, such as lipid biogenesis, calcium metabolism,

and autophagy signaling pathways (5, 25, 26). Chronic ERS is

considered to be the key pathophysiological cause of cell damage

in many popular human diseases, including diabetes,

neurodegenerative diseases, stroke, and cancer (27, 28). Excessive

and sustained activation of ERS interferes with ER function, leading

to accumulation and aggregation of unfolded proteins, which then

activate JNK and other apoptosis-related signaling pathways,

leading to cell death (29, 30). Although the ERS has been

reported to have a vital function in PCa progression, there was

lack of integrated analysis of ERS-related genes in BCR of PCa, and

the understanding of ERS may increase the choice of cancer therapy

and improve the prognosis of PCa patients.

ERS-related genes and PCa transcriptome data were obtained

from public databases, and then the ERS-related gene risk signature

was constructed and validated using the TCGA and GEO datasets.

We divided patients into high-risk (above the median) and low-

risk groups (below the median) based on the median ERS-related

gene signature risk score. Prognostic analysis showed that the high-

risk group had a shorter BCR-free survival time. Moreover, we

constructed a nomogram model, which proved to have a favorable

prognostic performance. These results suggest that the ERS-related

gene risk score is an independent BCR-free prognostic factor for

PCa patients. Furthermore, among these five genes, DNAJB1, EGF,

and PTGS2 were positively associated with BCR-free time survival,

while COL10A1 and AFP showed the opposite effect. DNAJB1 has

been reported to be a cancer biomarker for targeted therapy and

prognosis of pancreatic cancer (31). EGF has been reported to be
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associated with aggressiveness and progression-free interval in PCa

patients treat with androgen blockade (32). PTGS2 DNA fragment

in the serum of PCa patients could be used as a diagnostic and

prognostic marker (33). COL10A1 from cancer-associated

fibroblasts promotes LUSC cell proliferation and inhibits
Frontiers in Endocrinology 10
oxidative stress-induced apoptosis, and may also serve as a

potential biomarker for gastric cancer progression and prognosis

(34, 35). In addition, AFP is a popular clinical biomarker for HCC,

and it can also be used as a potential prognostic biomarker for PCa

(36, 37).
A
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FIGURE 6

Comprehensive analysis of ERS-associated signature score and immune cell infiltration in PRAD. Waterfall plot of the top 15 somatic mutation
signatures for groups with high (A) and low (B) ERS risk scores. (C) Relationships between ERS risk score and tumor mutational burden (TMB).
Correlations between ERS risk score and both stromal (D) and immune scores (E). MCPcounter (F) and CIBERSORT (G) were used to analyze the
degree of immune cell infiltration in the two groups (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001).
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Furthermore, we performed an enrichment analysis of DEGs

for both risk types and found that these genes were mainly focused

on metabolic and immunoregulatory pathways, such as the IL17

signaling pathway, fat and protein digestion and absorption

signaling pathway, and TNF signaling pathway. All these

signaling pathways had an important function in tumor

progression. IL-17 signaling has been reported to induce

translation of HIF1 a, which then drives immune exclusion by

activating the collagen deposition program in murine models of

cutaneous squamous cell carcinoma (38). Activation of the TNF-a/
TNFR2 axis can promote the immunosuppressive phenotype and

function of Tregs, leading to cancer progression (39, 40). Moreover,
Frontiers in Endocrinology 11
we assessed the relationship between the ERS signature risk scores

and the TMB and immune microenvironment of PCa and found

that the TMB was higher in the high-risk group than in the low-risk

group. The gene with the highest mutation frequency in low-risk

patients was SPOP, while TP53 was in the high-risk group. It is well

accepted that somatic mutations are the cause of cancer and are

associated with the production of neoantigens (41, 42). Increased

infiltrating immune cells and mutational burden are highly

correlated with prognosis and may serve as predictors of cancer

immunotherapy (43). Here, we found that the high-risk subgroup

had higher levels of immune checkpoints and a relatively active

immune cell infiltration compared to the low-risk group. However,
A B

D E

F G

C

FIGURE 7

Relationship between ERS-related signature scores and immune response and drug sensitivity. (A) Immune checkpoint analysis between two ERS risk
groups (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001). TIDE (B), dysfunction score (C), and T-cell exclusion (D) and MSI (E) in
different ERS risk groups in the PRAD dataset. (F) The correlation between ERS risk scores and drug sensitivity (AUC values of GDSC) examined by
the Spearman analysis. (G) Putative targets or functional pathways of the drugs that are sensitive to the ERG risk scores (ns, not significant; *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.001).
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the TIDE analysis predicted that the low-risk group may respond

well to immunotherapy. The detailed mechanism needs further

exploration. Finally, the association between ERS risk scores and

drug response was also assessed. The results implied that the drugs

sensitive to ERS-related high-risk scores targeted apoptosis

regulation, cell cycle, and WNT signaling pathways, whereas

those in the low-risk score group mainly targeted ERK MAPK,

PI3K/MTOR, and EGFR signaling pathways.

Taken together, all data suggest that ERS is involved in the

progression of PCa. On the basis of ERS-related genes, we

developed a prognostic model for BCR, and with the help of ERS

risk signature, we could adjust the treatment of patients to some

extent. However, our study also has several unavoidable limitations.

First, biochemical-based endpoints may not be suitable as a proxy

for meaningful survival outcomes in PCa, and the association

between ERS-related genes and distant metastasis-related

outcomes was not well analyzed. Second, the function of ERS

associated with BCR-free survival has not been confirmed by our

own data cohort. Future large-scale prospective studies and

molecular experiments are needed to validate these findings.
5 Conclusion

We constructed a five-gene risk signature based the ERS-related

genes to evaluate the role of ERS in PCa patients. The BCR

prognosis, somatic mutation, infiltration levels of immune cell,

and drug response were different between the two risk groups. By

integrating ERS signature risk scores and clinical parameters, we

further constructed a nomogram, further demonstrating its good

predictive performance. Potential therapeutic compounds targeting

ERS were also evaluated. These results may provide new insights

into the identification of prognostic biomarkers and the

development of therapeutic targets.
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