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Heterogeneity is a complex feature of cells and tissues with many interacting

components. Depending on the nature of the research context, interacting

features of cellular, drug response, genetic, molecular, spatial, temporal, and

vascular heterogeneity may be present. We describe the various forms of

heterogeneity with examples of their interactions and how they play a role in

affecting cellular phenotype and drug responses in breast cancer. While cellular

heterogeneity may be the most widely described and invoked, many forms of

heterogeneity are evident within the tumor microenvironment and affect

responses to the endocrine and cytotoxic drugs widely used in standard clinical

care. Drug response heterogeneity is a critical determinant of clinical response and

curative potential and also is multifaceted when encountered. The interactive

nature of some forms of heterogeneity is readily apparent. For example, the

process of metastasis has the properties of both temporal and spatial

heterogeneity within the host, whereas each individual metastatic deposit may

exhibit cellular, genetic, molecular, and vascular heterogeneity. This review

describes the many forms of heterogeneity, their integrated activities, and offers

some insights into how heterogeneity may be understood and studied in

the future.
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Introduction

Endocrine resistance is a major clinical problem for the treatment of hormone-receptor

(HR+) positive breast cancer (BC). HR+ tumors comprise the most prevalent molecular

subtype, representing over 70% of all newly diagnosed breast cancers each year. However,

using endocrine monotherapies to improve the overall survival (OS) rates for patients with

HR+ breast cancer has shown only modest further increases since the introduction of

tamoxifen in the early 1970s. As monotherapies, only Fulvestrant has shown an ability to

increase OS; aromatase inhibitors confer no OS benefit relative to tamoxifen (1–3). Adding a
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CDK4,6 inhibitor such as abemaciclib or ribociclib to any of the

current endocrine therapies improves OS beyond that of the

endocrine monotherapy (4–6). Nonetheless, many patients

experience a recurrence of their HR+ breast cancer, often many

years after completing an apparently successful treatment regimen

(7). Recurrence is almost always fatal, with the predicted number of

breast cancer deaths from all molecular subtypes in the United States

alone expected to exceed 42,000 in 2023 (8).

Endocrine therapies that target the activation state of estrogen

receptor-a (ER; ESR1) fall into two broadly defined agent classes –

antiestrogens and aromatase inhibitors. Antiestrogens act primarily

by competing with endogenous 17b-estradiol and other estrogens for

binding to ER and blocking its activation. Tamoxifen and structurally

related triphenylethylene-like compounds are mostly partial agonists

and often described as selective estrogen receptor modulators

(SERMs). The ER antagonist properties of tamoxifen are evident in

its ability to reduce the risk of breast cancer mortality by almost one-

third (7), whereas its agonist properties are largely responsible for the

increased risk of endometrial cancer associated with long term use (9).

Fulvestrant and related compounds also compete with estrogens for

ER binding but can target the receptor protein for degradation and are

often referred to as selective estrogen receptor downregulators or

degraders (SERDs). The mechanistic importance of ER degradation as

a driver of antineoplastic activity, relative to competing for estrogen

binding to ER, may be minor (10, 11). Both SERDs and SERMS

occupy the ligand binding domain of ER and induce a conformation

in the protein that alters the ability of ER to act as a transcription

regulator. Aromatase inhibitors act by blocking the enzyme activity of

the aromatase protein that converts androgens to estrogens, depriving

ER of its activating ligands. Hence, the ER protein remains as a largely

inactive transcriptional regulator unless modified by selective

mutation or phosphorylation.

Two ligand independent actions can alter ER function –mutation

or phosphorylation of specific residues. ER can be phosphorylated at

multiple residues, with serine-167 (S-167) and serine-118 (S-118) in

the AF1 region of the ER protein being the most prevalent (12).

Higher expression of either pS-167 and/or pS-118 is mostly associated

with favorable clinical outcome in patients treated with tamoxifen

(13–16). Increased expression of p-S118 in secondary breast tumors

post relapse may be predictive of longer survival (17). The presence of

ESR1 mutations following failure on an aromatase inhibitor-based

regimen is widely reported, with 18%-55% of recurrent tumors

expressing one or more ER mutations (18–21). Two sites, D538 and

Y537, account for most of these ER mutations. Meta-analysis of the

effects of ESR1 mutations in breast cancer revealed that D538G is the

most frequently detected mutation and is associated with poor relapse

free survival. Most of the ESR1 mutations detected were associated

with aromatase inhibitor treatment (22). Since the prevalent ESR1

mutations encode a constitutively active ER protein, these mutations

appear to drive up to ~40% of aromatase inhibitor resistant tumors.

Drivers of the remaining 50-60% of these aromatase inhibitor

resistant tumors remain to be discovered. In clinical studies, the

benefit of antiestrogen therapy does not appear to be substantially

affected by the presence of these ER mutations (23, 24). Unlike

aromatase inhibitor therapies, recurrence following an antiestrogen

therapy is associated with a relatively small increase in the prevalence

of ER mutations (22).
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Whether by loss of access to natural ligands as occurs with

aromatase inhibition, or as a consequence of binding an

antiestrogen, altered ER function directly affects cell fate by

compromising two major cell functions – survival and proliferation.

The most readily apparent of these changes is an often rapid slowing

of proliferation, usually a result of cells accumulating in the G1, or

exiting to the G0, phase of the cell cycle. Cell death occurs more

slowly. Both changes are observed in endocrine sensitive, HR+

experimental models and in many HR+ breast tumors in patients.

For example, in endocrine treated breast tumors reduced proliferation

is evident from the drop in expression of the Ki67 proliferation

marker (25, 26), whereas tumor shrinkage reflects increased cell

death. Not surprisingly, these changes occur on different time

scales, with changes in Ki67 detected within days and tumor

shrinkage often occurring over many weeks or months (26, 27).

Unlike the rapid induction of cell death that can occur with

chemotherapy and often leads to a complete pathological response

(pCR) that predicts a good clinical response, the much slower

induction of cell death and tumor shrinkage that accompany

endocrine therapies rarely lead to a rapid pCR (28, 29).

Nonetheless, both cytotoxic and endocrine interventions confer a

broadly comparable increase in OS (28, 30), most likely reflecting the

ability of each modality to increase the rate of breast cancer cell death

within tumors.

The time scales for cell death and tumor shrinkage are likely

further affected by the cell populations targeted by each type of

intervention. For example, cytotoxic chemotherapy may kill

proliferating infiltrating immune cells and cancer associated

fibroblasts (CAFs) in the tumor microenvironment (TME) that are

often ER-negative and likely not killed by endocrine therapies. While

cellular heterogeneity can be one determinant of responsiveness to

any given therapy, heterogeneity is complex and multifaceted.
The complex nature of heterogeneity

Breast tumors and their associated microenvironments are often

described as being highly heterogeneous. Generally, this is taken to

reflect cellular heterogeneity, although the precise nature of the

heterogeneity invoked may not be defined explicitly. Cellular

heterogeneity usually refers to the presence of different cell types

within the TME and exhibits both spatial and temporal variability

within an individual tumor and among different colonized sites in the

same patient (primary tumor and distant metastatic sites). While

tumor cells may remodel some features of their microenvironment to

create a supportive niche at a site distant from the primary tumor, the

microenvironment of each metastasis will reflect, to some degree, the

normal tissue in which it resides. In breast cancer, commonmetastatic

sites include bone, brain, lung, lymph nodes, skin, and viscera.

Location in the body creates one form of spatial heterogeneity

(Figure 1A). Each metastasis arises over time, conferring a form of

temporal heterogeneity (Figure 1B).

Cellular heterogeneity reflects the presence of cancer cells, normal

and/or stromal cells such as non-transformed adipocyte, epithelial,

myoepithelial, fibroblast and myofibroblast cells, and infiltrating

immune cells including various T-cells, macrophages, dendritic and

natural killer (NK) cells. As definitively normal cells, their genome
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sequence profiles would be expected to be similar. However, each of

these cell types has a different phenotype and function and will also

express different transcriptome, proteome, metabolome and

epigenome profiles (molecular heterogeneity). These various profiles

also exhibit dynamism (creating another form of temporal

heterogeneity) as each cell type responds to the changing extrinsic

signals it receives and the intrinsic responses and functions it

performs in response. For example, macrophages in the TME may

exist in different states that can be M1-like (pro-inflammatory, anti-

tumorigenic) or M2-like (anti-inflammatory, pro-tumorigenic) (31,

32). Hence, there is significant spatiotemporal molecular

heterogeneity in the TME, reflecting the location of each cell type

and its immediate neighbors and their respective interactions and

cell states.

The tumor cell compartment of the TME also exhibits

spatiotemporal heterogeneity in its genome, epigenome,

transcriptome, and proteome profiles. The genetic heterogeneity

from acquired mutations is inherent in cancer, with different cancer

cells exhibiting some features of their genetic ancestry in a manner

that allows investigators to follow the genetic evolution of the cancer

cells in a tumor (33). These various features of heterogeneity are

affected further by the nature of the tumor vasculature, which creates

additional forms of heterogeneity because of its variable ability (or

inability) to deliver adequate nutrients and remove waste throughout

a tumor ecosystem. Vascular heterogeneity can create areas of

inadequate oxygen (and nutrient) supply leading to intratumoral

regions of hypoxia and anoxia, causing affected cells to stop
Frontiers in Endocrinology 03
proliferating or, in more extreme cases, die (regions of necrosis).

Vascular heterogeneity also can affect drug delivery, with the inability

to deliver cytotoxic concentrations of a drug to all tumor cells in a

manner that contributes to drug response heterogeneity. Drug

response heterogeneity also is complex and can reflect a mix of

activities that are intrinsic and/or extrinsic to the cancer cells.

Since it is not possible to cover in depth all forms and mechanisms

of heterogeneity, we provide insights mostly from the perspective of

responsiveness to therapeutic interventions and the regulation of

breast cancer cell fate. For the purposes of this review, we consider

cell fate as the balanced outcomes among cell survival-death and

proliferation-growth arrest. Readers interested in more in-depth

reviews may find the following citations of interest; these address

heterogeneity in the context of metastasis (34–36) and the interaction

of immune and cancer cells in the TME (37), often from the common

perspective of effects on drug responsiveness (38–41).
Cellular heterogeneity - the tumor
microenvironment

One of the clearest examples of cellular heterogeneity is within the

TME, which plays a potentially multifaceted role, in collaboration

with the extracellular matrix (ECM), in therapy resistance acquisition

(42–46). As noted above, the TME comprises a variety of components

such as vascular endothelial cells, adipocytes, pericytes, stroma/stem-

like cells (MSCs) and extracellular matrix. The TME is subject to
A

B

FIGURE 1

Illustration depicting spatial and temporal heterogeneity. (A) A primary tumor with heterogeneous population of treatment sensitive and resistant cancer
cells along with tumor associated cells. Treatment over time may allow expansion of resistant cells. (B) Primary tumors metastasize over time to produce
metastatic tumors in different organs with different cell composition (temporal heterogeneity) that may also lead to intra-host heterogeneity.
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dynamic turnover that produces both spatial and temporal intra- and

inter-tumor heterogeneity that can directly influence drug

responsiveness. In this section, we consider the mechanisms used

by TME components to modify endocrine responses in ER+ breast

cancer cells.
Breast cancer-associated fibroblasts

Cancer-associated fibroblasts (CAF) are among the most

important components of the stromal cell population within the

TME, and have been shown to participate in many features of

cancer progression including altered drug responsiveness (Figure 2).

CAF subpopulations in breast cancer express different markers such

as a-SMA, FAP, PDGFRa, PDGFRb, CD29, NG2, FSP1, vimentin,

PDPN (47–50), CD146 (51) and CAV1 (52). Other markers include

the more recently implicated GPR77 and CD10 (53), CX chemokine

ligand 12 (CXCL12) (54), MHC-II gene and CD74 (55), Fibulin-1 and

SGRG-1 (56); CDK1, CD53 and CRABP1 (55). These markers define

heterogeneous subsets of CAFs from different origins (myCAFs,

iCAFs, apCAFs, vCAFs, mCAFs and developmental CAFs) that can

present different and contrasting roles in breast cancer [for review see
Frontiers in Endocrinology 04
(57)], including promotion of chemoresistance or sensitivity. Besides

heterogeneity in marker expression, origin and function, the

localization of subsets of these cells in the TME also contributes to

CAF heterogeneity and can affect their role in cancer progression.

Applying simultaneous detection of the vCAF marker Nidogen-2, the

mCAF marker PDGFRa, and the dCAF marker SCRG1 identified

three distinct stromal populations with divergent growth patterns and

localization in relation to the nests of breast tumor cells (56).
Mechanisms of CAF-induced endocrine
resistance in breast cancer

CAFs use different/heterogeneous mechanisms to drive ER+

breast cancer cells to acquire endocrine resistance. Mechanisms of

the activated TME that can induce therapy resistance include

promotion of pro-survival pathways, stemness traits, and/or

metabolic reprogramming; CAFs can regulate each of these

mechanisms to induce endocrine resistance in ER+ breast cancer cells.

Examples of different CAF subsets regulating several pro-survival

mechanisms are evident. For example, CD146 expression defines two

subsets of CAFs, CD146-positive (CD146pos) and CD146-negative
FIGURE 2

An illustration depicting the effects of cancer associated fibroblasts (CAF) cells on cancer cells through various mechanisms. (A) CD146 negative
(CD146neg) CAF activate EGFR, HER2, and IGFR in breast cancer cells that promotes tamoxifen resistance whereas GPR30 positive (GPR30+) CAF cells
induce tamoxifen resistance by upregulating MEK/ERK and PI3K/AKT signaling. (B) CD63 positive (CD63+) CAF promote tamoxifen resistance by
downregulating ER and PTEN mediated by exosomes containing miR22. (C) Low caveolin-1 (CAV-1) expression in CAF upregulates TIGAR that protects
cancer cells by inhibiting aerobic glycolysis, apoptosis and autophagy. (D) CD10 positive (CD10+) and GPR77 positive (GPR77+) CAF induces
chemoresistance by sustained secretion of IL-6 and IL-8 and enrichment of stromal cancer stem cells.
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(CD146neg) in luminal breast cancer (Figure 2A) (51). In these breast

tumors, CD146neg fibroblasts exhibit decreased ER expression,

whereas ER+/CD146pos fibroblasts remained estrogen responsive

and antiestrogen sensitive. Breast cancer cells influenced by

CD146neg fibroblasts may escape estrogen-dependent proliferation

and exhibit tamoxifen resistance through activation of EGFR, HER2,

and IGF1R (51). Weigel et al. (2012) implicated a role for enhanced

platelet-derived growth factor receptor (PDGF)/Abl signaling in

aromatase inhibitor-resistant breast cancers (58). Both tumor and

fibroblast expression of PDGFRa and PDGFRb was significantly

correlated in pre-treatment and relapse samples and high post-

treatment tumor and fibroblast PDGFRb levels were associated with

a short time to treatment failure (TTF).

GPR30 (G-protein receptor 30)-expressing CAFs induce

tamoxifen resistance involving MEK/ERK signaling in ERa-positive
breast cancer cells and tumors (Figure 2A) (59). CD63+ CAFs may

promote tamoxifen resistance by secreting exosomes rich in miR-22,

which can induce downregulation of ER and PTEN, to confer

tamoxifen resistance on breast cancer cells (Figure 2B) (60).

Several other studies reported the induction of pro-survival

signaling through PI3K/AKT and MEK/ERK by CAFs to promote

endocrine resistance (61–63). For example, activation of the PI3K/

AKT pathway that phosphorylates S-167 of ER increased BCL2

expression and altered resistance to tamoxifen following activation

of fibroblast growth factor receptor 2 (FGFR2). These activities

reversed tamoxifen-driven ER stabilization and promoted ER

phosphorylation and proteasomal degradation (61).

Activated signaling through PI3K/AKT/mTOR is often driven by

mutations in either AKT and/or PIK3CA (64–66) and is clinically

actionable with drugs that target each of these signaling nodes. Several

clinical trials with these drugs have been completed and others are

ongoing; none has yet produced any notable increase in OS. While

some studies show improvements in the clinical benefit ratio, these

are often associated with significant dose limiting toxicities (see (67)

for review). A major challenge is feed-back activation within the

signaling feature when one node is inhibited, making shutting down

the signaling more difficult. While novel drug combinations and

scheduling could mitigate some of this feedback activation, these are

likely also to be accompanied by significant toxicity for patients.

Moreover, the potential of cellular or molecular heterogeneity to

further limit responsiveness is likely to remain a challenge. While

patients can be selected for specific drugs based on the AKT and/or

PIK3CA mutational profile of their tumor, it remains difficult to

predict which tumors are driven by the detected mutation, perhaps

reflecting the difficulty in predicting the true penetrance of the

mutation (where the presence of the mutation is responsible for the

observed tumor phenotype).

Examples of metabolic cooperation between CAFs and tumor

cells that can alter endocrine responsiveness include the loss of

stromal caveolin-1 (Cav-1), a predictive marker of poor clinical

outcome in breast cancer patients treated with tamoxifen (68).

Martinez-Outschoorn et al. showed that mitochondrial dysfunction,

oxidative stress and aerobic glycolysis are increased in CAV1-

downregulated CAFs (69). The authors proposed that defective

mitochondria are removed from these cells by the autophagy/

mitophagy induced by oxidative stress. These autophagic processes

could provide nutrients (such as lactate) to stimulate mitochondrial
Frontiers in Endocrinology 05
biogenesis and oxidative metabolism in adjacent cancer cells.

Martinez-Outschoorn et al. showed that low CAV-1 CAFs, after

treatment with tamoxifen, increased TIGAR (TP53-induced

glycolysis and apoptosis regulator) expression (Figure 2C) (70).

TIGAR is a p53-regulated gene that simultaneously inhibits

glycolysis, autophagy and apoptosis and decreases ROS, thereby

promoting oxidative mitochondrial metabolism in ER+ breast

cancer cells. CAFs showed increased glucose uptake and glycolytic

activity, impaired mitochondrial function, and increased generation

of lactate and ketone bodies; conversely, epithelial cancer cells in

coculture display increased mitochondrial activity and protection

from apoptosis (70).

CAF subpopulations can promote breast cancer stemness and

treatment resistance including resistance to endocrine therapies.

CD10+ GPR77+ CAFs induced chemoresistance via sustained

secretion of IL-6 and IL-8 (Figure 2D) (53). Sansone et al.

determined that the IL6-pStat3 pathway (required for CAF

proliferation) promoted the biogenesis of onco-miR-221hi CAF

microvesicles (MV) which, in combination with hormone therapy,

established stromal cancer stem cell (CSC) niches, specifically those

with CD133hi cells (Figure 2D) (71).

Targeting CAF heterogeneity and their different molecular

mechanisms could prevent or reverse resistance to endocrine

therapies and suggests one approach for the development of more

effective therapeutic interventions.
Tumor associated macrophages

Macrophages are abundant in the TME (72). The role(s) of

tumor-associated macrophages (TAM) in the pathogenesis of

cancer depend on their phenotype and polarization (31), which can

be affected by the TME (73, 74). The importance of TAM localization

within different tumor compartments has been reviewed by others

(31). TAM phenotypes are often characterized as either M1, which

promotes proinflammatory and tumoricidal responses, or M2, with

anti-inflammatory and pro-tumor responses (32). Markers of M1

TAM include HLA-DR and CD80/86; M2 markers include CD206,

CD163, CD204, and stabilin-1. In breast cancer, the M2 markers

CD47, COX-2, MMP9, TIE2, YKL-39, YKL-40, PD-L1 were also

identified (31). TAMs can play a role in endocrine resistance; for

example, macrophages may induce endocrine resistance in ER+

breast cancer cells by inducing sustained release of TNF-a and IL-6

from breast cancer cells, resulting in activation of NFkB, STAT3, and
ERK-1 and hyperphosphorylation of ERa (75). Formation of an

NFkB/STAT3/phospho-ER complex in cyclin D1 gene correlated

with increased proliferation, independent of ER ligand status (75).
Breast cancer stem cells

Cancer stem cells are a population of tumor cells with the capacity

to self-renew and to generate more stem cells and also to differentiate

into other cell types (76). Breast cancer stem cells contribute to breast

cancer heterogeneity, expressing a highly diverse profile of markers in

different tumor subtypes ( (77) for Review). Markers reported to be

associated with the ER-positive, Luminal A and/or Luminal B, subtype
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include: CD44+/CD24-/low, MUC1+/CD24+, CD44+/Vimentin+,

CD44+/Osteonectin+, CD24+/CK18+, CD24+/GATA+ (50). The

marker ALDH1 has the highest expression in HER2+ and basal-like

tumors (77).

While playing a role in breast cancer initiation and growth,

evidence of the role of breast cancer stem cells in metastasis (78)

and therapeutic resistance (79) has also been reported. Simoes et al.

showed that both tamoxifen and fulvestrant induce STAT3

phosphorylation and activation of the STAT3 target genes MUC1

and OSMR in ALDH+ cells from endocrine-resistant patient samples

(80). The SOX2 pathway, which is associated with stem cell

characteristics and involved in embryonic development (81), and

the Wnt pathway that is associated with the epithelial to

mesenchymal transition (82), were both activated after endocrine

treatment of ER+ breast cancer cells. Activation was accompanied by

an increase in CD24 but not CD44 expression. Together, these

observations suggest an early adaptation to endocrine stress with

increased stemness that enables the survival of emerging hormone-

resistant cell populations (83).

The Notch pathway can regulate breast cancer stem cell activity

(84, 85) and has been implicated in endocrine therapy resistance (86–

88). FK506-binding protein like (FKBPL), an anti-tumour protein

that belongs to the family of immunophilins, was shown to inhibit

endocrine therapy resistant CD44+ cancer stem cells in ER+ disease,

via modulation of the components of the Notch pathway, DLL4 and

Notch4 (89). Liu et al. showed that everolimus, a mTOR antagonist, in

combination with letrozole inhibited MCF-7 ESA(+)CD44(+)CD24

(-/low) stem cells via PI3K/mTOR signaling (78).
Molecular heterogeneity

The evolution of clonal tumor cell populations alters intratumor

heterogeneity spatially and/or temporally. Earlier studies have

indicated intratumoral heterogeneity of breast cancer biomarkers,

such as ER, PR, and HER2 (90–92). Studies using large scale genome

analysis have mapped the complex mutational landscape and

confirmed the presence of genetic clonal subpopulations in breast

tumors (93–98). Typically, single biopsies are used to determine the

features of a tumor. However, single biopsies are temporally and

spatially restricted because the cells collected often represent a small

fraction of the tumor composition present at a single time point.

Therefore, a biopsy may not capture the entire diversity of tumor cell

populations and can fail to reflect fully spatial heterogeneity. For

example, two different tumor cell populations can exist spatially as

‘collision tumors’; these may only be observed when the entire tumor

is analyzed, such as after surgical resection. Indeed, when the clonal

architecture of cancer cells was monitored after four months of

neoadjuvant aromatase inhibitor therapy, tumors of independent

origin were found that were not captured in the baseline biopsy (99).

One approach to overcome this challenge is to perform

multiregion sequencing of biopsies from the same tumor. For

example, multiregion sequencing from 8 biopsies of single

treatment naïve breast tumor found subclonal diversification and

geographically constrained patterns of subclonal growth leading to

extensive and statistically significant spatial heterogeneity of point

mutations (100). Due to geographically restricted subclonal growth,
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in 4 cancers (out of 12), the detected driver mutation was present only

in 1-3 samples from 8 needle biopsies (100). The challenge of both

spatial and molecular heterogeneity in subpopulations requires

careful consideration when searching for newly detected mutations

after treatment, especially if a single needle biopsy was used to

determine heterogeneity at baseline. Recent studies have confirmed

that most ductal carcinoma in situ (DCIS) lesions that give rise to

recurrent invasive breast cancer share some clonal relationship with

the initial DCIS (101). Any treatment that fails to eliminate all driver

clones in DCIS will likely lead to recurrence, independent of how

effective the treatment may appear when tumor shrinkage is used as

the marker of response. Normal mammary cells associated with

tumors in breast cancer patients may also harbor pathogenic

variants of p53 and PIK3CA (102), suggesting that clonal (and

genetic/molecular) heterogeneity may be a fundamental feature of

mammary cells.
Genetic heterogeneity

Cancer conforms to evolutionary rules defined by the rates at

which clones mutate, adapt, and grow. Acquired gene mutations are

inherent for cancer cells, where some gene mutations are defined as

driver mutations that have known functions capable of conferring

survival and proliferation advantages (103, 104). Tumors contains

different subpopulations of cells (subclones) that can be distinguished

based on different characteristics affecting their phenotype including

genetic alterations such as single-nucleotide variants (SNVs), small

insertions or deletions (indels), somatic copy number alterations

(CNAs), and structural variants. Chromosomal and genomic

alterations have been documented in most cancers including breast

cancers (98, 105, 106), some of which clearly affect biological

processes and functions (107) that may facilitate acquired resistance

to specific therapeutic interventions (108). Analysis of the whole

genome sequences of 560 breast cancer patients revealed 93 protein-

coding genes that contained probable driver mutations (109). The ten

most frequently mutated driver genes accounted for 62% of all driver

genes and included TP53, PTEN, ERBB2, FGFR1 locus, GATA3, RB1,

and MAP3K1. TP53, RB1, and PTEN were more frequently found in

ER negative breast cancers. PIK3CA, CCND1, and FGR1 mutations

were more frequently detected in ER+ breast cancers (109). Other

studies have also reported alterations in these genes in breast cancer

(98, 110). Metastatic breast cancers frequently share the majority of

their genomic alterations with the corresponding primary disease,

indicating pre-existing clones. However, metastases at distant sites

also continue to acquire new mutations that were not previously

detected or are subclonal in the primary disease (110, 111). For

example, ESR1 activating mutations are rarely present in primary ER

+ breast cancer, even in those 15–20% of patients that show intrinsic

resistance to hormonal therapies (112). However, these mutations are

enriched in ER+ metastatic tumor samples from patients with

acquired endocrine resistance (30–40% of ER+ patients), mostly

following failure of an aromatase inhibitor-based intervention

(113). International Cancer Genome Consortium (ICGC) and

Cancer Genome Atlas (TCGA) have thoroughly explored the

genetics of primary breast cancer and sequencing of breast cancer

samples. These studies revealed nine cancer genes (TP53, ESR1,
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GATA3, KMT2C, NCOR1, AKT1, NF1, RIC8A and RB1) to be highly

mutated in the metastatic disease when compared with early breast

cancer (114). Importantly, genomic comparisons of primary and

metastatic samples showed that metastatic breast tumors frequently

possess higher numbers of mutations (mutational load), including

driver mutations and somatic copy number aberrations, than

matched primary tumors (115). Some of these mutations are

associated with endocrine therapy response (110, 116, 117). For

instance, the prevalence of activating ERBB2 mutations and NF1

loss of function increased two-fold in endocrine resistant tumors;

regulators of ER mediated transcription were also enriched in

endocrine therapy resistant tumors (117).
Transcriptional heterogeneity

Transcriptional heterogeneity plays a key role in the development

of different cell states. Different transcriptional programs contribute to

dynamic plasticity and allow co-existence of tumor cells with

differential drug sensitivities that may support the development of

resistance to specific therapies (118). Earlier studies in lung cancer cells

showed that in a drug sensitive cell population a small proportion of

cells are reversibly drug resistant because of chromatin mediated

signaling (119). Using single cell RNA-seq analysis, the

transcriptomic heterogeneity of different type of cells in tumors has

been cataloged (120). Profiling tumors from 11 breast cancer patients

using single cell RNA-seq reported both common and diverse

transcript signatures from cancer cells of the same tumor (121),

whereas most non-cancer cells were immune cells. This study further

revealed that in the ER+/HER2+ breast cancer subtype, the primary

tumors showed predominant ER signaling but cells from the metastatic

lymph nodes expressed mostly HER2-activated genes. Conversely,

neoadjuvant treatment of HER2+ breast cancer changed the gene

expression profile of the tumor to a pattern that resembled triple

negative breast cancer (121). Thus, both disease progression and

treatment can contribute to temporal transcriptional heterogeneity.

Single cell studies have revealed that transcript heterogeneity also

exists in commonly used breast cancer cell lines. In MCF7 cells,

intracellular transcriptomic heterogeneity was dominated by cell cycle

states but a rare subpopulation of MCF7 cells showed a unique

transcriptional feature with an apoptotic signature (122). Using single

cell transcriptomics, spatially resolved data identified cell modules with

different activated pathways in a single tumor. Pockets of basal

neoplastic cells in tumors were detected in tumors characterized as

ER+ positive breast cancer with bulk sequencing (123). In addition, a

lobular carcinoma with low cellularity for neoplastic cells was

misassigned as ‘normal-like’ by bulk sequencing (123).

Extensive transcriptional heterogeneity was reported in triple

negative breast cancers (TNBC), with certain subpopulation of cells

showing a highly malignant gene signature (124). A minor breast

cancer cell population with mesenchymal properties could

immunosuppress the TME and help the entire tumor to evade

immunotherapy (125). Existence of subclonal populations in a

primary TNBC tumor may be responsible for metastatic

dissemination and seeding of cells in distant organs (126). Using

primary and its paired metastatic cells coupled with single cell

sequencing of three TNBC patient derived xenografts, metastatic
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cells were found to be proficient in oxidative phosphorylation,

whereas its matched primary tumor cells were dependent on

glycolysis (127).

High intercell variability at the transcript level may be

responsible for metastasis and resistance to chemotherapy that

can be attributed to differences in splicing machinery (128). In ER+

breast cancers, development of resistance to endocrine therapy was

found to be gradual and required multistep adaptation (129). Using

single cell methods the pre-existence of therapy resistance

subclones defined by distinct transcript profile of single cells may

be unlikely (129). In a recent report that studied serial biopsies

using single cell RNA sequencing from early stage ER+ breast

cancer tumors treated with AI therapy plus CDK4/6 inhibitors,

results revealed an emergence of common resistant phenotype that

showed loss of estrogen signaling and upregulation JNK

signaling (130).

While the use of single cell RNA sequencing has begun to offer

new insights into cellular and molecular heterogeneity, many studies

inadequately consider the limitations of current technologies. Few

methods are yet able to sample more than ~50% of the entire

transcriptome, leaving many RNA species undetected. Leveraging

bulk sequencing data on the same samples may increase the ability to

see further into the transcriptome. While this limitation is clearly

problematic for studies into mechanism, it is less challenging for

biomarker and similar studies where the entire transcriptome does

not need to be sampled adequately.
Metabolic heterogeneity

Metabolic reprogramming is a hallmark of cancers that

progress (131, 132) and drives resistance to therapies including

endocrine-based interventions (133). However, all tumors or tumor

cells may not show the same metabolic adaptations and may exhibit

heterogeneous metabolic phenotypes and metabolic plasticity (134,

135). For example, different anatomic sites show different

metabolic dependencies. Glucose oxidation was dominant in

brain and lung tumors, but glycolytic intermediates were elevated

in renal cancer cells, where glucose oxidation was suppressed (136–

138). Conversely, different subtypes of breast cancer show different

dependencies for glutamine. Generally, luminal breast cancer cells

can resist glutamine deprivation but basal cells are dependent on

external glutamine (139). However, glutamine is required for

proliferation in advanced HR+ breast cancer cells (140, 141).

Differences in nutrient and oxygen availabilities impacts

metabolic dependencies. Vascular heterogeneity causes oxygen

gradients in tumors that can render the environment hypoxic for

those tumor cells distant from blood vessels (142). Hypoxic

conditions activate hypoxia inducible factors (HIFs), while in the

presence of sufficient oxygen the proto-oncogene c-Myc may drive

a transcriptional program that promotes uptake of nutrients and

increases the rate of glycolysis (142). Indeed, c-Myc is involved in

glucose and glutamine uptake in endocrine therapy resistant cells

and promote cell proliferation (143, 144). HIF1-alpha is also

involved in endocrine therapy resistance by stimulating the

expression of various glycolytic enzymes in endocrine therapy

resistance (145–148).
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Drug response heterogeneity

The ability of a systemic therapy to eradicate a tumor and its

metastases is largely dependent on the ability to overcome the

heterogeneity of responses in individual cells. Drug response

heterogeneity is multifactorial and reflects the combined effects of

many of the other forms of heterogeneity discussed above. Cytotoxic

drugs generally target cellular features or functions associated with

replication, e.g., DNA synthesis (drugs that include alkylating agents,

antimetabolites, anthracyclines) or the dynamics of microtubule

turnover and their function during mitosis (vinca alkaloids

destabilize and taxanes stabilize microtubule dynamics).

Cancer cell replication in solid tumors is asynchronous, with

many cells arrested in G0/G1 and so insensitive to drugs that target the

replication machinery while the cells remain growth arrested. This

form of resistance is often referred to as ‘kinetic resistance’. Some cells

may remain arrested for a sufficient period that the drug target is

released from its inhibition before the cells receive and respond to a

mitogenic stimulus. Cells can then enter S-phase with the ability to

complete the cell cycle and continue to proliferate.

Endocrine therapies are also affected by kinetic resistance,

although the response pattern can differ from that seen with

cytotoxic drugs. In ER+ breast tumors, a drop in proliferation as

induced by an endocrine therapy and reflected by an often dramatic

reduction in Ki67 expression (149, 150), can predict a good clinical

response (151). Since endocrine therapies are usually given daily for

5-10 years (152), the growth inhibitory activities that arrested cells

into G1 may further drive them into G0, effectively taking them out

of the cell cycle for prolonged periods. This prolonged growth

arrest may allow cells that do not undergo cell death in response to

the stress of an endocrine therapy to rewire their signaling and

cellular functions to ensure that they survive but remain growth

inhibited (23). Rewiring is likely epigenetically maintained (and so

reversible) enabling cells to re-enter the cell cycle when conditions

are favorable and appropriate mitogenic signals are received and

executed. The dormancy strongly associated with ER+ breast

cancer (153–155) is one reflection of these types of events, as is

the response reported to some therapeutic regimens that include an

inhibitor of enzymes that induce and maintain epigenetic

modifications (156, 157).

The molecular and genetic heterogeneity within cancer cells also

contributes to drug response heterogeneity. For example, not all cells

in an ER+/HER2+ tumor concurrently express both functional ER

and HER2, yet drugs that target each can induce significant clinical

benefit. Nonetheless, all ER+/HER2+ tumors are not cured with

combined anti-ER and anti-HER2 interventions and there can be

some cells in these tumors that may express neither ER nor HER2.

Genetic heterogeneity, when applied to an actionable mutation in

genes such as PIK3CA (Alpelisib) or AKT (Capivasertib), likely

contributes at least partly to the inability of drugs targeting these

mutations to yet show a major improvement in overall survival (158–

162). Since not all cells express the mutated gene, and some may

express the mutation but are no longer driven by its signaling, many

tumors may exhibit a phenotype where the penetrance of the

mutation may appear low. For example, some tumors with a

PIK3CA mutation many not exhibit endocrine resistance and/or

respond to a PIK3CA inhibitor.
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One of these drug response modifying features is the vascular

heterogeneity that is often a significant feature of breast and other

solid tumors. Systemically administered drugs must reach the cells

that express their molecular targets, and do so in sufficient

concentrations to kill the cancer cells. Vascular heterogeneity can

lead to different perfusion gradients in tumors, where some regions

may receive a cytotoxic level of a drug and others do not - also

creating a form of spatial heterogeneity. Vascular heterogeneity may

induce a multiple drug resistant-like phenotype since inadequate

vascularity may prevent many drugs, independent of their chemical

structure or mechanism of action, from reaching some areas of a

tumor. Regions that are poorly vascularized may also be hypoxic, with

induction of hypoxia stress responses already active in surviving cells

in a manner that may also confer resistance to some drugs that reach

these hypoxic cells (163–165).

Cellular heterogeneity within the TME likely also contributes to

drug response heterogeneity. The presence of multiple interacting cell

types can alter the drug responsiveness though their ability to

communicate and modify cellular and molecular functions. Among

the more common mechanisms are paracrine (such as the secretion of

growth factors (166–168) or microvesicles (169–172) and juxtacrine

(often through gap junctional intercellular communication) (173,

174). Thus, cellular heterogeneity can affect molecular heterogeneity

and so also drug response heterogeneity.

Spatial heterogeneity also contributes to drug response

heterogeneity. At the macrolevel, different metastatic sites in the

same patient may respond differently to a systemic therapy. For

example, brain metastases can be difficult to manage because the

blood-brain barrier can prevent adequate concentrations of many

drugs from reaching brain lesions. It is likely that vascular

heterogeneity further compounds this issue, since it can confer

some degree of spatial heterogeneity at the microlevel (within a

single tumor) as noted above for areas of hypoxia.

The combined features of cellular, molecular, vascular and spatial

heterogeneity are often further modified by temporal heterogeneity.

For example, many omics data are collected as massively parallel

snapshots of the cell population samples (175). Tumor cells and the

TME are often in a dynamic state. Tumor cells are often genetically

unstable and acquire additional mutations over time. As many solid

tumor progress, genetic heterogeneity increases. Since the length of

time for the acquisition of new mutations and/or other molecular

features differs in cells, we face another temporal feature – biological

time. Some breast tumors may grow rapidly, others remain indolent

and may grow very slowly. Acquiring new mutations is often a

consequence of failure to recognize and repair errors in replication.

The probability of acquiring a new uncorrected error is related to the

frequency of DNA replication, and so is expected to be greater in

rapidly proliferating than growth arrested cells. Hence, differences in

biological time, such as the time it takes to acquire new driver

mutations, can create spatial heterogeneity (some areas of a tumor

or some metastases in a host may grow at different rates and

experience differences in biological time). Since biological time is

related to the acquisition and loss of biological features/functions,

biological time can also create spatial, temporal, genetic, and

molecular heterogeneity.

Changes in the TME, including the dynamic influx and

activation/inactivation of key immune effector cells, ensure that
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interactions between the TME and the tumor cell compartment are

constantly changing. Over time, some cells acquire the ability to

invade locally and eventually leave the primary tumor to seed

metastases, such that the genetic, molecular and cellular features of

the tumor also change. Each of these, whether alone and/or in

combination, may affect the response of a tumor to a drug and may

do so differently over time. In this example, time can be temporal or

biological, reflecting the evolution of the tumor and its associated

TME. Application of a drug can further change these features over

time. For example, breast tumors with many growth arrested cells due

to an endocrine intervention may be relatively unresponsive due to

kinetic resistance. However, once these cells escape inhibition,

perhaps with a wave of proliferating cells driving rapid emergence

from dormancy (no longer exhibiting kinetic resistance), the same

cells may be more responsive to drugs that require cells to be

progressing through the cell cycle to be effective.

Pharmacogenetic differences, reflecting the differential expression

of isoforms of genes that affect drug metabolism, also can affect drug

response heterogeneity. This form of heterogeneity is most evident at

the population level, and among individual patients rather than

within a tumor and its TME (176–178). Other factors that

differ among patients and affect the pharmacokinetics or

pharmacodynamics of a drug can also produce drug response

heterogeneity but are beyond the scope of this review (179, 180).
Concluding comments and future
directions

We have described several of the key forms of heterogeneity and

some of their interactions and modifying factors. For example,

genetic heterogeneity is one driver of molecular heterogeneity and

cellular heterogeneity is one reflection of molecular heterogeneity. A

focus on cellular heterogeneity has become common in recent years.

However, this seems likely to change as the multifaceted nature of

heterogeneity becomes more widely appreciated and studied.

Advances in spatial omics, such as single cell DNA and RNA

sequencing, are likely to change our understanding of many forms

of heterogeneity and their interactions. Nonetheless, current

limitations in these new methods are evident, as is often true

when a new technology emerges. For example, the depth of omics

coverage can be limited for each single cell. In a transcriptome of

perhaps 50,000 different transcripts, less than 50% may be detected,

unambiguous assignment of sequences to their correct mRNA can

be difficult, and noise in the data may be quite high (181, 182). The

number of cells that can be studied is limited, often to a few hundred

or thousand cell in a tumor cell population of millions (a clinically
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palpable 1 cm tumor has ~109 cells) (183). All of these cells

concurrently reflect the effects of cellular, molecular, genetic,

spatial, and temporal heterogeneity in ways that may not be

reflected in the population sample as analyzed. Single cell

proteomics and metabolomics face similar challenges, where

depth, coverage and the ability to unambiguously assign a signal

to a single molecular entity may be no better, or perhaps lower, with

current technologies (184–186).

Current spatial omics technologies represent only one series of

tools with which to explore the complexity of heterogeneity. Given the

rapidity of technological advances in general, it is hoped that the

current limitations with these tools will soon be overcome. It will be

particularly important to constrain the cost and maximize the

availability of these and other new technologies not yet brought to

market, to allow the full breadth of the research community to have

access and so more effectively advance knowledge.
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