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Ectopic lipid metabolism in
anterior pituitary dysfunction

Clemens Baumgartner, Martin Krššák, Greisa Vila,
Michael Krebs and Peter Wolf*

Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of
Vienna, Vienna, Austria
Over the past decades, adapted lifestyle and dietary habits in industrialized

countries have led to a progress of obesity and associated metabolic disorders.

Concomitant insulin resistance and derangements in lipid metabolism foster the

deposition of excess lipids in organs and tissues with limited capacity of

physiologic lipid storage. In organs pivotal for systemic metabolic homeostasis,

this ectopic lipid content disturbs metabolic action, thereby promotes the

progression of metabolic disease, and inherits a risk for cardiometabolic

complications. Pituitary hormone syndromes are commonly associated with

metabolic diseases. However, the impact on subcutaneous, visceral, and ectopic

fat stores between disorders and their underlying hormonal axes is rather different,

and the underlying pathophysiological pathways remain largely unknown. Pituitary

disorders might influence ectopic lipid deposition indirectly by modulating lipid

metabolism and insulin sensitivity, but also directly by organ specific hormonal

effects on energy metabolism. In this review, we aim to I) provide information

about the impact of pituitary disorders on ectopic fat stores, II) and to present up-

to-date knowledge on potential pathophysiological mechanisms of hormone

action in ectopic lipid metabolism.

KEYWORDS

ectopic fat, HPA - hypothalamic-pituitary-adrenal, growth hormone, hypogonadism,
thyroid hormone, NAFLD, cardiac steatosis
Abbreviations: 11b-HSD1, 11b-hydroxysteroid dehydrogenase I; AMPK, AMP-activated protein kinase; DNL,

de-novo lipogenesis; FFA, free fatty acids; GH, growth hormone; GHD, growth hormone deficiency; GnRH,

gonadotropin releasing hormone; HCL, hepatic lipid content; IGF1, insulin-like growth factor 1; IR, insulin

resistance; NAFLD, non-alcoholic fatty liver disease; T2DM, type 2 diabetes mellitus; T3, triiodothyronine; T4,

thyroxine; TG, triglyceride; TSH, thyroid-stimulating hormone; VLDL, very-low density lipoprotein; WAT,

white adipose tissue.
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Introduction

Under physiologic conditions, white adipose tissue (WAT)

inherits an essential role as a repository of energy. Uptake and

processing of excessive nutrients and suppression of lipolysis enable

energy-storage via accumulation of triglycerides (TG), ready for

mobilization if needed. In state of overnutrition, WAT meets its

protective purpose as metabolic sink for potentially harmful nutrient

oversupply by continuous uptake and, concomitantly, progressive

WAT expansion (1). However, the individual storage capacity is

limited, wherefore WAT subsequently fails to expand in a state of

chronically positive energy balance (1). By exceeding the individual

fat threshold (2), TG further accumulate at ectopic sites other than

WAT, resulting in an unfavorable increase of visceral fat, as well as

ectopic lipid accumulation in insulin dependent organs (3).

Accumulation of visceral and ectopic fat is commonly related to

impaired metabolic and cardiovascular health (4, 5). Organs affected

by lipid accumulation include liver, myocardium, skeletal muscle, and

pancreas, in which ectopic steatosis provokes function-impairing

effects and parenchymal damage. When ectopic fat mass exceeds

the organ specific oxidative capacity, this results in lipotoxicity and

promotes local insulin resistance (IR), but also local organ damage

and parenchymal dysfunction (6). Considered lipotoxic mechanisms

are generation of reactive oxygen species, inflammation, and lipid-

induced apoptosis, determined by lipotoxic metabolites of free fatty

acids (FFA), such as diacylglycerols and ceramides (7).

Ectopic lipid content in organs important for whole body energy

metabolism is crucial for cardiometabolic risk and its systemic

complications (8). Of note, ectopic TG stores appear to be rather

flexible and largely depend on circulating concentrations of

substrates, including glucose, insulin and FFA (9, 10).

Beside metabolic conditions that favor an increase in ectopic

lipids, such as obesity and diabetes mellitus, hormones controlled by

the anterior pituitary gland are also frequently reported to modulate

lipid storage (Figure 1). The anterior pituitary sets the pulse for

peripheral secretion of cortisol, thyroid hormones, and sex hormones,

and also releases growth hormone (GH) and prolactin into

circulation. Alongside other well-known properties, these effectors

are tightly related to alterations in lipid metabolism (11–15).

The underlying pathophysiological mechanisms for ectopic TG

deposition and its clinical relevance is best described for the insulin

resistant state. As pituitary disorders are commonly associated with

metabolic diseases, TG accumulation in non-adipose tissue organs

might play a relevant role in these conditions (16). Of note, ectopic

lipid metabolism is tightly connected to glucose homeostasis and

changes in ectopic fat mass are usually related to changes in insulin

resistance (17). Previous reviews have extensively summarized the

impact of anterior pituitary hormones on glucose metabolism and

dyslipidemia (18–22). A detailed discussion of those topics therefore

is beyond the scope of this review. Nevertheless, the relationship

between hormonal excess or deficiency, circulating substrate

concentrations and the impact on ectopic TG storage is complex,

due to direct, organ specific effects of pituitary hormones. Here we

give an overview on the current knowledge of ectopic lipid

metabolism in pituitary hormone syndromes categorized by their

main metabolically active hormones.
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Cortisol

The hypothalamus-pituitary-adrenal axis is a major player in the

regulation of energy metabolism. In Cushing’s disease, the metabolic

syndrome is highly prevalent (23, 24). Cortisol exerts insulin-

antagonistic effects by inhibiting insulin secretion, stimulating

glucagon secretion, and disrupting insulin signaling. In addition,

enhanced hepatic gluconeogenesis and glycogenolysis in

combination with increased FFA concentrations following adipose

tissue lipolysis contributes to IR (16).

The glucocorticoid receptor is known to stimulate and accelerate

adipogenesis (25, 26). Cortisol stimulates lipolysis in adipose tissue

directly and indirectly by enhancing the sensitivity to catecholamines

(27). However, the lipolytic activity in abdominal visceral fat might be

lower compared to other tissues due to local differences in

glucocorticoid receptor expression (28, 29). Moreover, cortisol both

stimulates and inhibits lipogenesis, which depends on the extent of

hypercortisolism, the duration of glucocorticoid exposure and the

presence of insulin (11, 30). Crucial factors regulating these effects

include the enzyme 11b-hydroxysteroid dehydrogenase I (11b-
HSD1), which locally activates cortisol by conversion from

cortisone, and whose activity might change following the prolonged

exposure to high doses of glucocorticoids in Cushing’s syndrome (31).

Furthermore, an important role of the AMP-activated protein kinase

(AMPK) has been discussed, which is a key metabolic regulator of

cellular energy status. A downregulation of AMPK in visceral adipose

tissue was observed in patients with Cushing’s syndrome, which

inversely correlated with the degree of hypercortisolism (32). These

cortisol mediated changes in lipid metabolism might explain the

typical phenotype of adipose tissue distribution in patients with

Cushing’s disease, characterized by an increase in visceral obesity

and a loss of peripheral subcutaneous fat depots (33).

Interestingly, despite the huge amount of evidence on the effects

of cortisol on impaired glucose homeostasis, only limited knowledge

exists on ectopic TG accumulation in non-adipose tissue organs in a

state of chronic hypercortisolism. On the background of IR and

increased concentrations of FFA in patients with Cushing’s disease,

one might assume that ectopic TG mass in skeletal muscle is higher.

However, studies in humans confirming these effects are rare.

Moderate exogenous hypercortisolemia by substitution with

hydrocortisone in combination with strict physical inactivity almost

doubled the intramuscular lipid content in healthy volunteers (34).

Moreover, higher diurnal salivary cortisol levels were associated with

higher intramuscular fat mass in healthy volunteers (35). In patients

with biochemically cured Cushing’s syndrome, intramuscular fat was

higher compared to a matched control group and was negatively

associated with the performance on functional tests (36).

In the liver, a relation between hypercortisolism and of ectopic

intrahepatic TG accumulation, also termed non-alcoholic fatty liver

disease (NAFLD), was suggested (37). Most metabolic pathways

modulating hepatic lipid content (HCL) are influenced by cortisol

directly or indirectly by its effects on IR. Glucocorticoids regulate

several genes involved in de-novo lipogenesis (DNL). In addition,

elevated concentrations of glucose and insulin together with increased

FFA flux from adipose tissue into the liver stimulate TG synthesis

(38). Moreover, cortisol modulates beta oxidation and secretion of
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very-low density lipoprotein (VLDL) (18), suggesting a net retention

of fat within the liver.

Elevated intrahepatic fat content is associated with inadequate

suppression of cortisol following the overnight administration of

dexamethasone (39). Furthermore, an increased prevalence of

NAFLD in patients with Cushing’s syndrome was reported (40).

However, up to now no studies using proton magnetic resonance

spectroscopy, which is the gold standard method to non-invasively

investigate hepatic fat in-vivo (41), have been published in patients

with active Cushing’s disease.

With regards to the heart, studies using cardiac magnetic resonance

imaging reported an increase in left ventricular mass and a modest

reduction in systolic function in patients with active Cushing’s disease,

although the prevalence of overt cardiomyopathy was lower than

previously reported in ultrasound based investigations (42, 43). The

observed changes in cardiac function and morphology are both

potentially reversible after successful treatment of hypercortisolism

(43). The increase in ventricular mass surprisingly contrasts with

general skeletal muscle atrophy related to protein wasting, which is

typically present in patients with Cushing’s disease. On the background

of visceral obesity, IR, and dyslipidemia, it could be assumed that cardiac

steatosis might play an important role in the development of myocardial

hypertrophy. However, no differences in intramyocardial TG content

were found neither in patients with Cushing’s syndrome compared to
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controls, nor in patients with Cushing’s syndrome before and after

normalization of hypercortisolism. This is probably explained by higher

rates of beta oxidation within the myocardium stimulated by cortisol

excess, which might prevent the heart from the development of cardiac

steatosis (44). On the other hand, an important increase in epicardial fat

mass was observed compared to controls, which decreased following

biochemical disease remission (44, 45). Epicardial fat is a well-known

mediator of inflammation, microvascular dysfunction, and fibrosis (46).

By directly surrounding the myocardium, it might exert paracrine effects

by adipocytokine secretion (46). Epicardial fat might therefore play an

important role in the development of heart disease in hypercortisolism.

Biochemical disease remission decreased epicardial fat after a median

follow up of 9 months, which highlights the important impact

of cortisol.

On the contrary, in patients suffering from adrenal insufficiency

even a small oversupply of daily glucocorticoid substitution therapy was

associated with an adverse cardiometabolic risk profile, characterized

by an increase in visceral adipose tissue, higher fasting glucose values

and hypertension (47). However, in a cohort of patients with state-of-

the-art hormone replacement therapy, no differences in visceral WAT

mass could be found compared to a healthy control group in a cross

sectional study (48). Ectopic fat accumulation in the liver and

myocardium was similar in patients with adrenal insufficiency

compared to a control cohort with physiological hypothalamic-
FIGURE 1

Effects of pituitary hormone axes on white adipose tissue and ectopic lipid content. Depicted pituitary axes include the thyroid-axis (light pink), growth
hormone-axis (green), hypothalamic-pituitary-adrenal axis (blue), and the hypothalamic-pituitary-gonadal axis (yellow). Modulations of ectopic lipid
content are summarized in tables for each effector (GH, TH, Cortisol, Androgens, and Estrogens) in skeletal muscle, liver, and heart. Reference numbers
are attached as superscript. Background colors correspond to the depicted hormonal axes. Hypothalamic hormones, negative feedback loops, and, due
to scarcity of data, prolactin are not shown. ACTH, adrenocorticotropic hormone; FSH, follicle-stimulating hormone; GH, growth hormone; HCL, hepatic
lipid content; LH, luteinizing hormone; SAT, subcutaneous adipose tissue; TG, triglycerides; TH, thyroid hormones; TSH, thyroid-stimulating hormone; t4,
thyroxine, t3, triiodothyronine; VAT, visceral adipose tissue; VLDL, very-low density lipoprotein.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1075776
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Baumgartner et al. 10.3389/fendo.2023.1075776
pituitary-adrenal axis signaling (49). In addition, no difference in

visceral and ectopic lipid distribution was observed, when patients

with a daily dose of > 20 mg and ≤ 20 mg were compared (49).
Thyroid hormone

Thyroxine (T4), a prohormone, which is converted to triiodothyronine

(T3) to acquire full biological activity, is the major secretory product of the

thyroid gland and is controlled by the thyroid-stimulating hormone (TSH)

secreted from the anterior pituitary gland (50). Primary hypothyroidism

constitutes one of the most common endocrine diseases and is linked to a

variety of changes in lipid metabolism.

Hypothyroidism has been associated with visceral and ectopic fat

accumulation. In WAT, thyroid hormones regulate adipogenesis and

the proliferation and differentiation of adipocytes. Furthermore, T3

regulates thermogenesis and increases resting energy expenditure,

probably by stimulating a trans-differentiation from white to beige

adipocytes (12, 51). Similar effects have also been described in skeletal

muscle, in which T3 promoted thermogenesis by mitochondrial

energy uncoupling (52). Furthermore, thyroid hormones regulate

gene expression for lipogenesis and lipolysis in white adipose tissue,

and thermogenesis in brown adipose tissue (53).

Regarding ectopic fat stores, hypothyroidism has been linked with

TG accumulation in the liver and the myocardium, but not in skeletal

muscle. In the general population, there is an inverse association

between T4 and intrahepatic fat accumulation (54). This association

can be observed in both subclinical and overt hypothyroidism and is

independent of differences in the BMI (55). Organ specific activation of

the thyroid hormone receptor in the liver prevents the development of

hepatic steatosis in animal studies (56) and is currently evaluated as

therapeutic agent in the context of NAFLD (57). However, we previously

failed to demonstrate a reduction in HCL following the treatment of

overt hypothyroidism (58, 59), which might be explained by the short

period of hypothyroidism before study inclusion. The effects of thyroid

hormones on hepatic lipid metabolism are complex. De-novo

intrahepatic lipogenesis is stimulated by thyroid hormones because of

increased FFA uptake, but also lipogenic gene expression. However,

there are also catabolic effects of thyroid hormones, including lipolysis,

TG autophagy and mitochondrial beta oxidation (60). Therefore, FFA

metabolism occurs at a higher rate than fatty acid synthesis.

In the myocardium, ectopic lipid stores decrease following the

initiation of a treatment by levothyroxine independent of changes in

body weight in patients with severe primary hypothyroidism (58).

This might be explained by changes in myocardial mitochondrial

lipid oxidation (61), or by alterations in FFA uptake within the heart

(62). The reduction in intramyocardial fat mass following treatment

of hypothyroidism was associated with significant improvements in

systolic left ventricular heart function (58).

Growth hormone

In the context of ectopic fat disposal, GH and its exceptional

properties on lipid metabolism are of particular interest.

Redistribution and enhanced utilization of lipids are frequently

reported in acromegaly, a state of increased GH activity (13). On

the other hand, overall and visceral adiposity are characteristics of GH
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deficiency (GHD) (63). The investigation of these endogenous models

of GH excess and insufficiency might therefore help to determine the

clinical relevance of antisteatotic GH action and its benefits on

lipid profile.

Human GH is a 22kDa hormone produced and secreted by

somatotropic cells of the anterior pituitary gland. Underlying a

pulsed secretion with higher peaks at night-time, circulating GH

stimulates the production of insulin-like growth factor 1 (IGF1),

predominantly in the liver, which in turn executes various effects in

diverse organs and tissues. With IGF1 inhibiting GH secretion, the

hormonal axis underlies a self-controlling feedback mechanism (13,

64, 65).

Under physiologic conditions, GH is a main regulator of energy

metabolism during stress and famine, where it is considered to

preserve proteins and sugars by shifting catabolism to the

exploitation of lipids. In this regard, GH induces lipolysis in WAT,

promoting the release of FFA into circulation, and increases lipid

oxidation (13). Therefore, GH is considered to improve body

composition by degradation of fat stores, while concomitantly

increasing lean body mass (66). On the other hand, GH indirectly

stimulates adipogenesis by IGF1, which impacts adipocyte

proliferation and differentiation (67). IGF1 is of major significance

in the differentiation of pre-adipocytes into adipocytes and stimulates

the proliferation of adipocyte precursor cells (68).

Acromegaly states a condition in which patients suffer from

constantly high GH concentrations, originating from a

somatotropic adenoma of the pituitary gland in almost all cases.

Patients with acromegaly show a disease specific phenotype of lipid

distribution (69). Visceral and subcutaneous WAT are about 70% and

80% lower in patients with active acromegaly compared to controls

and adipose tissue distribution is significantly associated with disease

severity (70, 71). Following pituitary surgery and disease remission,

WAT increases substantially and trends to normalize compared to

studied cohorts of healthy controls (71, 72). However, following

insulin-antagonizing effects of GH, acromegalic patients exhibit a

unique form of IR despite a low body fat content (73), which is

pathophysiologically connected to the increase in WAT lipolysis (13).

Both IR and the reduction in fat mass decline after treatment (72).

Furthermore, acromegaly also represents a unique condition of very

low ectopic fat mass despite severe IR. In active acromegaly, a low

amount of ectopic fat mass has been reported in the liver and in

skeletal muscle, concomitantly with increased mitochondrial activity

(9, 74). However, hepatic ATP-turnover indicating mitochondrial

activity showed to be rather modest and might not fully explain the

very low amounts of HCL, wherefore it is likely that GH mediates

additional antisteatotic effects within the liver. In addition to the

increase in mitochondrial activity, other potential GH-induced

mechanisms on hepatic lipid storage might include the inhibition of

DNL and increased hepatic VLDL export (75–79). To date, GH-

mediated effects on hepatic DNL have been studied in mouse models,

in which liver specific GH-receptor knockdown led to an increase in

DNL favoring hepatic steatosis (75). Suppressive effects of GH on

DNL by down-regulation of carbohydrate responsive element-

binding protein and fatty acid synthase were also reported in

cultured human HepG2 hepatocytes of an in-vitro steatosis model

(80). However, in-vivo studies confirming these effects in human

subjects are missing. On the other hand, first investigations of GH
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influencing hepatic VLDL secretion in human subjects have already

been made: Hepatic lipid oversupply is compensated by an increase in

TG export via VLDL particles. However, as HCL rises above 10%,

VLDL secretion cannot be further intensified, wherefore a net

retention of lipids leads to a progression of NAFLD (81). A

hormone-mediated activation of VLDL secretion is not unlikely:

Recently, our study group proposed a Leptin-mediated increase of

VLDL secretion via a brain-vagus-liver axis to protect against elevated

HCL (82). Studies investigating the impact of GH on VLDL secretion

are rather conflicting, although their methodological approaches

differed substantially. Following a 3-month period of GH

replacement therapy, a significant increase of VLDL secretion was

observed in patients with GHD (77). On the contrary, 8 days of GH

administration did not show any changes in VLDL kinetics (78).

Regarding skeletal muscle, not intra-, but intermuscular fat was

elevated in acromegalic subjects observed by Freda et al., which

hypothesized a connection to muscular IR present in acromegaly

(70). This lipid redistribution was lately proposed to be termed an

acromegaly-specific lipodystrophy (83). Considering cardiac fat

depots, no differences in intramyocardial lipid content between an

acromegaly cohort and healthy controls could be observed. However,

pericardial fat mass increased after treatment of acromegaly by

transsphenoidal pituitary surgery (9).

Contrary to acromegalic fat distribution, GHD-patients inherit IR

alongside an elevated visceral and ectopic fat mass in combination

with a concomitantly reduced lean body mass (84). Compared to

healthy controls, the predominant increase of ectopic fat in GH-

deficient individuals was seen in the liver, whereas differences in

ectopic lipid deposition in skeletal muscle did not reach statistical

significance (85). In GH-deficient patients, as well as in abdominally

obese volunteers with IGF1 levels in the lower normal range, low-dose

substitution of GH resulted in an improvement of body composition

and in a reduction of HCL (63, 66). Moreover, insulin sensitivity

tended to rise in GHD patients after low-dose GH substitution (86),

indicating the diverse entities of IR in acromegaly and GHD. In

another study, GH replacement was followed by an increase in lipid

oxidation (87).
Sex hormones

The hypothalamus-pituitary-gonadal axis is well-known for its

impact on body composition, glucose and lipid metabolism (14).

Adipose tissue is a crucial target for sex hormones in humans.

Especially androgens are characterized by a sexual dimorphism,

with a tendency towards an increased accumulation of visceral fat

in men and a higher proportion of subcutaneous and peripheral fat in

women (88, 89). Sex hormones have a well-known impact on

adipocytes in a sex specific manner. The physiological and

pathophysiological role of androgens and estrogens on adipose

tissue function, adipocyte proliferation and differentiation has been

extensively reviewed previously (90, 91). However, evidence on the

direct impact of sex hormones on ectopic fat is relatively scarce.

In men, a reduction in concentrations of circulating testosterone

is associated with obesity, IR, and hypertension. Moreover,

hypogonadism in men suffering from prostate cancer treated with

GnRH agonists is associated with a rise in fat mass (92). Considering
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ectopic fat stores, retrospective studies reported an increased

prevalence of hypogonadism in patients with NAFLD (93).

Replacement of testosterone improved insulin sensitivity and

reduced fat mass in hypogonadal men with type 2 diabetes mellitus

(T2DM) (94), but did not have any effects on endogenous glucose

production or glucose disposal rates following medically induced

short-term hypogonadism (95). Furthermore, lipid oxidation is lower

in an early hypogonadal state and high, but physiological doses of

testosterone increased VLDL secretion (96). Androgen treatment also

lowered DNL in patients with AIDS-wasting-syndrome and

borderline low serum testosterone (97). However, until now, no

effects on HCL were observed following the initiation of

testosterone replacement therapy in patients with T2DM, as well as

in elderly, hypogonadal men with abdominal obesity (98, 99).

Furthermore, short term hypogonadism by biochemical castration

had no effects on intramyocellular lipids in healthy volunteers (100).

Of note, the effects of testosterone replacement on changes in body

composition and ectopic fat accumulation might correlate with

circulating estrogen concentrations and aromatase activity in men

(101, 102).

In women, the risk for the development of NAFLD increases with

age and premenopausal women appear to be protected from ectopic

fat accumulation (103). Despite a lower skeletal muscle mass

compared to men, premenopausal women show a higher energy-

storage capacity in subcutaneous WAT (104). These changes in

regional WAT distribution might be explained by effects of

estrogen, which attenuates lipolysis in subcutaneous, but not in

visceral adipose tissue (105). Regarding different regions of ectopic

fat, the absolute amount of intramyocellular fat in the skeletal muscle

appears to be higher in women compared to men. However, the

relative amount of potentially toxic intermediates of lipid metabolism,

i.e. diacylglycerol and ceramide, was lower in females (106).

Furthermore, animal models show an increase in ectopic lipid

content in skeletal muscle following ovariectomy in rodents (107).

Within the liver, pre-menopausal women might be protected

against hepatic steatosis, since NAFLD prevalence increases with age

(108). Moreover, women treated with the estrogen receptor

antagonist tamoxifen have a higher risk to develop NAFLD (109).

In ovariectomized female mice estrogen replacement attenuates

hepatic fat accumulation following high fat diet (110). Possible

mechanisms might include an acceleration of hepatic VLDL

secretion, inhibition of DNL and increased beta oxidation (111). Of

note, when matched for HCL, FFA oxidation and DNL is higher in

men compared to pre-menopausal women, which might explain the

pro-atherogenic risk profile (112). In addition to sex hormones, the

sex dependent pattern of GH secretion pulsatility is a major regulator

of intrahepatic lipid metabolism (113).
Prolactin

Hyperprolactinemia is associated with weight gain and insulin

resistance and an increased prevalence of obesity has been reported in

prolactinoma patients (15). Normalization of prolactin levels after

treatment resulted in weight reduction in some studies (114), but not

in others (115). Furthermore, treatment with dopamine agonists

might have beneficial effects on body weight (116) and other
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metabolic parameters (117). In this regard, it is presumed that

bromocriptine action resets an abnormally elevated hypothalamic

drive for increased plasma glucose and lipids in IR by modulating

circadian neuronal activities (118). Underlying pathophysiological

mechanisms are unclear but might include changes in the

dopaminergic tone (119), but also the presence of concomitant

hypogonadisms might be of importance.

Studies investigating ectopic fat depots in prolactinoma patients

are missing. In a report of a single patient NAFLD improvement

following treatment with a dopamine agonist (120). On the contrary,

cross-sectional retrospective studies in patients without pituitary

disorders showed that low prolactin concentrations are associated

with an increased risk for hepatic steatosis (121). Additionally,

prolactin levels were lower in men and women with severe hepatic

steatosis compared to patients with only mild hepatic steatosis (122).
Future perspectives

In conclusion, our review presents current knowledge regarding

the importance of anterior pituitary hormonal axes on ectopic lipid

content. Disturbances of glucose and lipid homeostasis are frequently

observed in pituitary hormone syndromes. Treatment of hormonal

excess or deficiency has a profound impact on whole body energy

metabolism and therefore also on changes in ectopic fat stores.

Additionally, since metabolic disorders are closely associated with

ectopic lipid deposition, treatments reducing ectopic fat in organs

pivotal for whole body metabolism might be of particular interest.

Elucidating various hormonal effects on organ specific lipid

metabol ism might improve our understanding on the

pathophysiological background of ectopic fat accumulation. This

could be relevant to identify potential future drug targets for the

development of novel, local antisteatotic therapies.
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