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Structure, activity and
function of the lysine
methyltransferase SETD5
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SET domain-containing 5 (SETD5) is an uncharacterized member of the protein

lysine methyltransferase family and is best known for its transcription machinery by

methylating histone H3 on lysine 36 (H3K36). These well-characterized functions

of SETD5 are transcription regulation, euchromatin formation, and RNA elongation

and splicing. SETD5 is frequently mutated and hyperactive in both human

neurodevelopmental disorders and cancer, and could be down-regulated by

degradation through the ubiquitin-proteasome pathway, but the biochemical

mechanisms underlying such dysregulation are rarely understood. Herein, we

provide an update on the particularities of SETD5 enzymatic activity and

substrate specificity concerning its biological importance, as well as its

molecular and cellular impact on normal physiology and disease, with potential

therapeutic options.
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1 Introduction

Methyltransferases are a superfamily of enzymes very present in nature, acting in the

methylation of proteins, nucleic acids, and small molecules (1, 2). These enzymes work by

catalyzing a methyl group for a receptor molecule, generating S-adenosylmethionine (SAM)

and a modified methylated molecule (3). This methyl group conjugation not only affects the

bioconversion pathways of many drugs but also affects the properties of endogenous

neurotransmitters and hormones (4). Moreover, methylation is fundamental to regulating

gene expression. Unlike DNAmethylation which has been linked to gene silencing, RNA and

protein methylation show differential patterns of activating and repressing gene

transcription. Proteins can be methylated at different amino acids, primarily lysine and

arginine residues (5, 6). Gene expression can be governed by lysine methylation on two levels:

methylation of histones and non-histone proteins such as transcription factors and

chromatin modifiers (7).
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2 Structural features of SETD5

The human SETD5 gene (OMIM 615743), also known as MRD23,

SETD5A, 2900045N06Rik or mKIAA1757, is located on the

chromosome 3p25.3 and encodes the SETD5 protein composed of

1442 amino acids (8). The SETD5 gene consists of 31 exons and is

ubiquitously expressed in human tissues such as the brain, thyroid,

skin, ovary, lung and endometrium (9, 10). SETD5 contains a SET (Su

(var)3-9, enhancer-of-zeste, trithorax) domain and is thus annotated

as a candidate protein of lysine methyltransferase, which methylates

H3K36 up to the tri-methyl form (H3K36me3) (9, 11, 12) (Figure 1).

It belongs to SET-domain lysine methyltransferase superfamily which

functions to methylate certain histone lysine residues, resulting in

regulating the expression of genes. However, there is evidence that

SETD5 lacks the methyltransferase activity but scaffolds a co-

repressor complex, including HDAC3, NCoR, G9a, and PAF1,

which couples selective deacetylation of H3K9ac with methylation

of this residue (13–15). The yeast SET3 and SET4, Drosophila UpSET,

and human MLL5 are homologous to SETD5 over their SET domains

and, except for SETD5, contain a PHD finger (Figure 1). The PHD

finger of MLL5 binds the H3K4me3 mark (16, 17), and Drosophila

UpSET also recognizes H3K4me3 (16).
3 Biochemical features of SETD5

The main role of SETD5 is gene activation by trimethylating H3K36

residue (Table 1). In this reaction, SETD5 utilizes the cofactor SAM as a
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methyl group donor, which binds to the substrate-binding site of the SET

domain (9). In contrast, SETD5 can induce the methylation of H3K9

independently of its SET domain. This is achieved by binding to G9a

histonemethyltransferase andHDAC3 histone deacetylase complex, thus

forming a SETD5-G9a-HDAC3 co-repressor complex (13). SETD5 also

deacetylates H3K9ac; when partnered with HDAC3/NCoR1, SETD5 is

converted from a relatively promiscuous enzyme into a selective one (13).

This implies a model in which the SETD5-G9a-HDAC3-NCoR1 co-

repressor complex couples selective methylation of H3K9 with

deacetylation of this residue at target genes. Furthermore, SETD5

recruits the HDAC3 complex to the rDNA promoter, resulting in the

removal of H4K16ac and its reader protein TIP5, a repressor of rDNA

expression (18) (Table 1). Another finding by Villain et al. was the

connection of SETD5 with BRD2, a bromodomain protein that recruits

transcription regulators onto the chromatin (19). In more detail, both

SETD5 and BRD2 bind to upstream promoter regions of the Sema3A

locus and BRD2 is necessary for regulating Sema3A expression

by SETD5.

Several mechanisms have been proposed to regulate SETD5

expression and activity. The nuclear localization signal (NLS) motif

in SETD5 protein can control its nuclear levels. Another interaction

that can handle the nuclear levels of SETD5 is its degradation by the

proteasome via the APC/C E3 ubiquitin ligase (14) (Figure 2A).

Furthermore, SETD5 expression is inhibited by miR-139-5p, which

may be sponged by circRNA PTPRM (circPTPRM) (20). SETD5 is

also downregulated by miR-126-5p, which represses the expression of

neuron-related genes in neurons (19, 21); however, the importance of

this mechanism remains to be explored (Figure 2B).
A B

C

FIGURE 1

SETD5 domain composition and homologue architecture. (A) Crystal structure of human SETD5 protein. (B) Schematic indicating the protein domain
organization of human (h) SETD5 and MLL5, yeast (y) Set3 and Set4, and Drosophila (d) UpSET. SET domains are shown in red and PHD fingers are
shown in green. The total number of amino acids is indicated for each protein. (C) SETD5 contains the SET domain and is annotated as a candidate
protein of lysine methyltransferase, which methylates H3K36 residue. However, there is evidence that SETD5 lacks the methyltransferase activity but
scaffolds the G9a/HDAC3 co-repressor complex, which couples methylation of H3K9 with deacetylation of this residue. Members of the Set3-Set4 SET
domain subfamily are shown with known interacting partners and methyl-lysine binding activity of their PHD fingers. Known binding partners are shown
in blue. Set4 is predicted to interact with other factors (shown in gray) that remain to be identified. MLL5 has known interactors, a subset of which are
shown in blue, and other yet-to-be-determined factors are indicated in gray.
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4 Physiologic functions of SETD5

4.1 SETD5, directly and indirectly, affects
cellular functions

The cellular functions of SETD5 are primarily related to the

trimethylation of H3K36, an active mark. Thus, SETD5 generates an

“open”, more loose and accessible chromatin to transcription factors

from a “closed” and inaccessible chromatin (9). SETD5 can also

indirectly cause the deposition of repressive marks on histone tails by

cross-talk with repressive methyltransferase. One indirect pathway of

gene silencing is the interaction of SETD5 with the histone

methyltransferase G9a, which dimethylated H3K9, establishing a

repressive mark (13). Furthermore, the interaction of SETD5 with

histone deacetylase HDAC3 causes the deposition of other repressive

marks on histone tails (14). Therefore, SETD5 has the potential to

interact indirectly with more pathways and repress a wider variety of

genes. The change in chromatin architecture caused by SETD5,

especially in gene enhancers or promoters, leads to the silencing of

a vast array of genes. In these ways, SETD5 participates in several

cellular functions, including regulation of the cell cycle and cell

proliferation (22, 23), regulation of RNA elongation and splicing

(9), control of brain and nervous system development (9, 19, 24–27),

maintenance of tissue homeostasis (28–31), and embryonic

development (22, 32, 33) (Figure 3). Recently, SETD5 has been

extensively associated with tumorigenesis (10, 13, 23, 34–39).
4.2 SETD5 coordinates the nervous
system development

SETD5 has been demonstrated to participate in the early

development of the nervous system. At different developmental

stages, SETD5 exhibits a high expression level in the cerebral cortex

(40, 41). The de novomutation of the SETD5 gene has been identified

as a genetic cause of neurodevelopmental disorders, such as

intellectual disability (ID), autism spectrum disorder (ASD), and

KBG syndrome (27, 42–46) (Figure 3). Loss-of-function mutations

in SETD5 lead to intellectual impairments often associated with

speech, language, and developmental motor delays (8, 40, 47–49).

Psychiatric manifestations of ASD-like behavior and obsessive-

compulsive disorder (OCD) with hand flapping and ritualized

movements have also been reported in SETD5 patients (40, 47,
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50–52). Furthermore, the dysregulation of the axis SETD5-

H3K36me3 is responsible for the alteration of neural progenitor

proliferation and the synapse impairment that leads to neurological

symptoms (9). It has been recently proposed that ASD may develop

from altered mechanisms affecting neural progenitors (40), suggesting

that SETD5 may act as a key regulator in ASD development.
4.3 SETD5 regulates the
embryonic development

Another major cellular effect of SETD5 is the regulation of

embryonic development. During early embryogenesis, SETD5 is

required for maintaining the expression of germ cell-related genes

and SETD5-associated protein complexes containing Tbl1xr1 and

Ctr9, which in turn are involved in regulating the germ cell-related
A

B

FIGURE 2

Regulatory mechanisms of SETD5 expression and activity. (A) SETD5 in
NCoR-HDAC complex on primed enhancers is ubiquitinated and
degraded by APC/C. The degradation of SETD5 from NCoR-HDAC3
co-repressor complex allows H3K27 acetylation and transits
enhancers from primed to active state. (B) miR-139-5p or miR-126-5p
binds to the SETD5 gene 3’ untranslated region (UTR) to repress the
expression of SETD5 leading to low expression levels of Sema3A.
TABLE 1 Summary of the identified SETD5 substrates.

Complex Substrate Methylation
sites

Acetylation
sites

Effect of the modification Reference

Unknown Histone H3 K36 / Preservation of global transcriptional fidelity during brain development and
neuronal wiring

(9)

G9a, HDAC3,
NCoR1

Histone H3 K9 / Promoting H3K9 methylation via interacting with G9a/HDAC3/NcoR1 complex
and enhancing PDAC resistance to MEKi

(13)

HDAC3,
NCoR, PAF1

Histone H3 / K27 Promoting H3K27 deacetylation via recruiting HDAC3/NCoR co-repressor and
suppressing adipogenesis

(14)

HDAC3 Histone H4 / K16 Elevating rDNA expression via an HDAC3-mediated H4K16 deacetylation and
promoting neural cell proliferation

(18)
f

K, lysine; MEKi, MEK1/2 inhibition; PDAC, pancreatic ductal adenocarcinoma.
rontiersin.org

https://doi.org/10.3389/fendo.2023.1089527
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2023.1089527
genes in murine ESCs (33) (Figure 3). Deletion of SETD5 results in

embryonic lethality at embryonic days 10.5 and 11.5 (22). In more

detail, SETD5-deficient mouse embryos exhibit severe defects in

neural tube formation, somitogenesis and cardiac development and

have aberrant vasculogenesis in embryos, yolk sacs and placentas.

Furthermore, the haploinsufficiency of SETD5 leads to disrupted

developmental gene expression and cognition (41, 53). These data

suggest a potential role of SETD5 in early embryonic development.
4.4 Connection of SETD5
with tumorigenesis

Knowledge about the function of SETD5 in tumors is sparse, and

most of the information available is about its role in

neurodevelopmental diseases (Figure 3). SETD5 is located on

chromosome 3p25.3 in a region linked to various diseases and

amplified in primary tumors (8, 54, 55). Genomic alterations of

SETD5 occur in multiple cancer types, implicating its cancer-

promoting role (56, 57). In most cases, the upregulation of SETD5

is detected in pancreatic cancer, breast cancer, esophageal squamous

cell carcinoma (ESCC), and non-small cell lung cancer (NSCLC) (13,

23, 56, 57). The high levels of the SETD5 gene are related to poor

prognosis in patients with lung, bladder, and prostate cancer (35, 38,

56, 57). By contrast, the suppression of SETD5 expression leads to

reduced cell growth and migration in pancreatic cancer, prostate
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cancer, and hepatocellular carcinoma (HCC) (13, 34, 58), as well as

enhanced resistance to chemotherapeutic drugs (13). In terms of the

mechanism, SETD5 is proposed to act as a tumor driver by inhibiting

tumor suppressor gene transcription through H3K9 methylation via

interacting with G9a/HDAC3 complex (13). Another mechanism of

SETD5 involvement in cancer is the regulation of cell cycle-related

genes through activating the PI3K/AKT signaling pathway (10, 23,

56) (Figure 3).

In addition, mutations or amplification in the SET-domain

proteins has been previously reported in various cancers. According

to data in the PECAN database (https://pecan.stjude.cloud/home),

high-grade gliomas and acute lymphoblastic leukemias present

SETD5 mutations. SETD5 gene mutations are also associated with

prostate cancer, colorectal cancer, and neuroblastoma (36, 59–61).

Furthermore, SETD5 is identified with a rate of high-level

amplification at around 10% in bladder cancer (38). Either

mutation or amplification is demonstrated to promote the

proliferation of cancer cells (38, 60).

Recent reports shed more light on how altered SETD5 activity

promotes tumorigenesis and progression. These studies investigated

the role of SETD5 in breast cancer, ESCC, and NSCLC (10, 23, 37). In

more detail, SETD5 acts as a factor to reprogram stemness-related

gene expression patterns. The deletion of SETD5 induces the

inactivation of the PI3K/AKT pathway (10, 23). This leads to the

repression of stemness-related genes like SOX2, CD44, and OCT4,

which reduce stem cell-like properties and malignant transformation.
FIGURE 3

Roles of SETD5 in regulation of nervous system development, embryonic development and tumorigenesis. ASD, autism spectrum disorder; BC, breast
cancer; ESCC, esophageal squamous cell carcinoma; HCC, hepatocellular carcinoma; HSC, hematopoietic stem cell; ID, intellectual disability; NSCLC,
non-small cell lung cancer; PDAC, pancreatic ductal adenocarcinoma.
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5 Outlook

Despite the recent achievements in the structural and biochemical

analyses of SETD5 protein, not much information is available on its

cellular functions. Nevertheless, the evidence that the methylation of

H3K36 plays an important role in regulating enhancer activity and

SETD5 is amplified in many cancers suggests that SETD5 must play a

pivotal role in many different cellular processes. Epigenetic-based

therapies are emerging as effective and valuable approaches in cancer,

and targeting SETD5 may present a practical approach. Further

research on the discovery and use of SETD5 inhibitors to combat

cancer subtypes could help maximize the effects of current therapeutic

regimens. First, a deeper understanding of the enzyme’s intracellular

effects and affected genes is needed since there is evidence that SETD5

may also act as a tumor driver in some stages of cancer development.

The cross-talk of SETD5 with other epigenetic enzymes also needs

further exploration to minimize off-target side effects from its

therapeutic targeting.
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