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Background: Bone age is the age of skeletal development and is a direct

indicator of physical growth and development in children. Most bone age

assessment (BAA) systems use direct regression with the entire hand bone

map or first segmenting the region of interest (ROI) using the clinical a priori

method and then deriving the bone age based on the characteristics of the ROI,

which takes more time and requires more computation.

Materials and methods: Key bone grades and locations were determined using

three real-time target detection models and Key Bone Search (KBS) post-

processing using the RUS-CHN approach, and then the age of the bones was

predicted using a Lightgbm regression model. Intersection over Union (IOU) was

used to evaluate the precision of the key bone locations, while the mean

absolute error (MAE), the root mean square error (RMSE), and the root mean

squared percentage error (RMSPE) were used to evaluate the discrepancy

between predicted and true bone age. The model was finally transformed into

an Open Neural Network Exchange (ONNX) model and tested for inference

speed on the GPU (RTX 3060).

Results: The three real-time models achieved good results with an average (IOU)

of no less than 0.9 in all key bones. The most accurate outcomes for the

inference results utilizing KBS were a MAE of 0.35 years, a RMSE of 0.46 years,

and a RMSPE of 0.11. Using the GPU RTX3060 for inference, the critical bone

level and position inference time was 26 ms. The bone age inference time was 2

ms.

Conclusions:We developed an automated end-to-end BAA system that is based

on real-time target detection, obtaining key bone developmental grade and

location in a single pass with the aid of KBS, and using Lightgbm to obtain bone

age, capable of outputting results in real-time with good accuracy and stability,

and able to be used without hand-shaped segmentation. The BAA system

automatically implements the entire process of the RUS-CHN method and
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outputs information on the location and developmental grade of the 13 key

bones of the RUS-CHNmethod along with the bone age to assist the physician in

making judgments, making full use of clinical a priori knowledge.
KEYWORDS

RUS-CHN, bone age assessment, deep learning, prior knowledge, real-time target
detection model, real-time
1 Introduction

Bone age is the age of human skeletal development, which may

more precisely reflect human body maturity than age. It is a direct

indication to measure children’s physical growth and development

(1). In clinical medicine, the skeletal maturity status of children is a

more accurate reflection of their growth and development (2).

When children’s current height and bone age are known, the final

height in adulthood can be predicted with high accuracy using

techniques like the standard growth curve (3, 4). In clinical practice,

bone age is often determined manually using bone X-ray pictures of

left-hand, with methods such as the Greulich–Pyle (GP) method (5,

6), the Tanner–Whitehouse(TW) method (7), the China-05

Standards (8), and others. Although all of these approaches can

identify bone age, they are all subjective assessments that rely

heavily on the experience of a competent imaging specialist.

The GP approach is based on a hand atlas that includes a series

of template x-ray pictures of youngsters at various stages of skeletal

maturity. The patient’s x-ray pictures are then compared to samples

from the template series, and the template with the closest match is

chosen as the patient’s bone age. Spampinato C et al. developed

BoNet, a convolutional network structure that used an end-to-end

deep learning model to predict age, and took the entire hand bone

map as input (9). In 2018, LARSON et al. from Stanford

University’s Department of Radiology developed a deep learning

model for the automated identification of bone age based on the GP

method. The model employed a deep residual network structure to

achieve accuracy comparable to the clinician’s. However, it was

ineffective in predicting bone age in young children under two (10).

Salim I et al., 2021 proposed a two-stage bone age assessment

system with a mean absolute error (MAE) of 6.38 months (0.53

years), a root mean square error (RMSE) of 8.70 months (0.73

years), and a root mean squared percentage error (RMSPE) of 2.71

(11). Lee H, et al. proposed a fully automated deep learning system

for bone age assessment based on GP atlas hair, obtaining a root

mean square error (RMSE) of 0.93 years for females and 0.82 years
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for males, using a GPU time of 1.71 s for preprocessing and 10 ms

for bone age prediction (12).

The TW method is mainly divided into TW2 and TW3 (13).

The technique evaluates the development of particular phalangeal

bones and wrist bones or the region of interest (ROI). For each ROI,

skeletal maturity scores are first obtained. Then, the total maturity

score is calculated by adding these scores. Finally, this score is

transformed into bone age using the maturity score and bone age

correlation matrix. Son, S.J et al. automated the whole process of the

TW 3 method, starting from the localization of epiphyseal or

metaphyseal growth regions in 13 different bones, and the MAE

and RMSE of age prediction were 0.46 and 0.62 years, respectively

(14). Zhou XL et al. proposed a TW3-AI model based on the TW3

method, which first obtained key bone locations, then obtained for

each key bone rating growth and development scores, and finally

obtained bone age based on the total score-bone age mapping

relationship, achieving a mean processing time of 1.5 ± 0.2 s and a

RMSE of 0.50 for the gap between bone age and the reviewing

expert (15). Zhang Y et al. proposed a new automated skeletal

maturity assessment with a clinically interpretable method based on

the TW3 method, with mean absolute error (MAE) of 31.4 ± 0.19

points (skeletal maturity score) and 0.45 ± 0.13 years (bone age) for

the carpal bone series and 29.9 ± 0.21 points and 0.43 ± 0.17 years

for the radius, ulna and short (RUS) bone series, respectively (16).

Peng CT et al. proposed an automatic bone age assessment system

based on a convolutional neural network (CNN) framework, using

the rough and fine classification of the ROI region to evaluate

maturity, with final results of 0.532 and 0.56 years of MAE (mean

absolute error) for females and males, respectively (17). Guo LJ et al.

proposed a new dl-based bone age assessment method based on the

TW method, which extracted a limited number of regions to learn

representative features of these regions of interest using deep

convolutional layers (18).

Both the GP method and the TW method of bone age criteria

are based on samples of Caucasus children. A meta-analysis of 35

studies based on children from various ethnic groups revealed in

2019 that the GP method of bone age assessment was inaccurate

and may not be preferred for Asian populations, including the

Chinese pediatric population (19). The China-05 Standards was

developed with a sample of Chinese adolescent children using the

concepts of the TW method. However, compared to the original

TW criteria, the China-05 Standards separate the bone growth

process into finer-grade criteria. It increases the range of bone age

assessed to 18 years for males and 17 years for females. The RUS-
frontiersin.org
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CHN method is one of the China-05 Standards designed to fulfill

practical needs by incorporating bone maturity indicators into the

TW. The RUS-CHN method first determines the ossification

centers and epiphyseal ROI of 13 key bones to determine the

developmental grades. Next, the developmental grades of those 13

key bones are tabulated according to the different sexes of men and

women to determine the corresponding bone maturity scores.

Finally, the maturity scores of all bones are added to determine

the total bone maturity scores, and the bone age is determined

according to those total bone maturity scores. Li NX et al., 2022

proposed a bone age assessment system incorporating prior

knowledge of RUS-CHN with a MAE of 4.44 months (0.37

years) (20).

Most contemporary bone age assessment (BAA) systems are

based on the GP and TW methodologies, which are inappropriate

for Chinese youngsters. Most bone age assessment (BAA) systems

use direct regression with the entire hand bone map or first

segmenting the region of interest (ROI) using the clinical a priori

method and then deriving the bone age based on the characteristics

of the ROI, which takes more time and requires more computation.

Furthermore, as technology has advanced, cell phones have become

increasingly virtual devices with low arithmetic requirements, and

neural networks capable of real-time detection have evolved (21,

22). Lu KJ et al. used NanoDet as a detector for identifying and

locating flames in the field of vision for model selection, achieving

high accuracy (23). Qu R et al. found promising results using

YOLOv5 to identify and pinpoint anomalies in COVID-19 chest

radiographs (24). Yu G et al. proposed that the PP-PicoDet real-

time object identification model has achieved cutting-edge results

(25). Ardalan Z et al. discovered in the first phase, using a

transformation learning technique, that medical images utilizing a

deep learning migration learning approach performed well and

used fewer computational resources and time (26). Huang GH et al.

discovered that using migration learning in chest X-rays can

enhance prediction capabilities and reduce computing costs (27).

In this paper, we propose a new BAA system based on the RUS-

CHN method, which uses the target detection model and key bone

search (KBS) to obtain the location and developmental grade of key

bones in one go, and uses Lightgbm to obtain bone age. This system is a

real-time bone age detection system, which can automate the whole

process of the RUS-CHN method and output the location and

developmental grade of 13 key bones to assist in illustrating the bone

age results, which can balance the consumption of computing power

resources and accuracy of detection results in a better way. The process

is shown in Figure 1. We also created a large dataset with 4528 left-

hand x-ray images and radiologists’ corresponding scores and bone age

using the RUS-CHN method. Data from the test set we used were

analyzed to determine the validity of the proposed BAA system.
2 Materials and methods

2.1 Patients and data

The study was approved by our institutional review board.

Retrospective collection of 4623 posterior-anterior radiographs of
Frontiers in Endocrinology 03
the left-hand wrist of children from October 2020 to October 2021

from western China, all images were obtained from the Picture

Archiving and Communication System (PACS). X-rays were

numbered instead of the name, only the sex, and age were

retained. Exclusion standards: 1. radiographs that were duplicates;

2. those that lack basic information, such as gender, date of birth,

and shooting date; 3. radiographs that show erroneous hand

placement and incomplete or variant hands; 4. Males over 18

years old and females over 17 years old. Finally, 4528 X-ray films

were collected, with 2055 cases in boys and 2473 in girls. The

distribution of cases in each age group for both sexes is shown in

Figure 2, along with the number of cases in each age group.

Due to varying settings and radiation levels, the collected

images were obtained using several devices with noticeable quality

disparities. The DICOM format data were converted to PNG

without manually segmenting the backdrop to eliminate it (12);

instead, the resultant pictures were processed using Contrast

Limited Adaptive Histogram Equalization (CLAHE) to ensure
FIGURE 1

System flow chart.
FIGURE 2

Age and gender distribution.
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that they matched the original acquisition. With the help of the

OpenCV (28), the CLAHE parameter, the clipLimit was 2.0, and the

tileGridSize was (8, 8). The dataset was randomly partitioned into a

training set (80%), a validation set (10%), and a test set (10%).

Among them, the training set was 3628, the validation set was 450,

and the test set was 450.
2.2 Skeletal maturity scores

According to the RUS-CHN method, the locations of key bones

were marked. The RUS-CHN key bone location is shown in

Figure 3. The developmental grade distribution of RUS-CHN key

bones is shown in Table 1. Two experienced radiologists trained by

the China-05 Bone Age Study Group labeled the pictures

independently and graded the developmental stage of all major

bones in each image using the RUS-CHN method. The key bone

development grade was correct if two reviewers reported identical

bone developmental stages. For ambiguous data, a third expert

organized the two reviewers to reach a final result after consultation.
2.3 System components

The BAA system consists of two components. For the first

component, we selected the real-time target detection network

model (29) from YOLOv5, NanoDet, and PP-PicoDet to

determine the key bone developmental grades and locations with

the assistance of KBS. For PP-PicoDet, NanoDet, and YOLOv5, we
Frontiers in Endocrinology 04
selected the PP-PicoDet_s, NanoDet_plus_m_1.5x, and YOLOv5_n

models, respectively. We trained these models by applying fine-

tuned transfer learning using the officially provided pre-training

weights. We set the hyperparameters of these models to the epoch

of 300 and leave the other settings as default. In the second step, we

calculate the bone age using the RUS-CHN method and Lightgbm

(30) construction regression model.
2.4 Model acquisition

YOLOv5_n pre-training weights were available at https://

github.com/ultralytics/yolov5/tree/v6.0 (accessed May 30, 2022);

PP-PicoDet_s pre-training weights were available at http://

github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/

configs/picodet (accessed May 30, 2022) NanoDet_plus_m_1.5x

pre-training weights were available at https://github.com/

RangiLyu/nanodet (accessed May 30, 2022)
2.5 Training model

In the first part, Both the PP-PicoDet and NanoDet models are

anchor-free models, while the YOLOv5 model employed the K-

means method to obtain anchors such as [[23,24, 27,28, 26,34],

[32,33, 31,41, 37,38], [38,48, 54,58, 66,69]]. The images were

preprocessed before model training, including resizing the images

to correspond to the size required by the model (640x640 for

YOLOv5, 416x416 for PP-PicoDet, and 416x416 for NanoDet)

and normalizing the images to a range of pixel values of (0, 1).

And the labeling results were encoded (Figure 4A), where each

developmental grade of each key bone was employed as a class of

target (e.g., radius development grades 1 and 2 are encoded as

radius_1 and radius_2, respectively), resulting in a total of 163

classes of targets—the result after coding is shown in Figure 5A. The

mean average precision (mAP) (31) at the Intersection over Union

(IOU) threshold of 0.5 was utilized as the evaluation index to assess

the model effect on the validation set. The greater the mAP, the

more favorable the model effect. The models that performed the

best on the validation set were chosen independently to make

inferences on the data from the test set. For the inference

findings, we employed KBS (Figure 4B) to decode them rather

than non-maximum suppression (NMS) (32). First, the category

corresponding to the prediction result was divided into the key bone

and development grade, and that grade’s confidence level and

prediction box were recorded. For instance, radius_1 was divided

into radius and the developmental grade 1, and that grade’s

confidence level and prediction box were recorded. Likewise,

radius_2 was divided into radius and the developmental grade 2,

and that grade’s confidence level and prediction box were recorded.

The greater confidence level was kept after comparing the two, and

the kept confidence level, the developmental grade, and the

prediction box were recorded for later comparison. The

developmental grade, confidence level, and prediction box

provided as the final outputs corresponded to the maximum

confidence level for that key bone. Thirteen output results were
FIGURE 3

①: Radius ②: Ulna ③: First Metacarpal ④: First Proximal Phalange ⑤:
First Distal Phalange ⑥: Third Metacarpal ⑦: Third Proximal Phalange
⑧: Third Middle Phalange ⑨: Third Distal Phalange ⑩: Fifth
Metacarpal ⑪: Fifth Proximal Phalange ⑫: Fifth Middle Phalange ⑬:
Fifth Distal Phalange.
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ultimately created after performing the technique as mentioned

above on all inference results to ensure that the results

corresponded to a single developmental grade and prediction box

for each key bone, shown in Figure 5B. Additionally, we applied

confidence suppression to hasten to decode. Confidence

suppression eliminated results that fall below the threshold for

confidence without engaging in any decoding. For the selection of

confidence thresholds, we chose a total of 6 different confidence

thresholds of 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 for our experiments. We

also contrasted the application of NMS with various confidence

thresholds. The key bone developmental grades and locations were

the categories we sorted the results into following the KBS. We

assessed location accuracy using the Intersection over Union (IOU)

(33). After plotting the confusion matrix, we calculated the key bone

developmental grade classification data’s accuracy and precision

(weighted average).

For the second part of the system, we used three schemes of

bone age calculation:
Frontiers in Endocrinology 05
1) We used the RUS-CHN method to calculate bone age, that

was, first converting the key bone developmental grades

into growth and development scores by checking the table

according to male and female gender separately, then

obtaining the total growth and development scores by

adding all the scores, and finally obtaining the final bone

age by querying the standard curve according to various

male and female genders.

2) We constructed regression models using Lightgbm. The model

training set data were the key bone developmental grades of

the expert ratings of the training set, and themodel training set

labels were the bone age obtained from the key bone

developmental grades of the training set based on the RUS-

CHN method. The model validation set data were the key

bone developmental grades of the expert ratings of the

validation set, and the model validation set labels were the

bone ages obtained from the key bone developmental grades of

the validation set based on the RUS-CHN method. We used

the optimal model of each of the three models obtained in the

first part to infer the test set data to obtain three key bone

inference result datasets (YOLOv5-inference-test, NanoDet-

inference-test, PP-PicoDet-inference-test). The model test set

data were three key bone inference result datasets (YOLOv5-

inference-test, NanoDet-inference-test, PP-PicoDet-inference-

test), and the model test set labels were the key bone

developmental grades of the expert rating of the test set

based on the bone age obtained by the RUS-CHN method.

The model was trained using the training and validation sets

and Optuna (34) to perform hyperparameter optimization.

The best model was tested on the test set.

3) We constructed regression models using Lightgbm. We used

the optimal model of each of the three models obtained in the

first part to infer the training set data to obtain three key bone

inference result datasets (YOLOv5-inference-training,
TABLE 1 RUS-CHN each key bone level.

Developmental grade

Radius 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ulna 0 1 2 3 4 5 6 7 8 9 10 11 12

First Metacarpal 0 1 2 3 4 5 6 7 8 9 10 11

Third Metacarpal 0 1 2 3 4 5 6 7 8 9 10

Fifth Metacarpal 0 1 2 3 4 5 6 7 8 9 10

First Proximal Phalange 0 1 2 3 4 5 6 7 8 9 10 11 12

Third Proximal Phalange 0 1 2 3 4 5 6 7 8 9 10 11 12

Fifth Proximal Phalange 0 1 2 3 4 5 6 7 8 9 10 11 12

Third Middle Phalange 0 1 2 3 4 5 6 7 8 9 10 11 12

Fifth Middle Phalange 0 1 2 3 4 5 6 7 8 9 10 11 12

First Distal Phalange 0 1 2 3 4 5 6 7 8 9 10 11

Third Distal Phalange 0 1 2 3 4 5 6 7 8 9 10 11

Fifth Distal Phalange 0 1 2 3 4 5 6 7 8 9 10 11
f
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FIGURE 4

(A) for Encoder, (B) for Decoder (KBS).
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Fron
NanoDet-inference-training, PP-PicoDet-inference-training).

We used the optimal model of each of the three models

obtained in the first part to infer the validation set data to

obtain three key bone inference result datasets (YOLOv5-

inference-validation, NanoDet-inference-validation, PP-

PicoDet-inference-validation). We used the optimal model

of each of the three models obtained in the first part to infer

the test set data to obtain three key bone inference result

datasets (YOLOv5-inference-test, NanoDet-inference-test, PP-
tiers in Endocrinology 06
PicoDet-inference-test). The model training set data were

three key bone inference result datasets (YOLOv5-inference-

training, NanoDet-inference-training, PP-PicoDet-inference-

training), and the model training set labels were the key bone

developmental grades of the expert rating of the training set

based on the bone age obtained by the RUS-CHN method.

The model validation set data were three key bone inference

result datasets (YOLOv5-inference-validation, NanoDet-

inference-validation, PP-PicoDet-inference-validation), and

the model validation set labels were the key bone

developmental grades of the expert rating of the validation

set based on the bone age obtained by the RUS-CHNmethod.

The model test set data were three key bone inference result

datasets (YOLOv5-inference-test, NanoDet-inference-test, PP-

PicoDet-inference-test), and the model test set labels were the

key bone developmental grades of the expert rating of the test

set based on the bone age obtained by the RUS-CHNmethod.

Themodels were trained using the training and validation sets,

hyperparameter optimization was performed using Optuna,

and the best model was tested on the test set.
To this end, we used mean absolute error (MAE), root mean

square error (RMSE), and root mean squared percentage error

(RMSPE) as evaluation metrics (11, 35), which are defined as follows:

MAE =
1
no

n

i=1
yi − ŷ ij j

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s

RMSPE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(
yi − ŷ i

yi
)2

s

where n is the number of samples in the test set, yi is the true

value, and ŷ i is the predicted value of the model. The smaller the

value of the evaluation metric, the better the performance of

the model.

For the inference time test, we systematically exported all models of

the first part to Open Neural Network Exchange (ONNX) format in

CPU AMD Ryzen 5600x, tested the inference time of post-processing

NMS and KBS respectively, and also tested the inference time of the

optimal scheme of the second part. Finally, the total elapsed time of the

first part of the optimal model is tested in the GPU RTX3060

environment, including pre-processing (normalizing, resizing), the

model inference, and post-processing KBS.
3 Results

The initial component of the BAA system, the validation set’s

best map for all three real-time models was 0.6, and the precise

training procedure was depicted in Figure 6. On the data from the

test set, we ran a KBS with various levels of confidence thresholds,

and the outcomes are displayed in Table 2. The NanoDet inference
A

B

FIGURE 5

(A) for results after Encoding and (B) for model inference results
after Decoding.
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results using the KBS did not reveal any missing key bones at

confidence thresholds of 0.0, 0.1, 0.2, and 0.3. However, The

NanoDet inference results using the KBS at confidence thresholds

of 0.4 and 0.5, 13, and 367 key bones, respectively, were missing.

The PP-PicoDet inference results using the KBS did not reveal any

missing key bones at confidence thresholds of 0.0, 0.1, and 0.2.

However, The PP-PicoDet inference results using the KBS at

confidence thresholds of 0.3, 0.4, and 0.5, 1,2, and 56 key bones,

respectively, were missing. The YOLOv5 inference results using the

KBS did not reveal any missing key bones at confidence thresholds

of 0.0, 0.1, and 0.2. However, The YOLOv5 inference results using

the KBS at confidence thresholds of 0.3, 0.4, and 0.5, 15,106, and

296 key bones, respectively, were missing.

In the instance of employing NMS, Table 3 shows that the key

bone results were duplicated, i.e., many developmental grades and

target boxes appear for one key bone when the confidence threshold

was selected less. We discovered duplicate key bone results and

missing key bone results as the confidence threshold rose. NMS

requires much time when the confidence threshold was set to 0.0.

NMS also took longer to complete than KBS for the remaining

confidence scenarios. We also counted the distribution of the

confidence of the results after KBS when the confidence threshold

was 0.0, as shown in Figure 7. The three models produced good

results for the outputs location evaluation findings shown in

Table 4, with an average IOU no less than 0.9 in all key bones,

indicating that the predicted and labeled positions were very similar

to one another. We displayed confusion matrices for the key bone

developmental grade results. See Figure 8 for YOLOv5, Figure 9 for

PP-PicoDet, and Figure 10 for NanoDet. Strong diagonal patterns

can be seen in the three confusion matrices, implying that the labels

predicted by the three models that post-processed labels with KBS

were most often the correct skeletal maturity. As shown in Table 5,

we also determined each key bone’s precision (weighted average)

and accuracy for the three models.

The bone age calculation approach employing Lightgbm-based

modeling performed better than RUS-CHN in the second portion

of the BAA system. The exact outcomes of the bone age prediction

utilizing the Lightgbm model are provided in Table 6, and scheme 3

performed better than scheme 2 when using the model. When

employing KBS, the key bone developmental grades of the YOLOv5

inference results had superior accuracy than the key bone

developmental grades of the PP-PicoDet and NanoDet inference

results. The most accurate outcomes for the YOLOv5 inference

results utilizing KBS were a MAE of 0.35 years, a RMSE of 0.46

years, and a RMSPE of 0.11, with the optimal training

hyperparameters of ‘num_leaves = 2360, max_depth = 3,

learning_rate = 0.18514590909895523, stopping_rounds = 300’,

and the rest of the hyperparameters were default values. The

most accurate outcomes for the NanoDet inference results

utilizing KBS were a MAE of 0.38 years, a RMSE of 0.49 years,

and a RMSPE of 0.12, with the optimal training hyperparameters of

‘num_leaves = 1960, max_depth = 3, learning_rate =

0.18804401074897045, stopping_rounds = 300’, and the rest of

the hyperparameters were default values. The most accurate

outcomes for the PP-PicoDet inference results utilizing KBS were
Frontiers in Endocrinology 07
a MAE of 0.39 years, a RMSE of 0.50 years, and a RMSPE of 0.12,

with the optimal training hyperparameters of ‘num_leaves = 1960,

max_depth=3, learning_rate = 0.18804401074897045,

stopping_rounds = 300 ‘, and the rest of the hyperparameters

were default values.

We also counted the results of various age predictions. YOLOv5

inference results after KBS, with bone age calculated for each age

order, are shown in Table 7. PP-PicoDet inference results after KBS,

with bone age calculated for each age order, are shown in Table 8.

NanoDet inference results after KBS, with bone age calculated for

each age order, are shown in Table 9. Table 10 displays the statistical
FIGURE 6

YOLOv5 、PP-PicoDet、NanoDet training process.
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outcomes for both males and females. The best results were

obtained using the key bone developmental grades of the

YOLOv5 inference results after KBS and using Scheme 3 to get

the bone age calculation model, with a MAE of 0.39 years, a RMSE

of 0.50 years, and a RMSPE of 0.10 for males and a MAE of 0.32

years, a RMSE of 0.42 years, and a RMSPE of 0.11 for females.

BAA system speed test results on CPU 5600x showed that when

the confidence threshold was set to 0.0, the rate of the YOLOv5

using KBS was 80 ms, the rate of the PP-PicoDet using KBS was 63

ms, and the rate of the NanoDet using KBS was 69 ms. When the

confidence threshold was set to 0.1, the rate of the YOLOv5 using

KBS was 33 ms, the rate of the PP-PicoDet using KBS was 57 ms,

and the rate of the NanoDet using KBS was 61 ms. When the

confidence threshold was set to 0.2, the rate of the YOLOv5 using

KBS was 33 ms, the rate of the PP-PicoDet using KBS was 57 ms,

and the rate of the NanoDet using KBS was 61 ms. When the

confidence threshold was set to 0.3, the rate of the YOLOv5 using

KBS was 33 ms, the rate of the PP-PicoDet using KBS was 57 ms,

and the rate of the NanoDet using KBS was 60 ms. When the

confidence threshold was set to 0.4, the rate of the YOLOv5 using

KBS was 33 ms, the rate of the PP-PicoDet using KBS was 57 ms,

and the rate of the NanoDet using KBS was 60 ms. When the

confidence threshold was set to 0.5, the rate of the YOLOv5 using

KBS was 32 ms, the rate of the PP-PicoDet using KBS was 57 ms,

and the rate of the NanoDet using KBS was 59 ms. See Table 2

for details.

All three models ran faster when the confidence threshold was

raised from 0.0 to 0.1, with YOLOv5 utilizing KBS seeing the
Frontiers in Endocrinology 08
highest speed boost. And the speed did not significantly increase

as the confidence threshold was raised more. When the confidence

threshold rose to 0.4, all three models began to reveal missing key

bones, so 0.1 was chosen as the ideal confidence threshold for KBS.

The YOLOv5 model with KBS was the fastest when comparing the

three models with confidence thresholds greater than 0.1. This is

because the outputs of the YOLOv5 result are all possible positions,

the confidence level corresponding to the position, and the category

vector corresponding to the position, which means that using

confidence thresholds can first screen out the results with lower

box confidence, greatly enhance speed. In contrast, the outputs of

PP-PicoDet and NanoDet are all possible positions, and the

category vector corresponds to the position, which means that

using confidence thresholds should first process the classification

vectors to obtain the result categories and confidence levels. The

second part of the system chose to use Lightgbm to calculate bone

age with an average elapsed time of 2 ms. Finally, the first part of the

system was selected as YOLOv5, the confidence threshold of KBS

was selected as 0.1 and pre-processing was performed with the help

of the Albumentations (36). The average processing time in the

environment of GPU RTX3060 is 26 ms.
4 Discussion

In this paper, we propose a BAA system based on the RUS-

CHN method, which is based on real-time target detection and

obtaining the developmental grades and locations of the key bone of
TABLE 2 Inference time and number of errors at different confidence levels.

Confidence
threshold

YOLOv5 PP-PicoDet NanoDet

Inference time (ms) lack Inference time (ms) lack Inference time (ms) lack

0.0 80 0 63 0 69 0

0.1 33 0 57 0 61 0

0.2 33 0 57 0 61 0

0.3 33 15 57 1 60 0

0.4 33 106 57 2 60 13

0.5 32 296 57 56 59 367
frontier
TABLE 3 NMS experiment.

Confidence
threshold

YOLOv5 PP-PicoDet NanoDet

Inference time (ms) lack repeat Inference time (ms) lack repeat Inference time (ms) lack repeat

0.0 3690 0 450 293 0 450 789 0 450

0.1 47 0 450 65 1 450 93 0 450

0.2 45 0 450 65 1 359 80 0 450

0.3 44 15 450 65 1 188 78 0 450

0.4 43 106 450 66 2 104 76 13 450

0.5 42 296 450 65 56 57 74 367 450
sin.org
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RUS-CHN in a single step with the assistance of KBS, then using

Lightgbm to obtain the bone age, capable of completing real-time

outputs. While most of the current work, is based on the

morphological features of wrist bone or RUS bone to extract

reference or region (finger bone, etc.) as local information input,

extracting ROI is still complex and time-consuming, and selective

extraction of regions is not objective enough leading to some key

information loss (37).

The system is developed from 3628 training sets, 450 validation

sets, and 450 test sets of clinical hand radiographs, incorporating

data with an age distribution covering infancy to late adolescence,

so that our system has high accuracy and stability in BAA for young

children and older adolescents. To use it without hand shape

segmentation, we also forgo hand shape extraction and instead

CLAHE. The achieved real-time outputs with an inference time of

26ms + 2ms on the GPU, which is significantly faster than the

average time of 525.6s ± 55.5s (15) required by endocrinologists or

radiologists to assess bone age using the RUS-CHN method. The

system has a MAE of 0.35 years and a RMSE of 0.46 years, a RMSPE

of 0.11. The system outputs not only the predicted bone age but also

the location and developmental grade of all critical bones to support

the results as shown in Figure 5B, where the IOU of all key bone

locations is not less than 0.9.

Also, our system has several restrictions. All photographs were

gathered from our hospital, and more images will be uploaded in

the future to decrease bias from other medical centers. Additionally,

attempt more clinical a priori procedures, such as the TW and CHN

methods. Second, specific disorders, such as renal osteodystrophy

and chondrodysplasia, cannot be detected by our approach in

youngsters (38).
5 Conclusions

We have developed an automated end-to-end BAA system that

is based on real-time target detection, obtaining key bone

developmental grade and location in a single pass with the aid of

KBS, and using Lightgbm to obtain bone age, capable of outputting

results in real-time with good accuracy and stability, and able to be

used without hand-shaped segmentation. The BAA system

automatically implements the entire process of the RUS-CHN

method and outputs information on the location and

developmental grade of the 13 key bones of the RUS-CHN
FIGURE 7

YOLOv5、PP-PicoDet 、NanoDet key bones Confidence
distribution.
TABLE 4 Mean Intersection over Union (IOU) results.

YOLOv5 PP-PicoDet NanoDet

Radius 0.93 0.93 0.93

Ulna 0.92 0.92 0.92

First Metacarpal 0.92 0.92 0.92

Third Metacarpal 0.92 0.93 0.93

Fifth Metacarpal 0.92 0.92 0.92

First Proximal Phalange 0.93 0.93 0.93

Third Proximal Phalange 0.90 0.92 0.91

Fifth Proximal Phalange 0.91 0.92 0.92

(Continued)
TABLE 4 Continued

YOLOv5 PP-PicoDet NanoDet

Third Middle Phalange 0.93 0.94 0.94

Fifth Middle Phalange 0.92 0.92 0.93

First Distal Phalange 0.92 0.93 0.93

Third Distal Phalange 0.92 0.93 0.93

Fifth Distal Phalange 0.90 0.91 0.91
fr
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FIGURE 8

Confusion matrix for YOLOv5 inference results after KBS.
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FIGURE 9

Confusion matrix for PP-PicoDet inference results after KBS.
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FIGURE 10

Confusion matrix for NanoDet inference results after KBS.
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TABLE 5 Precision (weighted average) and Accuracy of key bones.

YOLOv5 PP-PicoDet NanoDet

accuracy Precision
(weighted average)

accuracy Precision
(weighted average)

accuracy Precision
(weighted average)

Radius 0.65 0.67 0.66 0.68 0.67 0.68

Ulna 0.76 0.79 0.76 0.72 0.74 0.73

First Metacarpal 0.70 0.75 0.70 0.73 0.68 0.67

Third Metacarpal 0.71 0.75 0.72 0.71 0.73 0.73

Fifth Metacarpal 0.70 0.71 0.71 0.71 0.70 0.69

First Proximal Phalange 0.65 0.68 0.67 0.68 0.65 0.66

Third Proximal Phalange 0.69 0.68 0.68 0.69 0.68 0.68

Fifth Proximal Phalange 0.65 0.68 0.66 0.65 0.66 0.65

Third Middle Phalange 0.66 0.69 0.66 0.66 0.65 0.66

Fifth Middle Phalange 0.65 0.70 0.66 0.72 0.64 0.65

First Distal Phalange 0.64 0.68 0.63 0.64 0.62 0.62

Third Distal Phalange 0.66 0.69 0.66 0.67 0.65 0.67

Fifth Distal Phalange 0.62 0.60 0.61 0.60 0.62 0.61
F
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TABLE 6 Bone age Calculation results.

YOLOv5 PP-PicoDet

Scheme 1

MAE 0.37 0.39 0.39

RMSE 0.49 0.52 0.50

RMSPE 0.13 0.13 0.13

Scheme 2

MAE 0.37 0.39 0.39

RMSE 0.49 0.52 0.51

RMSPE 0.12 0.13 0.13

Scheme 3

MAE 0.35 0.39 0.38

RMSE 0.46 0.50 0.49

RMSPE 0.11 0.12 0.12
frontiers
‘Scheme 1’ represents the BAA system bone age calculation scheme 1. ‘Scheme 2’ represents the BAA system bone age calculation scheme 2. ‘Scheme 3’ represents the BAA system bone age
calculation scheme 3.MAE and RMSE units are years.
TABLE 7 YOLOv5 inference results after KBS to calculate bone age by age group.

AGE
Scheme 3 Scheme 2 Scheme 1

MAE RMSE RMSPE MAE RMSE RMSPE MAE RMSE RMSPE

0-1 0.27 0.30 0.06 0.26 0.29 0.07 0.25 0.29 0.05

1-2 0.27 0.34 0.33 0.27 0.35 0.42 0.26 0.35 0.44

2-3 0.36 0.52 0.16 0.39 0.55 0.18 0.37 0.54 0.17

3-4 0.36 0.45 0.12 0.33 0.48 0.12 0.34 0.51 0.13

4-5 0.45 0.56 0.14 0.46 0.59 0.13 0.47 0.62 0.13

5-6 0.39 0.45 0.08 0.38 0.49 0.09 0.37 0.50 0.09

(Continued)
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method along with the bone age to assist the physician in making

judgments, making full use of clinical a priori knowledge. This

system can free clinicians from the tedious clinical observation

process and ultimately improve children’s diagnosis and treatment

of endocrine diseases.
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TABLE 8 Three Models inference results after KBS to calculate bone age by gender statistics.

Scheme3 Scheme2 Scheme1

Male Female Male Female Male Female

YOLOv5

MAE 0.39 0.32 0.40 0.34 0.40 0.34

RMSE 0.50 0.42 0.53 0.45 0.53 0.46

RMSPE 0.10 0.11 0.10 0.14 0.10 0.15

PP-PicoDet

MAE 0.40 0.37 0.41 0.38 0.40 0.38

RMSE 0.53 0.48 0.55 0.50 0.54 0.50

RMSPE 0.09 0.14 0.09 0.15 0.09 0.16

NanoDet

MAE 0.40 0.36 0.41 0.39 0.40 0.39

RMSE 0.51 0.47 0.53 0.49 0.52 0.49

RMSPE 0.10 0.13 0.11 0.14 0.11 0.14
‘Scheme 1’ represents the BAA system bone age calculation scheme 1. ‘Scheme 2’ represents the BAA system bone age calculation scheme 2. ‘Scheme 3’ represents the BAA system bone age
calculation scheme 3.MAE and RMSE units are years.
TABLE 7 Continued

AGE
Scheme 3 Scheme 2 Scheme 1

MAE RMSE RMSPE MAE RMSE RMSPE MAE RMSE RMSPE

6-7 0.40 0.50 0.07 0.40 0.53 0.07 0.40 0.53 0.07

7-8 0.34 0.42 0.05 0.35 0.46 0.06 0.36 0.47 0.06

8-9 0.32 0.39 0.05 0.33 0.41 0.05 0.34 0.42 0.05

9-10 0.26 0.37 0.04 0.32 0.42 0.04 0.32 0.41 0.04

10-11 0.33 0.44 0.04 0.32 0.44 0.04 0.31 0.44 0.04

11-12 0.28 0.36 0.03 0.29 0.35 0.03 0.29 0.35 0.03

12-13 0.28 0.35 0.03 0.27 0.32 0.03 0.28 0.33 0.03

13-14 0.47 0.62 0.04 0.59 0.72 0.05 0.59 0.72 0.05

14-15 0.64 0.75 0.05 0.77 0.93 0.07 0.72 0.90 0.06

15-16 0.15 0.19 0.01 0.34 0.36 0.02 0.25 0.29 0.02

16-17 0.44 0.47 0.03 0.26 0.48 0.03 0.20 0.45 0.03

17-18 0.34 0.41 0.03 0.27 0.30 0.02 0.28 0.32 0.02
fron
‘Scheme 1’ represents the BAA system bone age calculation scheme 1. ‘Scheme 2’ represents the BAA system bone age calculation scheme 2. ‘Scheme 3’ represents the BAA system bone age
calculation scheme 3.MAE and RMSE units are years.
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TABLE 9 NanoDet inference results after KBS to calculate bone age by age group.

AGE
Scheme 3 Scheme 2 Scheme 1

MAE RMSE RMSPE MAE RMSE RMSPE MAE RMSE RMSPE

0-1 0.17 0.23 0.01 0.05 0.05 0.03 0.05 0.07 0.05

1-2 0.23 0.32 0.35 0.31 0.37 0.42 0.30 0.35 0.42

2-3 0.36 0.48 0.18 0.39 0.49 0.17 0.39 0.49 0.17

3-4 0.40 0.51 0.14 0.47 0.60 0.16 0.48 0.60 0.16

4-5 0.50 0.62 0.15 0.53 0.64 0.15 0.53 0.64 0.15

5-6 0.36 0.50 0.08 0.39 0.52 0.09 0.36 0.50 0.08

6-7 0.36 0.48 0.07 0.36 0.46 0.06 0.35 0.46 0.06

7-8 0.36 0.47 0.06 0.37 0.47 0.06 0.37 0.47 0.06

8-9 0.39 0.47 0.05 0.37 0.45 0.05 0.38 0.46 0.05

9-10 0.30 0.38 0.04 0.34 0.44 0.04 0.35 0.44 0.05

10-11 0.36 0.44 0.04 0.36 0.47 0.04 0.36 0.46 0.04

11-12 0.38 0.45 0.04 0.37 0.46 0.04 0.37 0.46 0.04

12-13 0.25 0.30 0.02 0.29 0.33 0.03 0.29 0.34 0.03

13-14 0.55 0.67 0.05 0.56 0.70 0.05 0.55 0.69 0.05

14-15 0.65 0.86 0.06 0.68 0.88 0.06 0.61 0.82 0.06

15-16 0.07 0.09 0.01 0.16 0.18 0.01 0.10 0.10 0.01

16-17 0.44 0.46 0.03 0.27 0.48 0.03 0.30 0.50 0.03

17-18 0.41 0.50 0.04 0.35 0.41 0.03 0.35 0.42 0.03
fron
‘Scheme 1’ represents the BAA system bone age calculation scheme 1. ‘Scheme 2’ represents the BAA system bone age calculation scheme 2. ‘Scheme 3’ represents the BAA system bone age
calculation scheme 3.MAE and RMSE units are years.
TABLE 10 Three Models inference results after KBS to calculate bone age by gender statistics.

Scheme3 Scheme2 Scheme1

Male Female Male Female Male Female

YOLOv5

MAE 0.39 0.32 0.40 0.34 0.40 0.34

RMSE 0.50 0.42 0.53 0.45 0.53 0.46

RMSPE 0.10 0.11 0.10 0.14 0.10 0.15

PP-PicoDet

MAE 0.40 0.37 0.41 0.38 0.40 0.38

RMSE 0.53 0.48 0.55 0.50 0.54 0.50

RMSPE 0.09 0.14 0.09 0.15 0.09 0.16

NanoDet

MAE 0.40 0.36 0.41 0.39 0.40 0.39

RMSE 0.51 0.47 0.53 0.49 0.52 0.49

RMSPE 0.10 0.13 0.11 0.14 0.11 0.14
‘Scheme 1’ represents the BAA system bone age calculation scheme 1. ‘Scheme 2’ represents the BAA system bone age calculation scheme 2. ‘Scheme 3’ represents the BAA system bone age
calculation scheme 3.MAE and RMSE units are years.
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