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Drugs against metabolic
diseases as potential
senotherapeutics for aging-
related respiratory diseases

Sachi Matsubayashi †, Saburo Ito*†, Jun Araya
and Kazuyoshi Kuwano

Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of
Medicine, Tokyo, Japan
Recent advances in aging research have provided novel insights for the

development of senotherapy, which utilizes cellular senescence as a

therapeutic target. Cellular senescence is involved in the pathogenesis of

various chronic diseases, including metabolic and respiratory diseases.

Senotherapy is a potential therapeutic strategy for aging-related pathologies.

Senotherapy can be classified into senolytics (induce cell death in senescent

cells) and senomorphics (ameliorate the adverse effects of senescent cells

represented by the senescence-associated secretory phenotype). Although the

precise mechanism has not been elucidated, various drugs against metabolic

diseases may function as senotherapeutics, which has piqued the interest of the

scientific community. Cellular senescence is involved in the pathogenesis of

chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis

(IPF), which are aging-related respiratory diseases. Large-scale observational

studies have reported that several drugs, such as metformin and statins, may

ameliorate the progression of COPD and IPF. Recent studies have reported that

drugs against metabolic diseases may exert a pharmacological effect on aging-

related respiratory diseases that can be different from their original effect on

metabolic diseases. However, high non-physiological concentrations are

needed to determine the efficacy of these drugs under experimental

conditions. Inhalation therapy may increase the local concentration of drugs in

the lungs without exerting systemic adverse effects. Thus, the clinical application

of drugs against metabolic diseases, especially through an inhalation treatment

modality, can be a novel therapeutic approach for aging-related respiratory

diseases. This review summarizes and discusses accumulating evidence on the

mechanisms of aging, as well as on cellular senescence and senotherapeutics,

including drugs against metabolic diseases. We propose a developmental

strategy for a senotherapeutic approach for aging-related respiratory diseases

with a special focus on COPD and IPF.
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Introduction

The global population is aging at an unprecedented rate. Aging

adversely affects physiological functions and consequently increases

the susceptibility of most organs to various pathological

conditions. In the respiratory system, aging can induce pathological

changes, such as deterioration of respiratory function, increased

susceptibility to infection, and malignancy (1, 2). The incidence of

chronic obstructive pulmonary disease (COPD) and idiopathic

pulmonary fibrosis (IPF), which are representative aging-related

respiratory diseases, increases with age (3). COPD and IPF are a

major socioeconomic burden due to the cumulative cost and effort

associated with medical events. Hence, there is an urgent need to

understand the pathogenesis of aging-related respiratory diseases and

develop novel therapies. In recent years, basic research on aging

mechanisms has markedly advanced. The identification of the

lifespan-extending effect of caloric restriction in model organisms

and the subsequent discovery of lifespan-related genes (represented

by Sirtuin-encoding genes) provide clues for understanding the

molecular mechanisms of aging (4–7). Furthermore, mouse studies

involving genetic manipulation of cyclin-dependent kinase (CDK)

inhibitory proteins, which regulate the cell cycle, have demonstrated

that the elimination of senescent cells can extend lifespan and

mitigate the development of various aging-related diseases (8, 9).

Thus, aging research is now rapidly developing.

In addition to their effects on the primary target diseases, drugs

against metabolic diseases, such as diabetes and dyslipidemia, may

exert therapeutic effects on various aging-related diseases (10).

Metabolic diseases are common complications in patients with

aging-related respiratory diseases. Hence, the anti-aging effects of

drugs against metabolic diseases are attracting attention in the field

of respiratory diseases. Retrospective studies on metabolic disorders

have delineated several interesting findings. For example, statins are

reported to reduce the incidence of COPD exacerbation episodes

and mitigate the decline in respiratory function (11, 12). The anti-

diabetic drug metformin is also expected to suppress decline of lung

function in COPD patients (13). In patients with both COPD and

type 2 diabetes, the mortality rate among metformin users is lower

than that of the control cohort with similar backgrounds (14).

Further to attributing their therapeutic effects on metabolic diseases,

recent advances indicate that these drugs may directly suppress

cellular senescence.
Abbreviations: AMP, adenosine monophosphate; AMPK, AMP-activated

protein kinase; ATP, adenosine triphosphate; CDK, cyclin-dependent kinase;

CDKI, cyclin-dependent kinase inhibitor; COPD, chronic obstructive pulmonary

disease; CSE, cigarette smoke extract; HBEC,human bronchial epithelial cell; IGF-

1, insulin growth factor-1; IPF, idiopathic pulmonary fibrosis; LDL, low-density

lipoprotein; LPS, lipopolysaccharide; mTOR, mammalian target of rapamycin;

NRF2, nuclear factor-erythroid 2-related factor 2; OCR, oxygen consumption

rate; PAH, pulmonary arterial hypertension; PPAR, peroxisome proliferator-

activated receptor; ROS, reactive oxygen species; SA-b-gal, senescence-associated

b-galactosidase; SASP, senescence-associated secretory phenotype; SREBP2,

sterol regulatory element-binding protein 2; TFEB, transcriptional factor EB.
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Cellular senescence is phenotypically characterized by

irreversible cell cycle arrest and apoptosis resistance, which are

adaptive responses to various intrinsic and extrinsic stresses (15,

16). Senescent cells are also characterized by a senescence-

associated secretory phenotype (SASP) that produces various

cytokines and growth factors. Excessive SASP caused by the

accumulation of senescent cells has been implicated in chronic

inflammation, aberrant tissue repair, and fibrotic tissue remodeling.

Therefore, the regulation of cellular senescence is proposed to be a

promising approach to prevent aging-related diseases. Many

researchers are focusing on an anti-senescence modality of

treatment, namely senotherapy (17). Although various new agents

are being developed, repositioning pre-existing drugs with potential

clinical efficacy as a senotherapeutic can be a reasonable strategy. If

drug repositioning, which is also called repurposing, is possible

without safety concerns, it will enable the immediate clinical

application of the drug. In this review, we discuss the

repositioning of drugs against metabolic diseases as potential

senotherapeutics for aging-related respiratory diseases with a

special focus on COPD and IPF.

Mechanism of aging

Organisms employ dynamic defense mechanisms, which are

called homeostasis and robustness, to maintain stability against

internal and external disturbances. Homeostasis refers to short-

term mechanisms, whereas robustness refers to systemic long-term

protective mechanisms, including defense mechanisms against

perturbation, dynamic responses to environmental changes, and

tissue regeneration in response to injury or defect (18–20).

Organismal aging can be, at least partly, assumed to be the

dysregulation of robustness (21). Therefore, the organism

becomes fragile, exhibiting a reduced ability to respond to

changes and insults and a low ability to regenerate. Aging-

induced impaired robustness, which is associated with the

accumulation of senescent cells, is believed to result from a

decline in organ function. The hallmarks of aging include

genomic instability, telomere attrition, epigenetic alterations, loss

of proteostasis, disabled macroautophagy, deregulated nutrient-

sensing, mitochondrial dysfunction, cellular senescence, stem cell

exhaustion, altered intercellular communication, chronic

inflammation, and dysbiosis (22). These pathological changes are

interdependent and can drive the progression of cellular senescence.

Additionally, aging is a heterogenous process even at the cellular

level. The aging process is not equal in all cells with some and not all

cells exhibiting senescence (23, 24), indicating the presence of

complex mechanisms for regulating organismal aging. To explore

a druggable approach against this complex aging process, the

molecular mechanisms of aging have been widely investigated.

Recent studies have suggested that the accumulated senescent

cells can be a promising therapeutic target. Senotherapeutics,

which target cellular senescence, are classified into the following

two types: senolytics, which induce cell death in senescent cells, and

senomorphics, which suppress the SASP-inducing effect and

prevent cellular senescence. In the following section, we provide
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an overview of cellular senescence and a recent understanding

of senotherapy.
Cellular senescence and concept of
senotherapeutics (senolytics and
senomorphics)

Cellular senescence, first reported by Hayflick, is a phenomenon

that repeatedly divided human fibroblasts in vitro cannot proliferate

beyond certain limits and have finite proliferative capacity (25).

Initially, this phenomenon was attributed to an artificial change that

occurs only under cell culture conditions. However, accumulated

evidence revealed that cellular senescence has physiological roles

(26–30) and is involving in aging (31–34). Internal and external

stimuli, such as DNA damage stress (induced by radiation,

chemotherapy, and reactive oxygen species (ROS)), inflammation,

mechanical stress, repeated cell growth signals (growth factors and

insulin-like growth factor-1 (IGF-1) signaling), metabolic

aberrations, mitochondrial dysfunction, accumulation of unfolded

proteins, certain oncogenes, and nuclear membrane dysfunction,

can induce cellular senescence (15). These stimuli activate several

signaling pathways and can converge on IGF-1/Akt/mammalian

target of rapamycin (mTOR) signaling, which regulates

transcription factor cascades, including the cell cycle inhibitors

p16INK4A/RB and p53/p21CIP1, resulting in sustained irreversible

cell cycle arrest (35). Cellular senescence plays physiological roles in

diverse conditions and the number of senescent cells increases with

aging. Excessive and disorganized senescent cells promote chronic

inflammation and fibrotic tissue remodeling, exert paracrine effects

on distant organs, and consequently drive the pathogenesis of many

aging-related diseases (16, 36).

Novel treatment strategies targeting cellular senescence have

been investigated based on these molecular mechanisms. Senolytics

have been validated using mouse models. Mice have been

genetically engineered to selectively eliminate p16-expressing

senescent cells. These mice exhibit enhanced lifespan and delayed

onset of aging-related pathologies (8). Senolytics have been

explored using the STRING database (functional protein

association networks) based on the biological differences between

healthy and senescent cells. Dasatinib (a pan-tyrosine kinase

inhibitor originally developed as an anti-cancer drug) and

quercetin (a flavonoid) were selected as novel senolytic drugs

(37). Subsequently, the Bcl-2 family inhibitor navitoclax (ABT-

263) and selective Bcl-xL inhibitors A1331852 and A1155463 have

been developed (38, 39). Fisetin, a polyphenol, exhibits senolytic

activity by inhibiting the phosphatidylinositol-3 kinase-mTOR

pathway (38). The administration of these senolytic agents

decreases the accumulation of senescent cells and inflammatory

cytokines, improves physical activity, and enhances the lifespan in

aged mice (40). Other compounds, such as cardiac glycosides

(ouabain) and HSP90 inhibitors (geldanamycin derivatives) also

exhibit senolytic activity (41, 42).
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Senomorphics attenuate the pathological effect of SASP without

inducing cell death. Rapamycin, resveratrol, and metformin are

representative senomorphics (43). Promising senomorphics include

aspirin, NF-kB inhibitors, p38MAPK inhibitors, JAK/STAT

inhibitors, ATM inhibitors, and statins (17). The molecular

mechanisms of senomorphics are more complex than those of

senolytics. Based on the complex mechanism and physiological

role of cellular senescence, most senomorphics target SASP. Cellular

senescence is initially induced in a small number of stressed cells

and subsequently induced in neighboring and distant cells through

the paracrine/autocrine effect of SASP. Hence, senomorphics

targeting SASP may block the induction of cellular senescence at

multiple sites (17). Senomorphics not only suppress senescence

expansion by targeting the initial few senescent cells but also inhibit

a vicious cycle that promotes further accumulation of senescent

cells. Senotherapeutics can be promising therapeutic agents and

may prevent the progression of aging-related pathology.

To develop a senotherapeutic strategy for aging-related

respiratory diseases, one attractive approach is the repositioning

of drugs as potential senomorphics. In contrast to de novo drug

discovery, drug repositioning has several advantages, including low

discovery costs and clinically established safety. A recent successful

drug repositioning model is the application of an SGLT2 inhibitor,

an anti-diabetic drug, for the treatment of heart failure (44, 45). In

respiratory disease, another potential approach is changing the

treatment modality to inhalation therapy, which may achieve a

high local drug concentration in the lungs without exerting systemic

adverse effects. Although several drugs may exert a senotherapeutic

effect, high non-physiological concentrations are required under

experimental conditions. Thus, the potential repositioning of drugs

can be explored by changing the treatment modality to inhalation

therapy for aging-related respiratory diseases (Figure 1). In the

following section, we explain the involvement of cellular senescence

in metabolic diseases and aging-related respiratory diseases and

describe the potential therapeutic use of drugs against metabolic

diseases as senotherapeutics.
Metabolic diseases and cellular
senescence

Cellular senescence is involved in the pathogenesis of various

metabolic diseases (10), including metabolic syndrome, type 2

diabetes, and osteoporosis. Aging and obesity are the major risk

factors for the development of type 2 diabetes (46). Senescent

adipocytes accumulate in both mouse models and human cases of

type 2 diabetes and obesity (47). Additionally, senescent adipocytes

with p53 activation and enhanced ROS production are closely related

to insulin resistance (48), glucose intolerance, and systemic

inflammation (49), indicating the presence of a vicious cycle

between adipocyte senescence and progression of type 2 diabetes.

Furthermore, hyperglycemia and increased serum lipids induce

adipocyte senescence and cellular senescence in various organs.
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The efficacy of senolytics against metabolic diseases has been

previously investigated. Senolytic therapy with dasatinib and

quercetin (D + Q) is demonstrated to reduce the number of

senescent adipocytes and restore insulin sensitivity in diet-

induced obese mice (50). D + Q may also reduce the

accumulation of senescent adipocytes in humans. The

administration of D + Q for 3 days decreases the counts of

macrophages and senescent adipocytes in adipose tissue and

circulating SASP in patients with diabetic nephropathy (51).

Thus, these results indicate that senolytics can be a promising

approach for treating type 2 diabetes, which should be examined

in future clinical trials. Additionally, the number of senescent

cells is reported to increase with aging in the bone tissue in both

mouse models and human samples (52, 53). D + Q, or the SASP

inhibitor ruxolitinib alleviate osteoporosis in the mouse

models (54).

Local organ aging may affect systemic aging in most metabolic

diseases by inducing metabolic disturbances and upregulating

SASP-related factors (10). Hence, the senotherapeutic effect of

drugs against metabolic diseases is conferred through the

improvement of metabolic conditions or the systemic anti-

senescence properties during systemic administration. The

therapeutic effect of drugs on metabolic diseases can be attributed

to the accumulation of these pleiotropic effects. Moreover, this

complex interaction between focal and systemic cellular senescence

may be involved in other aging-related diseases. Several studies have

demonstrated that drugs against metabolic disorders can exert a

senotherapeutic effect on various cell types and tissues (targets other

than the original therapeutic targets), including respiratory cells

and tissues.
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Aging-related respiratory diseases and
cellular senescence

COPD and cellular senescence

Aging is closely associated with COPD development (55).

Cellular senescence is observed in lung epithelial cells, vascular

endothelial cells, and fibroblasts of patients with COPD (56, 57).

Stimulation with cigarette smoke extract (CSE) induces senescence in

the lung epithelial cells and lung fibroblasts in vitro (58–61).

Additionally, cellular senescence and DNA damage in vascular

endothelial progenitor cells and type II alveolar epithelial cells of

patients with COPD are upregulated when compared with those cells

of healthy controls, which may lead to the depletion of progenitor

cells and stem cells required for regeneration of the damaged lung

(62). In addition to increased numbers of senescent cells, elevated

levels of SASP-related factors have been reported in the lungs of

patients with COPD. In terms of COPD pathogenesis, the

accumulation of senescent cells induced by repeated cigarette

smoke exposure and chronological aging contribute to SASP-

mediated inflammation, aberrant tissue repair, and loss of

regenerative capacity, resulting in airway wall thickening and

emphysema (3). Differential effects of cigarette smoke exposure on

cellular senescence progression may be a critical determinant of

COPD development. A recent study reported a negative correlation

between epigenetic aging regulated by DNA methylation and

respiratory function, suggesting a pivotal role of epigenetic

modification in cellular senescence during COPD pathogenesis (63).

The expression of cellular senescence markers of CDK

inhibitors (CDKI), such as p21CIP1 and p16INK4A, is upregulated
FIGURE 1

Concept of inhalation therapy with drugs against metabolic diseases for respiratory diseases as drug repositioning. Created with Biorender.
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in the airway epithelium of patients with COPD (58, 64). Several

studies have demonstrated the potential efficacy of a

senotherapeutic approach for preventing COPD development by

regulating CDKI levels and CDKI-expressing cell numbers. Genetic

deletion of p16INK4A may suppress smoking-stimulated respiratory

function decline, emphysema, and cellular senescence of the airway

epithelium in mouse models (65). In contrast, other studies have

reported that genetic deletion of p16INK4A alone is not sufficient to

suppress cellular senescence and emphysema (66). p14ARF (p19ARF

in mice), encoded by the INK4a-ARF locus (also encodes p16INK4A;

CDKN2A in humans), regulates cell cycle arrest and is used as a

cellular senescence marker (67). The removal of p19ARF-expressing

senescent cells by specifically inducing apoptosis with diphtheria

toxin suppressed emphysematous changes induced by both

cigarette smoke exposure and elastase in mouse models (68–70).

Thus, the use of senolytics may be a promising approach for COPD;

however, the safety and clinical application of senolytics for COPD

treatment remain obscure. Moreover, the beneficial or adverse

effects of a senolytic approach on organs with a high senescence

burden, such as the lungs of patients with COPD have not been

evaluated (71). A senomorphic approach using drugs against

metabolic diseases for COPD is discussed in the following sections.
IPF and cellular senescence

Aging is a known risk factor for IPF development. The

incidence of IPF increases with age (72). Telomere shortening,

mainly reflecting replicative cellular senescence, is reported to be

closely involved in IPF pathogenesis. Mutations in the telomerase-

encoding gene (TERT) are detected in 8%–15% of patients with

familial pulmonary fibrosis (73, 74). The frequency of telomere

shortening is high in patients with sporadic pulmonary fibrosis (75).

A study on three large cohorts of patients with IPF reported that

shorter telomere length is associated with poor prognosis (76). This

indicated that telomere attrition-induced cellular senescence is

closely associated with IPF pathogenesis. Previously, we have

detected senescence-associated b-galactosidase (SA-b-Gal), a

representative marker of cellular senescence, in the lungs of

patients with IPF. Epithelial cells covering fibroblastic foci and

cuboidal metaplasia in the active fibrosing area are mainly stained

with SA-b-Gal, whereas no positive senescent cells are detected in

the healthy lung (77), which further indicated that cellular

senescence is at least partly involved in the pathogenesis of lung

fibrosis in IPF.

The p16INK4A expression levels in the lungs are positively

correlated with the severity of pulmonary dysfunctions in patients

with IPF (78). The removal of p16INK4A-positive cells mitigates the

bleomycin-induced deterioration of pulmonary function without

markedly altering lung fibrosis in INK-ATTAC mice. A similar

benefit was achieved by administering D + Q (78). One pilot

clinical trial examined the safety and efficacy of administering D +

Q thrice a week for 3 weeks in patients with IPF, and D +Q improved

performances in physical tests, such as 6-minute walk distance, 4-

meter gait speed, and chair stand time (79). Other senotherapeutics

examined for IPF include NADPH oxidase (NOX) 1/4 dual
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inhibitors. An imbalance between the levels of NOX4 and nuclear

factor-erythroid 2-related factor 2 (NRF2) promotes the pathogenesis

of lung fibrosis by enhancing cellular senescence in myofibroblasts,

resulting in resistance to apoptosis and persistent fibrosis during IPF

pathogenesis (80, 81). The NOX1/4 dual inhibitor GKT137831

attenuates bleomycin-induced lung fibrosis development in an aged

mouse model (82). A phase II trial with GKT137831 involving

patients with IPF is currently ongoing (NCT03865927).

Other anti-aging therapies, including rapamycin, nicotinamide

riboside, nicotinamide mononucleotide, sirtuin activators are

widely implicated in the treatment of COPD and IPF, and those

anti-aging therapies are well summarized in recent reviews (3, 71).

In the following sections, we summarize and focus on the

therapeutic mechanisms and effects of representative drugs

(metformin, statins, fibrates, and thiazolidinedione derivatives)

against metabolic diseases on the pathogenesis of COPD and IPF.
Metformin

Metformin, a biguanide anti-diabetic agent, has been used as a

first-line drug for diabetes. The orally administered metformin is

absorbed from the intestine and transported to the hepatocytes

where it inhibits the mitochondrial respiratory chain complex I (83,

84). Subsequently, the intracellular adenosine triphosphate (ATP)/

adenosine monophosphate (AMP) ratio decreases, resulting in the

activation of AMP-activated protein kinase (AMPK). Activated

AMPK suppresses gluconeogenesis in the liver and downregulates

serum glucose levels (85). In addition to its anti-diabetic activity,

several studies have demonstrated the senomorphic effect of

metformin. The mechanism underlying the senomorphic effect of

metformin has not been completely elucidated and is assumed to be

diverse (86, 87). Metformin attenuates IGF-1 signaling by

decreasing the blood insulin levels, resulting in the inhibition of

mTORC1 signaling, which is postulated to be a major systemic

senomorphic mechanism (88–91). Additionally, metformin may

exert a systemic senotherapeutic effect and directly exhibit

senomorphic activity. Metformin imported into the cell via

organic cationic transporter 1 exerts its senomorphic effect

through several mechanisms (92). AMPK activation by

metformin inhibits the downstream mTORC1 signaling, which is

accompanied by the enhancement of nutrition sensing and

autophagy. Additionally, AMPK improves mitochondrial

biogenesis by activating peroxisome proliferator-activated

receptor g coactivator-1a (92). Furthermore, AMPK contributes

to epigenetic transcriptional regulation via histone modification

and microRNA (92, 93). Metformin-mediated inhibition of

mitochondrial complex I suppresses ROS with concomitant

production of advanced glycation end-products, resulting in a

decreased accumulation of macromolecular damage (94).

Moreover, metformin downregulates the inflammatory cytokine

levels via NF-kB inhibition, activates NRF2, and consequently

mitigates SASP secretion (95, 96). Thus, metformin exerts its

senomorphic effect through the above-mentioned pleiotropic

mechanisms. Several studies have reported that metformin

extends the lifespan of model organisms (95, 97–99).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1079626
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Matsubayashi et al. 10.3389/fendo.2023.1079626
The lifespan-extending effects of metformin have been reported

in patients with diabetes (100–102). In addition to its contribution

to reducing cardiovascular disease risk, observational studies have

demonstrated that metformin treatment decreases the incidence of

malignancy (103–106). Furthermore, metformin mitigates age-

related cognitive function decline (107, 108). The Food and Drug

Administration and National Institute of Health are conducting the

Targeting Aging with Metformin study, which aims to demonstrate

the effects of metformin in non-diabetic populations on various

physiological and pathological conditions, such as cancer, dementia,

cardiovascular disease, lifespan, and other age-related diseases (86).

However, some groups argue that the therapeutic effect of

metformin is not a universal phenomenon in non-diabetic

patients and healthy elderly individuals (109–111).

Stimulation of cultured human bronchial epithelial cells

(HBECs) with CSE promotes mitochondrial injury, resulting in a

decreased oxygen consumption rate (OCR). Metformin

concentration-dependently reverses the CSE-induced depletion of

OCR (112). The same study also examined the effect of a

metformin-containing diet on the COPD mouse model exposed

to cigarette smoke for 6 months. Lung inflammation,

emphysematous change, and airway remodeling in the

metformin-containing diet-fed group were lower than those in

the routine diet-fed control group. Additionally, oxidative stress,

cell death, telomere attrition, and cellular senescence were

suppressed in the metformin-containing diet-fed group (112).
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Other researchers have reported that the AMPK-activating drug

adenosine analog 5-aminoimidazole-4-carboxamide riboside

suppresses CSE-induced cellular senescence and SASP-related

factors in BEAS-2B, a human bronchial epithelial cell line (113).

Additionally, the metformin-containing diet prevented the

progression of elastase-induced emphysematous changes in a

mouse model (114). Furthermore, metformin activated the

epithelial sodium ion channel ENaC in lung epithelial cells, which

may be involved in COPD prevention (115). Previously, we

reported that metformin attenuates CSE-induced cellular

senescence by suppressing mTOR signaling through the

upregulation of DEPTOR expression in HBECs (116). Thus, local

lung administration may be sufficient for metformin to exert a

senomorphic effect , especial ly under cigarette smoke

exposure conditions.

Several clinical studies have reported favorable effects of

metformin in patients with COPD. The clinical outcomes of

drugs against metabolic diseases in patients with COPD and IPF

are summarized in Table 1. The COPDGene study reported that in

patients with COPD, lung function decline with age among

metformin users is slower than that among non-metformin users

(112). Another COPDGene analysis demonstrated that metformin

reduced the frequency of disease exacerbations in patients with both

COPD and asthma and that metformin use was associated with an

improved respiratory symptom score (117). In contrast, another

study revealed no apparent clinical benefit of metformin
TABLE 1 Clinical outcomes of drugs against metabolic disease in COPD and IPF.

Disease Clinical result Study design Ref.

Metformin COPD ↓ progression of emphysema retrospective (112)

↓ the incidence of exacerbation in patients with both COPD and asthma retrospective (117)

No benefit for hospitalized patients with COPD exacerbation RCT (118)

↓ all-cause mortality retrospective (14)

Prevented the decline of lung diffusion capacity retrospective (13)

IPF ↓ all-cause mortality and the incidence of hospitalization retrospective (119)

Statin COPD Prevented the decline of lung function retrospective (11)

↓ the incidence of both COPD exacerbation and intubation retrospective (120)

↓ COPD death retrospective (121)

Prevented the decline of lung function retrospective (122)

↓ all-cause mortality retrospective (123)

No reduction in the incidence of COPD exacerbation (simvastatin) RCT (124)

↓ the incidence of COPD exacerbation (simvastatin) RCT (125)

IPF ↓ all-cause mortality. Improved 6-min walk distance retrospective (126)

Prevented the decline of lung function retrospective (127)

Fibrate COPD ↓ the risk of COPD retrospective (128)

Thiazolidinedione derivative COPD ↓ the incidence of COPD exacerbation retrospective (129)

↓ the incidence of COPD exacerbation retrospective (130)
frontier
↓: Reduced.
COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; RCT, randomized control trial.
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administration in patients with COPD who were hospitalized for

disease exacerbation although this study evaluated a small number

of patients for a short duration (118). A large retrospective analysis

of patients with both COPD and type 2 diabetes reported that all-

cause mortality in the metformin-treated group was lower than that

in the matched control group (14). Furthermore, a recent study

demonstrated that metformin prevents the decline in pulmonary

diffusion capacity in patients with both COPD and diabetes (13).

Several studies have demonstrated the potential efficacy of

metformin in treating IPF. We previously reported that

met formin suppresses TGF-b - induced myofibroblas t

differentiation of lung fibroblasts (131). Metformin activates

AMPK, which inhibits TGF-b-induced NOX4 expression and

concomitantly enhanced ROS production in lung fibroblasts. In a

bleomycin-induced mouse model, metformin attenuated NOX4

upregulation and SMAD phosphorylation, resulting in the

amelioration of lung fibrosis development (131). This inhibitory

effect of metformin on pulmonary fibrosis has been further

confirmed by several groups with one study suggesting that
Frontiers in Endocrinology 07
metformin may reverse the established pulmonary fibrosis (132,

133). A clinical retrospective study of patients with both IPF and

diabetes demonstrated that the all-cause mortality and

hospitalization in the metformin-treated group were lower than

those in the non-metformin-treated group (119).

The potential application of metformin in the treatment of aging-

related respiratory diseases has been demonstrated in both COPD

and IPF. However, the drug concentration used under in vitro

conditions is higher than the maximum blood concentration

(Cmax) required for clinical use. The clinical and experimental

dosages of the drugs against metabolic diseases are summarized in

Table 2. Clinical dose and clinical Cmax were mainly based on the

information from the National Library of Medicine in the USA, the

electronic medicines compendium in the UK, and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) MEDICUS in Japan.

The Cmax level of metformin for clinical use is 6.2–12.1 mM, whereas

the concentrations used under in vitro experimental conditions are in

the range of 0.5–10 mM. Therefore, the previously elucidated in vitro

anti-senescent mechanisms may not precisely explain the potential
TABLE 2 Concentration of drugs against metabolic diseases in clinical and experimental setting.

Clinical
dose

Clinical Cmax
(approximate)

In vivo
experiment

Model In vitro
experiment

Cell type Disease Ref.

Metformin 850-2550 mg/
day

6.2-12.1 µM 1% enriched chow Mouse,
smoking

0.25 nM-1M Bronchial epithelial
cell

COPD (112)

50-250 mg/kg, oral Mouse,
elastase

COPD (114)

2.5-5 mg/ml, in water bENaC-Tg
mouse

5 mM Bronchial epithelial
cell

COPD (115)

1-2 mM Bronchial epithelial
cell

COPD (116)

300 mg/kg, i.p. Mouse,
bleomycin

1-10 mM Fibroblast IPF (131)

65 mg/kg, i.p. Mouse,
bleomycin

0.5 mM Fibroblast IPF (132)

1.5 mg/ml, in water Mouse,
bleomycin

1-10 mM Fibroblast IPF (133)

Statin

Simvastatin 5-20 mg/day 5.0-9.6 nM 5 mg/kg, oral Rat, smoking 0.1-10 mM Vascular endothelial
cell

COPD (134)

Atorvastatin 10-40 mg/day 6.1-48.4 nM 20 mg/kg, i.p. Mouse,
bleomycin

10 µM Fibroblast IPF (135)

20-40 mg/kg oral Rat, paraquat 3.6 µM-1.1mM Alveolar epithelial cell Lung
injury

(136)

Pravastatin 20-40 mg/day 38.9-76.1 nM 3-30 mg/kg, i.p. Mouse, LPS Lung
injury

(137)

Fibrate

Ciprofibrate 100 mg/day 72.6-124.5 µM 150-600 µM Fibroblast IPF (138)

10 mg/kg, oral Rat, smoking 2.5-80 µM Airway smooth
muscle cell

COPD (139)

(Continued)
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use of metformin in patients with COPD and IPF. Furthermore, the

oral administration of metformin at a clinically available dosage may

not be sufficient to obtain appropriate clinical benefits as a

senotherapeutic agent. We speculate that inhalation therapy with a

high local concentration may address this issue associated with the

clinical application of these agents in the treatment of aging-

associated respiratory diseases.
Statins

Statins reduce cholesterol levels in hepatocytes by inhibiting the

conversion of hydroxymethylglutaryl-CoA to mevalonate, which is

the rate-limiting step in cholesterol biosynthesis in hepatocytes

(146). The downregulation of cholesterol in hepatocytes promotes

the nuclear translocation of sterol regulatory element-binding

protein 2 (SREBP2) from the cytoplasm. In the nucleus, SREBP2

binds to the low-density lipoprotein (LDL) receptor-encoding gene

promoter and upregulates the expression of LDL receptor.

Subsequently, LDL in the serum is transferred to hepatocytes,

leading to the downregulation of serum LDL levels (146, 147). In

addition to cholesterol-lowering effects, statins exert other beneficial

effects (also called pleiotropic effects) (148), and several studies have

demonstrated the senotherapeutic property of statins. Hydrogen

peroxide-induced cellular senescence is ameliorated by atorvastatin,

pravastatin, and pitavastatin in vitro using human umbilical vein

endothelial cells (149). Statin-mediated activation of Akt, through

phosphorylation of Ser 473, led to expression of endothelial nitric

oxide synthase, SIRT1, and catalase, all of which were implicated in

the attenuation of cellular senescence in this study (149). In

addition, fluvastatin inhibits the onset of endothelial progenitor
Frontiers in Endocrinology 08
cell senescence induced by ex vivo culture conditions, and its effect

is independent of nitric oxide, ROS, and Rho kinase, but dependent

on geranylgeranylpyrophosphate (150). Statins inhibit the

prenylation of various proteins by blocking the formation of

isoprenoid intermediates, which are essential for protein

prenylation (151). This is postulated to be part of the mechanism

for the suppression of cellular senescence because it leads to the

upregulation of cell cycle-related proteins and downregulation of

the expression of cell cycle inhibitor p27Kip1 (150). Another report

showed that the administration of low-dose fluvastatin and

valsartan increased the expression of longevity genes, including

SIRT1, PRKAA, and KL in human subjects (152). Accordingly,

statins act through various mechanisms to inhibit cellular

senescence and have potential as senotherapeutic agents.

Large-scale retrospective studies conducted in several countries

have reported the potential benefits of statins for patients with

COPD in COPD-related hospitalization, cardiovascular

complications, and mortality (11, 120–123). One study reported

that statins may prevent the decline in pulmonary functions (11).

Large-scale follow-up studies have been performed focusing on the

role of statins in patients with COPD. The STATCOPE trial is a

multicenter, placebo-controlled, randomized prospective study that

focuses on the effect of statins on COPD exacerbation (124). In this

trial, the primary outcome of the incidence of COPD exacerbation

was not significantly different between the placebo and simvastatin-

treated groups. Additionally, the period to first exacerbation was

not significantly different between the placebo and simvastatin-

treated groups, indicating no clinical benefit of simvastatin in

preventing COPD exacerbation. However, this trial enrolled

advanced high-risk patients with a decreased percentage of forced

expiratory volume in one second and a history of emergency visits
TABLE 2 Continued

Clinical
dose

Clinical Cmax
(approximate)

In vivo
experiment

Model In vitro
experiment

Cell type Disease Ref.

Fenofibrate 106.6-160 mg/
day

24.9-32.7 µM 1-25 µM Fibroblast COPD (140)

Gemfibrozil 1200 mg/day 59.9-99.9 µM 40 mg/kg, i.p. Mouse,
smoking

10 µM Bronchial epithelial
cell

COPD (141)

Pemafibrate 0.2-0.4 mg/
day

3.2-7.3 nM 0.5-2 mg/kg, i.p. Mouse,
bleomycin

10 µM Fibroblast IPF (142)

Thiazolidinedione

Rosiglitazone 4-8 mg/day 0.4-1.7 µM 6 mg/kg, oral; 10-300 µg/
kg, i.n.

Mouse,
smoking

0.1-3µM Macrophage COPD (143)

Ciglitazone N/A N/A 3.5 µg/body twice a week,
i.n.

Mouse,
smoking

10 µM Dendritic cell COPD (144)

200-400 mg/kg, oral Mouse,
bleomycin

1-20 µM Fibroblast IPF (145)

Troglitazone N/A N/A 200-400 mg/kg, oral Mouse,
bleomycin

1-20 µM Fibroblast IPF (145)
frontier
Clinical dose and clinical Cmax were mainly based on the information from the National Library of Medicine in the USA, the electronic medicines compendium (emc) in the UK, and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) MEDICUS in Japan. COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; i.p., intraperitoneal injection; i.n.,
intranasal administration; LPS, lipopolysaccharide; N/A, not applicable.
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or hospitalization due to COPD exacerbation within one year,

which may have affected the results. Although conclusive studies

examining the benefit of statins in patients with mild to moderate

COPD are not available, a recent study has attempted to clarify this

question. A prospective double-blind study revealed that

simvastatin significantly decreased COPD exacerbation (125). The

beneficial effects of statins were also examined in COPD animal

model. Oral administration of simvastatin ameliorated cigarette

smoke-induced emphysema and pulmonary hypertension in rats

exposed to cigarette smoke for 16 weeks, although the involvement

of cellular senescence was not evaluated (134).

The therapeutic benefits of statins have also been reported in

patients with IPF. Combined retrospective analysis of large-scale

IPF trials for the anti-fibrotic drug pirfenidone (CAPACITY study

and ASCEND study) revealed that statin users were associated with

lower mortality and higher 6-minute walking distance than non-

statin users (126). Additionally, overall hospitalizations, respiratory

disease-related hospitalizations, and IPF-related deaths were low

among statin users. A similar analysis was performed in another IPF

trial for the anti-fibrotic drug nintedanib (INPULSIS study).

Irrespective of nintedanib use, significant suppression of the

decline in forced vital capacity/year was observed among statin

users (127). The effects of statins were also examined in a

bleomycin-induced lung fibrosis mouse model. Myofibroblast

di fferent iat ion and pulmonary fibrosis in the group

intraperitoneally administered with atorvastatin at a dose of 20

mg/kg bodyweight were attenuated when compared with those in

the control group (135). Pravastatin attenuated lipopolysaccharide

(LPS)-induced acute lung injury in mice (137), while atorvastatin

inh ib i t ed paraqua t - induced ep i the l i a l -mesenchyma l

transition (136).

Therefore, statins may alleviate the pathogenesis of both COPD

and IPF through various mechanisms. However, their direct

senotherapeutic effects on respiratory diseases are still unclear,

and future studies are required to reveal the precise mechanism.
Fibrates

Fibrates, which are peroxisome proliferator-activated receptor

(PPAR) a agonists, are used for the clinical treatment of

dyslipidemia (153, 154). PPARa is expressed mostly in the liver,

adipocytes, and skeletal muscles although its expression is also

detected in other organs and immune cells (155). Fibrates promote

fatty acid metabolism by activating PPARa and its transcripts.

Additionally, activated PPARa upregulates the expression of the

lipid enzymes medium-chain acyl-coenzyme A dehydrogenase and

long-chain acyl-coenzyme A dehydrogenase and regulates

mitochondrial b-oxidation (156, 157). In addition to their effects

on lipid metabolism, several studies have demonstrated the

senotherapeutic potential of fibrates. Fenofibrate protects against

aging-related renal damage and dysfunction by improving

proteinuria, tissue remodeling, inflammation, and apoptosis

through the activation of AMPK and SIRT1 signaling in aged

mice (158). One study reported that fenofibrate decreased the

accumulation of senescent cells and inhibited cartilage
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degradation by inducing apoptosis and autophagic flux (159).

Fenofibrate-induced PPARa upregulation reverses the aging effect

on monocytes as evidenced by the restoration of fatty acid oxidation

accompanied by high levels of lipid droplet formation (160).

PPARa downregulation is implicated in Paneth cell senescence in

the intestinal epithelial niche (161).

Peroxisome biosynthesis and metabolism are markedly

downregulated in the lungs of patients with IPF. Treatment with

ciprofibrate or pemafibrate promotes peroxisome proliferation and

downregulates myofibroblast differentiation of fibroblasts (138,

142). Additionally, fenofibrate suppresses TGF-b-induced
myofibroblast differentiation independent of PPARa activation by

downregulating mitochondrial respiration (140). Fibrates suppress

neutrophil infiltration, increase vascular permeability, and promote

inflammatory cytokine production in bleomycin-induced or LPS-

induced lung injury models and reduce lung compliance (162–164).

Ciprofibrate suppresses cytokines involved in smoking-induced

airway remodeling and smooth muscle hyperplasia (139). The

induction of TFEB by gemfibrozil mitigates CSE-induced

autophagy impairment in airway epithelial cells, resulting in the

suppression of ROS production and cellular senescence (141). This

suggests the potential efficacy of ciprofibrates in activating

autophagy by modulating TFEB through PPARa activation

during COPD pathogenesis. A population-based retrospective

cohort study reported that in patients with dyslipidemia, the

incidence of COPD development among fibrate users was lower

than that among non-fibrate users within the 6-year observation

period (128). These findings indicate that fibrate is a promising

therapeutic for aging-related lung diseases and that it can function

as a senotherapeutic by activating PPARa and its transcripts. In

contrast to metformin, oral administration of fibrates at a clinical

dosage may sufficiently achieve high drug concentrations to exert a

senomorphic effect based on in vitro experiments (Table 2),

suggesting that fibrates are potential candidates that can be

repositioned as senotherapeutics.
Thiazolidinedione derivatives

In add i t ion to met formin , s t a t ins , and fibra te s ,

thiazolidinedione derivatives (such as rosiglitazone and

pioglitazone) have been reported to exert senotherapeutic effects.

Rosiglitazone and pioglitazone function as PPARg agonists and are

used as oral hypoglycemic agents (165). Cellular senescence

induced by angiotensin II is inhibited by pioglitazone in

endothelial progenitor cells (166). In this study, pioglitazone

prevents cellular senescence by downregulating angiotensin type 1

receptor. Pioglitazone also restores telomerase activity, which may

also be involved in its anti-senescence activity. Age-related

functional decline in renal mesenchymal stem cells contributes to

the pathogenesis of chronic kidney disease. Indoxyl sulfate, a

uremia-related toxin, evokes cellular senescence in renal

mesenchymal stem cells, which is inhibited by pioglitazone (167).

This effect of pioglitazone is, at least in part, attributable to the

activation of PPARg, which leads to suppression of prion protein

gene expres s ion . The senotherapeut ic proper t ies o f
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thiazolidinediones have also been demonstrated in UV irradiation-

induced cellular senescence in murine skin fibroblasts. Pioglitazone

inhibits UV-induced cellular senescence through attenuating ROS

production with concomitant suppression of cell cycle arrest-

associated proteins such as p53 and p21 (168). The

senotherapeutic potential of thiazolidinediones is also

demonstrated using in vivo models. Pioglitazone ameliorates age-

related renal dysfunction in 24-months old rats, which is attributed

to increased klotho expression and decreased oxidative stress and

mitochondrial injury (169). Long-term treatment with low-dose

rosiglitazone extended the lifespan of aged mice (170). Additionally,

rosiglitazone mitigated inflammation and tissue atrophy, improved

cognitive ability, and alleviated depression-like symptoms (170).

Further, patients with diabetes treated with pioglitazone had a lower

mortality rate compared to non-PPARg agonists users (170).
Several studies have demonstrated the efficacy of PPARg

agonists in treating respiratory diseases. A retrospective study

on veterans with both diabetes and COPD revealed that the risk of

COPD exacerbations in patients receiving PPARg agonists was

significantly lower than that in patients receiving other diabetes

medications (129). Another retrospective study reported similar

results with PPARg agonists (130). The effects of other

thiazolidinedione derivatives have been examined in mouse

models. Rosiglitazone prevents the upregulation of neutrophil

counts in the bronchoalveolar lavage fluid of mice exposed to

cigarette smoke for a short duration (5 days) (143). Ciglitazone is

reported to attenuate lung emphysema in mice chronically

exposed to cigarette smoke (3–5 months) (144). The therapeutic

efficacies of troglitazone and ciglitazone have also been

demonstrated in the bleomycin-induced lung fibrosis mouse

model (145).

Compared with those on other drugs, studies on

senotherapeutic potential of thiazolidinedione derivatives and

their application for treating aging-related respiratory diseases are

at a nascent stage. Hence, further studies on thiazolidinedione

derivatives are needed.
Inhalation therapy

As we have described in this review, the drugs against metabolic

diseases exhibit senotherapeutic properties and may be beneficial

for the treatment of aging-related respiratory diseases. However, the

usefulness and clinical application of these agents to respiratory

disease remains uncertain, because of the high drug concentrations

used in the experimental models compared to the expected drug

concentrations in the lungs based on their approved oral doses. We

speculate that a possible solution to these issues is the development

of an inhalation treatment modality. Repurposing pre-existing

drugs with potential efficacy for respiratory disease to suit

inhalation therapy may save time and cost compared with

developing a new drug from scratch. Currently, the clinically

available inhaled drugs for respiratory diseases are mainly
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composed of inhaled steroids and bronchodilators. However,

under experimental conditions, several drugs against metabolic

diseases, such as statins and thiazolidinediones, have been

investigated in asthma and pulmonary hypertension models. In

comparison to the distribution during intraperitoneal or forced oral

administration, better lung-localized drug distribution is

demonstrated during inhalation and intratracheal administration

of simvastatin in OVA-induced asthma mouse model (171).

Simvastatin inhalation suppresses airway inflammation and

remodeling in a dose-dependent manner. Intratracheal

administration of pravastatin is shown to suppress bronchial

goblet cell hyperplasia and reduce TNF-a and KC expression in

bronchoalveolar lavage fluid, but not the expression of other

chemokines or airway irritability in OVA-induced asthma mouse

model (172). In a rat model of monocrotaline-induced pulmonary

arterial hypertension (PAH), intratracheal administration of

nanoparticulated pitavastatin attenuates the progression of PAH

accompanied by a reduction in inflammation and pulmonary artery

remodeling (173). In another study, the effects of rosiglitazone on

PAH were examined. While no obvious effect of oral rosiglitazone

administration on pulmonary hemodynamics is demonstrated,

intratracheal administration of poly(lactic-co-glycolic) acid-based

particles of rosiglitazone induces selective pulmonary vasodilation

and reduces the proliferation of vascular endothelial cells and

smooth muscle cells in rats with PAH (174). Furthermore,

combined inhalation of rosiglitazone and sildenafil leads to

improvement in cardiac function, delayed right heart remodeling,

and inhibition of arterial muscularization in rats with PAH (175).

Nebulized pioglitazone in combination with synthetic lung

surfactant promotes lung maturation and attenuates the

development of neonatal hyperoxia-induced lung injury (176).

Interestingly, inhalation therapy using resveratrol as a

senomorphic to treat respiratory disease shows that intratracheal

administration preserves lung compliance and structure and

prevents DNA damage in prematurely aging telomerase null

(terc-/-) mice (177). In addition, resveratrol-b-cyclodextrin
inclusion complexes significantly suppresses ZnCl2 smoke-

induced acute lung injury through anti-inflammatory and anti-

apoptotic mechanism (178).

Accordingly, we speculate that the development of inhalation

therapy using drugs against metabolic diseases can be a promising

approach for potential senotherapy; however, several concerns must

be noted. High drug concentrations in the lungs during inhalation

may evoke previously unrecognized toxicity. In addition, the

conversion of the drug delivery system from oral to inhalation

could cause critical pharmacological alterations based on drug

properties and pharmacokinetics which should be carefully

examined. Overcoming drug insolubility in water and low

stability in solution should be an urgent task in inhalation

therapy development. Furthermore, the development of efficient

drug delivery devices is a critical problem. In future studies, these

issues should be addressed for each drug before adopting them for

clinical applications.
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Conclusions

Cellular metabolism is closely related to the mechanisms of cellular

senescence. Hence, drugs against metabolic diseases may have

senotherapeutic potential. Cellular senescence plays a pivotal role in the

pathogenesis of various aging-related disorders. Hence, senotherapy can

be a promising approach to develop efficient treatments for refractory

aging-related respiratory diseases, including COPD and IPF. Drugs

against metabolic diseases can be potentially repositioned as

senotherapeutics. However, based on the experimental results,

concentrations higher than those achieved by oral administration may

be necessary to determine the clinical efficacy of some promising

senotherapeutics in treating COPD and IPF. In addition to the oral

administration modality, the development of an inhalation modality for

the treatment of metabolic diseases can be an attractive approach to

achieve high and effective local concentrations of drugs in the lungs

without inducing systemic adverse events. Future studies should focus on

determining appropriate drugs, optimal drug concentrations, and effective

treatment modalities to develop clinically applicable therapeutics for

aging-related respiratory diseases using drugs against metabolic diseases.
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