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Male infertility is a widely debated issue that affects males globally. There are

several mechanisms involved. Oxidative stress is accepted to be the main

contributing factor, with sperm quality and quantity affected by the

overproduction of free radicals. Excess reactive oxygen species (ROS) cannot be

controlled by the antioxidant system and, thus, potentially impact male fertility and

hamper sperm quality parameters. Mitochondria are the driving force of sperm

motility; irregularities in their function may lead to apoptosis, alterations to

signaling pathway function, and, ultimately, compromised fertility. Moreover, it

has been observed that the prevalence of inflammation may arrest sperm function

and the production of cytokines triggered by the overproduction of ROS. Further,

oxidative stress interacts with seminal plasma proteomes that influence male

fertility. Enhanced ROS production disturbs the cellular constituents, particularly

DNA, and sperms are unable to impregnate the ovum. Here, we review the latest

information to better understand the relationship between oxidative stress and

male infertility, the role of mitochondria, the cellular response, inflammation and

fertility, and the interaction of seminal plasma proteomes with oxidative stress, as

well as highlight the influence of oxidative stress on hormones; collectively, all of

these factors are assumed to be important for the regulation of male infertility. This

article may help improve our understanding of male infertility and the strategies to

prevent it.
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Introduction

Male infertility is a fertility-related disorder in which a male

cannot impregnate a female to achieve a successful pregnancy (1). It is

a worldwide issue and contributes to 50% of infertility cases (2) and

may occur for multifaceted reasons, such as disruption to the

hypothalamus or pituitary function or obstruction or inflammation

in the testicles, which subsequently lead to infertility. Moreover, some

other conditions, such as hypogonadism, erectile dysfunction,

epididymitis, congenital bilateral absence of the vas deferens, and

Sertoli cell syndrome, are known to be contributing factors for male

infertility (3). Most male infertility factors are idiopathic (2). All of

these factors are believed to be directly or indirectly involved in the

production of oxidative stress. Reactive oxygen species (ROS) are the

active oxidative metabolites that are responsible for producing

oxidative stress and are also a prominent cause of male infertility

(4, 5). Overwhelming oxidative stress may influence the reproductive

system, as well as aspects of the semen, such as sperm concentration,

motility, and morphology, thus causing a deterioration in semen

quality, resulting in a poor conception rate (6). It has been noted

that oxidative stress is involved in diseases that affect male

fertility status (7).

The sperm plasma membrane contains polyunsaturated fatty

acids, which make it more delicate and vulnerable to oxidative

damage, and eventually spermatozoa lose the capacity to fertilize.

Moreover, fragmented DNA may impair the paternal genetic ability

to develop embryos (5). ROS consist of one or more unpaired

electrons, which are capable of damaging lipids, carbohydrates,

DNA, and amino acids (8). Interestingly, ROS exist in three forms:

primary, secondary, and tertiary. Not all ROS are free radicals (5, 9);

however, the physiological concentration of ROS plays a pivotal role

in sperm capacitation, hyperactivation, and other acrosomal changes

(10). Evidence has indicated that 30–80% of male-related fertility

issues are a result of ROS-triggered sperm damage (11–13).

Advanced proteomic tools allow the characterization of semen

profiles by applying mechanistic approaches and are helpful for

detecting proteins and their underlying molecular mechanisms,

which can predict the significance of male fertility-related

hindrances (13). Increasing knowledge in this area permits easy

understanding of the seminal plasma and sperm proteins and

allows the identification of differences between fertile and infertile

men (14). Previous literature revealed the relationship between

oxidative stress-potentiated male infertility and the sperm and

seminal plasma protein profile; alterations to the expression and

function of proteins may be evident at sperm maturation. Further

studies are needed to identify the pathologies linked to male infertility

on molecular and proteomic levels. The impact of oxidative stress has

well been documented in male infertility, although limited literature

exists about the relationship between oxidative stress and the

proteomic profile of human ejaculation. The current literature

regarding human infertility reveals the association between

oxidative stress and the proteomic profile (15–17). Additionally,

further studies based on proteomic profiles have documented poor

semen quality, which is influenced by oxidative stress (18, 19).

Male infertility cases can be diagnosed through the evaluation of

basic semen characteristics, such as liquefaction time, sperm count,

motility, morphological features, and sperm viability. However, the
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WHO has set some guidelines or reference values for sperm

abnormality, alteration of sperm concentration, motility, and

morphology by which the fertility status of humans, as well as

animals, can be assessed (20, 21). Numerous advanced tools can be

applied to figure out the possible causes of infertility, based on the

detection of free radicals, antioxidant capacity analysis, sperm DNA

oxidation, DNA compaction, apoptosis, the presence of anti-sperm

antibodies, and genetic testing (22). Elevated concentrations of ROS

have been reported in infertile human patients with DNA damage and

unstable chromatin packing (5). Sperm DNA damage is a biomarker

for the loss of cellular integrity, which is associated with a decline in

semen quality, and is thus regarded as a cause of infertility in many

humans (23, 24). Assisted reproductive biotechnology using

spermatozoa with fragmented DNA is more susceptible to lower

fertilization and pregnancy rates, abnormal embryonic development,

and an increased risk of miscarriage, congenital defects, and other

anomalies that occur during childhood (25, 26). The amount of DNA

fragmentation is a viable indicator of assisted reproductive outcomes

in idiopathic infertile couples. However, increased sperm DNA

fragmentation has been associated with lower birth weight after IVF

treatment (24). Our main purpose when designing this review was to

elaborate on the role of mitochondria, the cellular response in

fertility-related problems, and the interaction of seminal plasma

proteomes with oxidative stress and highlight the influence of

oxidative stress on hormones.
ROS and mitochondria function

A higher level of ROS induces oxidative stress caused by oxidants

in germ cells. Mitochondria are key organelles; at low levels, ROS

maintain redox balance. Excessive levels of ROS potentiate lipid

peroxidation events, which inhibit small molecules of aldehydes,

such as acrolein, malondialdehyde, and 4-hydroxynonenal (4-

HNE). These molecules bind with protein sites at susceptible

histidine, lysine, and cysteine residues on targeted proteins (27).

The activity of these proteins impairs electron flow towards the

mitochondrial electron transport chain and generates free radicals

that are responsible for the production of more aldehyde products

(27). Any factor that influences germ cells through the production of

oxidants by way of oxidative phosphorylation can cause oxidant

cascades. Oxidative stress occurs for several reasons, such as a lack

of antioxidants, ionization radiation, leukocytes, obesity, smoking,

reproductive tract infections, and pesticides. A positive relationship

between spermatozoa consisting of polyunsaturated fatty acids and

free radicals has been well established.

Mitochondrial ROS production is an essential process for

inducing intrinsic apoptosis. A huge number of spermatozoa

eventually undergo apoptosis, while the limited number that remain

are pivotal for the successful continuation of the fertilization process.

Lipopolysaccharide (LPS), a bacterial endotoxin, is known to induce

apoptosis (28) in a large number of spermatozoa. Apoptosis is an

essential process for the continuation of life as macrophages and

neutrophils rarely exert phagocytosis to eliminate dead spermatozoa.

It has been noted that the apoptotic process can be completed

irrespective of the activation of inflammation, cytokines, and ROS

production. However, leukocyte infiltration causes a damaging effect
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due to the occurrence of an inflammatory response that repeats after a

vasectomy or during a sexual act. These sperms induce a response,

which may be reversed in the presence of phosphatidylserine (an

apoptosis marker), that subjects gametes to phagocytosis. The ROS

and RNS mechanism that is crucial for the basic development

correction and functional activity of spermatozoa is displayed

in Figure 1.

Realistically, spermatozoa undergo apoptosis due to the activation

of an enzyme that cells utilize for their survival, known as

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) (29). As the

activation of the PI3K signaling pathway takes place, it

phosphorylates downstream kinases, such as AKT (Protein kinase B),

thus stimulation of these pathways makes gametes active and viable.

AKT targets downstream proteins, such as BCL2-related death

promoter (BAD), which, once dephosphorylated, form pro-apoptotic

pores in the mitochondrial membrane and foster pore formation with

BAK/BAX (30). Once the basic mechanism of sperm apoptotic origin is

understood, it is necessary to understand the underlying mechanism

that promotes PI3K activity. Of note, spermatozoa contain several pro-

survival hormonal receptors, such as prolactin (31) and insulin, once

they are stimulated by their respective ligands, which makes their

continuous survival sustainable. By contrast, if the PI3K inhibitor

wortmanin is used then gametes promptly promote mitochondrial

ROS generation, rendering cells more susceptible to apoptosis (29).
ROS and the capacitation process

ROS are stimulated by several mechanisms that are based on the

activation of adenylyl cyclase activity (32), which in turn stimulates

protein kinase A (33, 34). H202 plays the key role during capacitation

of mediating the processes of phosphorylation and capacitation, and

this has been well reported in suspensions of hamster, bovine, and
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human sperm (32). Likewise, exposure of the spermatozoa to

synthetic oxidized conditions induces the extracellular generation of

ROS through glucose oxidase or xanthine oxidase systems and the

initiation of the capacitation process. Tyrosine phosphorylation can

be attenuated by the induction of catalase in several species (32).

However, ROS-generated leucocytes contribute to human sperm

capacitation and may reverse in the presence of seminal plasma

antioxidants (35). The profound function of H202 is illustrated by

catalase, which restores the spontaneous induction of tyrosine

phosphorylation in capacitating mammalian spermatozoa, and

hence, reduces functions, such as hyperactivation, acrosomal

exocytosis, and sperm-egg fusion; all of these steps are achieved

following capacitation (36). A variety of ROS sources have been

used for the activation of capacitation processes, such as superoxide

anion, nitric oxide, and peroxynitrite (37). It has been noted that a

huge interconversion of ROS occurs during sperm capacitation and

any ROS can take part in it. If the potential of oxidative metabolites

displays a crucial role in capacitation then the regulators will be H2O2

and peroxynitriate. Peroxynitriate is responsible for producing a

variety of capacitating spermatozoa features, e.g., suppression of

tyrosine phosphate activity (38).

The positive impact of ROS generation and capacitation has been

reported in the female reproductive tract. Spermatozoa can only

produce excessive ROS once they are released by the oviductal

epithelium, immediately before the site of fertilization. In this

scenario, every spermatozoon is briefly exposed to ROS and

prepares itself for fertilization. In case fertilization by spermatozoa

does not occur, spontaneous free radical production leads to

overcapacitation and ultimately induces oxidative stress. Eventually,

this leads to the production of lipid aldehydes, which initiate ROS-

mediated peroxidation and subsequently trigger apoptosis (39, 40).

Sperm capacitation towards apoptosis may assist in the long-term

storage of spermatozoa to sustain sperm capacitation for a longer
FIGURE 1

Molecular insight into the ROS and RNS mechanism in the development and functional integrity of spermatozoa.
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period. The reality is that several domestic species of spermatozoa

undergo capacitation-like changes that lead to oxidative and stress-

related cryopreservation, and this may be a potential factor facilitating

the longevity of these gametes prior to insemination (41). The best

way to ameliorate oxidative stress-induced cryopreserved

spermatozoa is through the addition of antioxidants, such as

lycopene, cysteamine, melatonin, vitamin E, and resveratrol (42),

which are widely used due to their significant impact. Molecular

insights into the spermatozoa capacitation process and apoptosis are

depicted in Figure 2.
Oxidative insult and male hormones
in reproduction

The occurrence of oxidative stress depends on either the

overproduction of ROS or depletion of antioxidants, which may

result in lipid peroxidation in Leydig cells and germ cells and is

detrimental to lipoproteins, protein aggregation and fragmentation,

and steroidogenic enzyme inhibition (43). The prevalence of OS in

the testicles results in declining testosterone production due to injury

of the Leydig cells or other endocrine structures, such as the anterior

pituitary (44, 45). It is notable that the physiological production of

hormones also produces ROS that are mainly derived from

mitochondrial respiration and catalytic reactions of the

steroidogenic cytochrome P450 enzymes (46). In this way, the

production of ROS suppresses the substantial production of steroids

and is deleterious to the mitochondrial membranes of the

spermatozoa (47). OS is associated with a higher number of

immature spermatozoa through an indirect effect on male hormone

production, which is associated with spermatogenesis (48, 49).
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It has been noted that hormones, such as follicle stimulating

hormone (FSH), luteinizing hormone (LH), testosterone, estrogen

(E2) and prolactin (PRL), may regulate seminal total antioxidant

capacity (TAC) (50, 51). An association between PRL or free

thyroxine T4 (fT4) and a negative correlation of gonadotropins or

gonadal steroids with TAC have also been observed (52). It is believed

that some hormones, such as testosterone and melatonin (MLT), may

increase antioxidant capacity to defend sperm and other testicular

cells from the detrimental effects of ROS (53, 54). Other hormonal

metabolites, such as dehydroepiandrosterone (DHEA), increase

cellular antioxidants through an exact mechanism that remains

elusive (55). In infertile men, direct and indirect connections

between testosterone and antioxidant levels and between

testosterone and zinc have been documented (51, 56). Coenzyme

Q10 (CoQ10) may reduce the concentrations of FSH and LH (57).

The negative association has been exhibited in serum concentrations

of testosterone, E2, fT4, and sperm DNA fragmentation (58, 59). The

suppression of antioxidants might influence triiodothyronine (T3),

thyroxine (T4), and neurotransmitter noradrenaline and elevate

sperm DNA fragmentation (60). The administration of highly

purified FSH to idiopathic infertile men reduces ROS production

(61) and sperm DNA damage (62). However, it has been found that

testosterone may trigger DNA fragmentation and germ cell caspase

activities in Sertoli cells (63), and a longer antioxidant effect may

modulate FSH, testosterone, and inhibin B concentration (64).

As discussed above, excessive ROS influences the hypothalamic-

pituitary adrenal axis (HPA) and in turn releases corticosterone and

cortisol in animals and humans, which induces stress. The release of

stress hormones impairs crosstalk between HPG and HPA axes,

disrupting LH production by the anterior pituitary gland. Reduced

levels of LH are unable to activate Leydig cells, which produce

testosterone. Reduced FSH weakens the production of androgen-
FIGURE 2

The spermatozoa capacitation process and apoptosis. The schematic diagram illustrates the accelerating production of ROS (mainly ONOO), resulting in the
generation of oxysterol, which helps to eliminate cholesterol from the plasma membrane, leading to the promotion of membrane fluidity and other
alterations, such as tyrosine phosphatase suppression and enhanced cAMP activity. This process eventually leads to capacitated spermatozoa. The absence of
fertilization results in the generation of oxysterol and lipid aldehydes, which trigger apoptosis, resulting in increased mitochondrial superoxide production,
lipid peroxidation, cytochrome c release, caspase activation, phosphatidylserine exposure, oxidative DNA fragmentation, and ultimately death.
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binding protein (ABP) by the Sertoli cells, and hence, collectively

reduces the level of circulatory testosterone due to abundant OS. ROS

influences the HPT axis to diminish T3 and T4 secretion. Reduced T3

levels of steroidogenic acute regulatory protein (StAR) mRNA,

protein in Leydig cells, and testosterone production occur (65). The

overproduction of OS reduces insulin production by the pancreas,

which exerts a detrimental effect on T3 release by the thyroid gland,

and therefore, testosterone biosynthesis occurs. During OS

production, testicular E2 and inhibin are largely secreted, which

suppress testosterone production. After OS production, aromatase

activity is enhanced, which leads to higher E2 production. Further,

exposure to ROS promotes PRL release by the anterior pituitary

gland, which results in a reduction in the release of GnRH. In

summary, it has been observed that OS disrupt hormonal

communication in different ways. Hormones play a key role in the

functionality of the male reproductive system. ROS affect testosterone

production, which in turn influences spermatogenesis. Moreover, OS

also affects male reproductive behavior by interfering with

testosterone production, eventually causing infertility.
Cellular response against inflammation
and infertility

Inflammation is a natural defense against foreign invaders that

causes cellular injury and subsequently results in the restoration of

tissue function (66, 67). It has been noted that an inflammatory

response is established due to the excessive production of

prostaglandin E2, cytokines, and nitric oxide (NO) by macrophages

and other inflammatory cells (68). Some evidence suggests that

inflammation may affect steroidogenesis and spermatogenesis. A

sudden decline of blood testosterone and luteinizing hormones

have also been noted with inflammation (69). A study was

conducted in which lipopolysaccharide (LPS) was used to stimulate

an inflammatory response; a considerable reduction in testosterone

was observed. However, a lower response of steroidogenesis was

reported and known to be called steroid acute regulatory StAR

proteins (70). Evidence has revealed that inflammation increases

spermatogenic arrest and inhibits the sperm maturation process

(71). The epididymis is another target of inflammation due to

testicular attacks. Importantly, inflammation is triggered by

leukocytes that infiltrate semen and secrete anti-sperm antibodies.

The inflammation reaction promotes rigidity of the sperm flagella

membrane by reducing the lipid content of the membrane. Thus, the

inhibition of sperm motility may result in sperm agglutination and

asthenospermia. Additionally, it causes defects in acrosome reaction,

which prevent sperm penetrating the oolemma. Moreover, it

suppresses DNA integrity due to the increased number of apoptotic

sperm cells (5).

Previous literature indicate a relationship between oxidative stress

and inflammation. The inflammatory response has been documented

in semen due to elevated levels of ROS in infertile men (72).

Moreover, invading bacteria generate ROS by themselves, whereas

leukocytes are considered to be the essential player of seminal ROS

(8). Leukocytes increase ROS production in two ways, one direct and

one indirect; the indirect source involves the release of inflammatory
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cytokines, which increase the level of ROS. A direct increase in ROS is

achieved through the activation of phagocytosis. These oxidants harm

the spermatozoon membrane, resulting in an oxidative burst in which

the oxidant/antioxidant ratio is severely disrupted. This scenario even

occurs when pathogens are successfully executed (69).

Cytokines are polypeptide proteins that are attributed to immune

response, cellular growth and differentiation, inflammation, etc. In the

male reproductive tract, cytokines are secreted by the testes and are

responsible for germ cell proliferation and the differentiation of

mesenchymal cells and take part in steroid anabolism (8, 73). A

growing number of studies have revealed that ROS and cytokines

interplay with each other in a complex manner. ROS increase

cytokine production, while a few cytokines regulate the pro-oxidant

and antioxidant system and ROS production (5, 74, 75). Many studies

have described the relationship between cytokines and ROS. For

example, increased concentrations of IL-6 and IL-8 trigger the

peroxidation process, influencing sperm functionality and

eventually causing infertility during male reproductive tract

inflammation (5). The limited concentration of cytokines plays an

essential role in the male gonad’s function and seems to be present in

seminal plasma (76). A vast network of cytokines, chemokines, and

growth factors, along with their soluble receptors and antagonists and

other factors, were investigated in human semen (76, 77). Human

semen also secretes tumor necrosis factor a (TNF-a), interleukins,
IFN-g, and some of their soluble receptors, which are present in

immune cells, mesenchymal cells, Sertoli cells, and spermatogonia.

The physiological concentration of cytokines (IL-6, IL-8, and TNF-a)
has been reported in human semen (76, 77). Cytokines are not

directly involved in apoptosis, but TNF-a, TGF-b2, and TGF-b3, in
addition to testosterone, are capable of regulating spermatogenesis

(78, 79). However, TGF-b plays various roles in cellular functions,

including the secretary function of Leydig cells, Sertoli cells, the

biological development of testes, and spermatogenesis intensity

(80). As discussed earlier, sperm consists of an array of cytokines

and immune factors, although their effect on semen quality and sperm

function parameters needs to be debated (81, 82).
Oxidative insults, cellular defense, and
male reproduction

It has been reported that increased oxidative stress can be

implicated in various pathogenic conditions, such as inflammation,

ischemia, and heat stress, which suggests it plays an important role in

male infertility (5, 83). Spermatozoa are easily targeted by oxidation.

Spermatogenic cells eliminate oxidative DNA by apoptosis through

p53-dependent and -independent mechanisms (84), showing that

higher activity may lead to male infertility (85). However, redox-

sensitive proteins are the most susceptible to ROS and are regarded as

ROS potent targets under oxidative stress.

The cellular antioxidant defense neutralizes ROS (superoxide

anion radicals), such as superoxide dismutase (SOD) and

glutathione peroxidase (GPX). Further, a detailed review of an

antioxidant enzymatic system in male reproduction has been

discussed (86, 87); only the ameliorative effects of ROS in male

reproductive anomalies have been described in this Review. SOD is
frontiersin.org

https://doi.org/10.3389/fendo.2023.1070692
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hussain et al. 10.3389/fendo.2023.1070692
an enzyme that converts superoxide radicals into hydrogen peroxide,

which halts the deleterious effects of a radical chain reaction at the

initiation stage (88). Copper-zinc sodium dismutase encoded by

SOD1 is mainly present in the cytoplasm, and partly in

mitochondria. Although SOD1-deficient females are infertile, SOD1

is not associated with anomalies that hamper male fertility (89).

Moreover, SOD1 enzyme deficiency may induce testicular atrophy

and confer proneness to heat stress (90). Sperm numbers following

higher incidences of lipid peroxidation products were reduced in aged

SOD1-deficient mice compared with wild-type mice (91), while the

fertilizing ability linkage was not found in mice. Manganese sodium

dismutase, a mitochondrial isoform, works under the influence of

oxidative stress and inflammation. The deficiency of this enzyme is

lethal once the fetus/infant is born (92). Moreover, transgenic mice

may exhibit a higher expression of SOD2 and are infertile; the

underlying mechanism of this condition is unknown (93). SOD3 is

an extracellular SOD that is present at high levels in epididymis fluid

and at low levels in spermatogenic cells (94). SOD3 knockout mice do

not show any prominent phenotypic alteration in male reproduction,

although the presence of SOD3 in the penis has been associated with

increased erectile function in aged mice (95). The superoxide radical

rapidly reacts with nitric oxide to form peroxinitrite and higher levels

of SOD3 in blood plasma enhance the half-life of nitric oxide and

ultimately promote erectile functions. Conversely, excessive SOD

activity has been linked with human sperm movement anomalies

(96) that may eliminate superoxide, suggesting that SOD plays an

important role in sperm movement. As a result, both the source and

the underlying mechanism determine whether superoxide has a

beneficial or detrimental effect on reproductive function.

It has long been known that a variety of sources of hydrogen

peroxide production via enzymatic and non-enzymatic reactions exist

and their successful elimination is carried out by glutathione

peroxidase (GPX), catalase, and peroxiredoxin (PRDX). GPX

demonstrates this by catalyzing the reduction of different

peroxidases through the transfer of electrons from glutathione (97),

while the functions of each member and gene family are different and

complex (98). Peroxiredoxins (PRDXs) catalyze the reductive

removal of hydrogen peroxide with the help of thioredoxin (Trx),

not glutathione, as it donates an electron (99) and also has

multifaceted functions in redox reactions consisting of ROS signaling.
Oxidative stress in seminal plasma
and sperm

Free radicals or ROS are oxygen-based centered radicals with one

or more unpaired electrons (100). Examples of free radicals and non-

radicals are hydroxyl, superoxide, peroxyl, and lipid peroxyl, while the

non-radicals consists of singlet oxygen, hydrogen peroxides,

hypochloric acid, lipid peroxide, and ozone (101). The most

important ROS from sperm are hydroxyl radicals, superoxide

anion, and hydrogen peroxide. Owing to their high reactivity in

nature, they possess very short half-lives, i.e., nanoseconds (10−9 s)

for hydroxyl radicals and milliseconds (10−3 s) for superoxide anion;

therefore, they react at their generation site (102, 103). Moreover,

when the dismutation of superoxide anion takes place, it causes the

formation of hydrogen peroxide, which is almost a weak free radical
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(104, 105). Once the superoxide and hydrogen peroxide are produced,

they undergo different cellular reactions and then transform into

highly powerful hydroxyl radical free radicals via the Fenton and

Haber–Weiss reaction (106). In addition to that, superoxide anion

interrelates with nitric oxide and forms a peroxynitrite. Nitric oxide is

also regarded as a reactive free radical with an odd number of

electrons (105, 107). The most critical sources of ROS production

in males are leukocytes and immature spermatozoa (85). Leukocytes,

especially neutrophils and macrophages, have been linked with

excessive ROS formation, which causes sperm dysfunction (101, 108).
Oxidants and semen parameters

It is well known that limited concentrations of ROS are essential

for spermatogenesis. ROS generation in the context of antioxidants is

necessary for spermatogenic processes to occur. Antioxidants, such as

hydrogen peroxide, contribute to the sperm capacitation process and

thus help spermatozoa bind to the zona pellucida and fertilize the egg

(9, 83). Notably, catalase causes the decomposition of H202 and also

maintains sperm motility (5). This relationship between H202 and

catalase balances redox status and abrogates oxidative stress. Free

radicals are the byproducts of oxidative metabolism in mitochondria.

In response to these reactions, oxygen reduction occurs in

mitochondria (5). Normally, mitochondria are located in the

midpiece of the sperm, and studies have indicated that

mitochondrial DNA is more vulnerable to mutation than nuclear

DNA; therefore, it elevates ROS production (109). Enhanced ROS

production has been associated with the stimulation of cytochrome-c,

a protein involved in apoptosis (programmed cell death), and is

reported in males with infertility problems (110). Previous studies

have highlighted that the generation of mitochondrial-mediated ROS

production is deeply involved in DNA damage (111). DNA damage

by ROS may subsequently lead to poor in vitro blastocyst formation

(112). Moreover, the sperm membrane mainly consists of

polyunsaturated fatty acids, which play a key role in membrane

fusion (9). However, seminal fluid is an essential source of

antioxidants in semen, as the spermatozoa’s lack of cytoplasm and

DNA compaction mean there is little space for antioxidant enzymic

translations (113). As aforementioned, the fragile structure of the

sperm membrane can be easily targeted by ROS, which ultimately

affects sperm motility (114). The positive and negative effect of ROS

on male infertility is illustrated in Figure 3.
Seminal plasma proteomes
and oxidative stress

A variety of proteins have been proposed to be the possible

markers of oxidative stress (OS) damage. Wang and colleagues

suggest that the decline of DJ-1 protein contributes to the

suppression of OS triggered by endocrine disruptors, a proposed

marker of OS in asthenozoospermic patients (19). Herwig and

colleagues observed that tubulin folding cofactor b and higher levels

of a-1 chymotrypsin and aldose reductase are associated with OS in

patients with idiopathic oligo-astheno-teratozoospermia (18).

Another study indicated the increased expression of prolactin-
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triggered protein, which is related to OS damage and poor sperm

quality (16). Intasqui and colleagues showed that overexpression of

mucin 5B in normozoospermicmen correlated with increased seminal

lipid peroxidation levels, suggesting that this protein contributes to

sperm transport alteration in both sexes; therefore, it could be a

marker of lipid peroxidation resulting from OS (115). Of note, OS-

augmented modulation of the seminal plasma proteome does not

normally occur on large scales in infertile patients, but it also prevails

in fertile subjects. In a current study, fertile patients with enhanced OS

exhibited overexpression of proteins attributed to stress response,

such as haptoglobin (HP), peroxiredoxin 4 (PRDX4), and protein

S100 calcium-binding protein A9 (S100A9). Specifically, HP and

PRDX4 exert antioxidant properties, thus their overexpression is

known to be involved in the scavenging effect against the

overproduction of ROS. The S100A9 protein possesses pro-

inflammatory activity; its overexpression along with C3

complement shows the inflammatory state caused by OS (116). The

overexpression of seminal plasma proteome due to oxidative stress in

patients is presented in Table 1.

Lifestyle and diseases may trigger seminal plasma OS. Obesity,

alcohol abuse, cigarette smoking, and heavy metals have been firmly

linked with OS. Moreover, environmental factors, such as heavy

metals, also contribute to excessive ROS. Additionally, ROS occur

as a result of various diseases, such as accessory gland infection/

inflammation (MAGI) and varicocele (117). At present, irrespective

of varicocele, few studies have reported SP proteome modulation in

patients. Moreover, there is no literature about the differential

expression of proteins with and without increased ROS, and few

proteins have been suggested as disease markers. However, intelectin

1 overexpression has been observed in asthenozoospermic patients

with OS, revealing the possible existence of genital tract infection.
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Likewise, a study reported that alcohol dehydrogenase overexpression

contributed to alcohol metabolism and aminolevulenic acid

dehydratase overexpression indicated exposure to lead. Thus, it

proves that lifestyle and environmental factors have a detrimental

effect on sperm quality due to the overproduction of free radicals (19).

Further detailed information regarding the involvement of male

infertility problems is well illustrated by (118).
Evidence of sperm transcriptomic
profile and oxidative stress

Transcriptionally sperm cells are energetic; RNAs are presumed

to be involved in spermatogenic events (119). It is thought that sperm

RNAs are linked to several functions, including fertilization (119,

120). Further, RNAs in sperm are known to be indicators of sperm

quality index (121–123) and fertility (120, 124, 125). Interestingly,

sperm consists of coding and non-coding RNAs (123, 126) that

potentially might have an effect on sperm activeness. A DNA

microarray revealed that 559 transcripts in low-fertile bulls are

dysregulated. Notably, transcripts such as PRDX6, NOS3, SOD,

BAK, and BCL2L11 have been associated with fertility and are

linked to the oxidation reduction process, the mediation of MMP,

and apoptosis. This study provides a pathway to develop male-

fertility-related markers (127).

The bull transcriptomic profile revealed that non-coding RNAs

(ncRNAs) are involved in the regulation of sperm motility (128). The

ncRNAs are the main regulators of spermatogenesis and male fertility

but literature on lncRNAs in human oligozoospermia is scant. The

sequencing data of lncRNA and mRNA from 12 human

normozoospermia and oligozoospermia samples revealed the
FIGURE 3

The positive and negative effect of ROS in male infertility. The schematic diagram demonstrates that a limited concentration of ROS plays a key role in
sperm capacitation, sperm hyperactivation, acrosomal reaction, sperm maturation, and sperm/oocyte fusion processes. Conversely, overproduction of
ROS induces oxidative stress, which ultimately damages the sperm membrane, causing lipid peroxidation and DNA oxidation, which eventually induce
apoptosis, resulting in infertility.
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altered expression of lncRNAs (DE lncRNAs) and mRNAs (DE

mRNAs) in male infertility. The Gaussian graphical model, gene

ontology, and Encyclopedia of Genes and Genomes pathways were

applied to identify them and investigate their possible functions. The

transcriptome data showed that DE lncRNAs and DE mRNAs and

their target genes were involved in the accretion of unfolded proteins

in sperm ER, PERK-EIF2 pathway-induced ER stress, oxidative stress,

and apoptotic sperms in individual oligozoospermia subjects. This

suggests that these lncRNAs and pathways could be utilized as a

therapeutic target for infertility. There is less evidence about the

semen transcriptomic profile in terms of interactions with oxidative

stress. More studies are required to determine whether oxidative

stress is involved in male infertility problems (129).

Several RNA-seq studies have attempted to characterize the

transcriptome of ejaculated spermatozoa in terms of sperm quality

and fertility. Semen quality varies according to season. A total of 4,436

coding genes of moderate to high abundance have been identified in

sperm RNA. The fragmentation of the transcript increased in genes

associated with spermatogenesis, chromatin compaction, and fertility.

The summer and winter ejaculates had different transcriptomic

profiles, with 34 coding genes and 7 microRNAs showing a

significantly distinct distribution. These genes were linked to

oxidative stress, DNA damage, and autophagy. The annotation of

the boar sperm transcriptomic profile was used to identify sperm
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quality markers in pigs (130). Table 2 shows the involvement of

transcriptomic factors on male infertility.
Oxidative stress and DNA
fragmentation

The overproduction of ROS may influence male infertility by

interacting with different cellular components, resulting in sperm

damage (138, 139). This process involves lipid peroxidation and

protein oxidation through the utilization of numerous molecular

mechanisms. In particular, OS induces the production of oxidized

DNA adducts, such as 8-hydroxy-2’-deoxyguanosine (8OHdG)

within the DNA, resulting in single- or double-strand breaks (140).

Moreover, ROS stimulates caspases and nucleases that contribute to

apoptotic pathways; therefore, they cause indirect damage to the

sperm DNA through abortive apoptosis (141).

Presently, research measuring oxidative stress relies on

estimations of intracellular ROS (using a chemiluminescence assay)

(142), total antioxidant capacity (TAC) (143), malondialdehyde

(144), or DNA damage (8-OHdG) (145), which have been

identified as markers of OS and significant sperm damage in

infertile patients (146–148). Further, sperm DNA damage impairs

sperm fertility capacity and embryo development during natural
TABLE 2 Effect of transcriptomic factors on male infertility.

miRNA/transcriptomic
Factors

Regulatory effect Outcomes References

miR-196a-2, miR-196a-5p,miR-141, miR-429, and miR-7-1-3p Upregulation Idiopathic male infertility (131, 132)

miR-424 Downregulation Idiopathic male infertility (133)

MiR-371a-3p Upregulation Sperm concentration and total sperm count (134)

piR-31068, piR-31098, piR-31925, piR-43771, and piR-43773 Differentially expressed/ downregulation Asthenozoospermia (135)

miR-19b and let-7a Upregulation Idiopathic infertility (136)

miR-192a Upregulation Germ cell apoptosis (137)
TABLE 1 Overexpressed seminal plasma proteins in patients showing signs of oxidative stress.

Seminal plasma
proteins

Functions References

Aldose reductase Converts glucose into sorbitol in the polyol pathway (glucose metabolism) (18)

a1-chymotrypsin Proteolytic activity towards chymotrypsin-specific substrate N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide and releases in
granulocytes

(18)

DJ-1 DJ-1 activation causes catalysis of ROS. Once activated, suppress DJ-1, resulting in the removal of NFkB signal (19)

Haptoglobin late positive acute-phase protein of inflammation (116)

Mucin 5B Promotes SP viscosity and is associated with inflammation, hypoxia, and OS (115)

Peroxiredoxin 4 Related to a family of peroxide-degrading enzymes, contributes to cellular OS control (116)

Prolactin-induced
protein

Extracellular matrix protein that may regulate tissue responses to inflammation (16)

Protein S100A9 Pivotal in cell differentiation and OS response (116)

Tubulin-folding cofactor
b

Participates in the development of a/b-tubulin heterodimers, essential for the normal growth of mammalian cells. Serves in the
development of hypoxic-ischemic injury

(18)
NFkB, nuclear factor kappa light chain enhancer; OS, oxidative stress; ROS, reactive oxygen species; SP, seminal plasma; S100A9, S100 calcium binding protein A9.
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conception and has been linked with assisted reproductive tools (149–

151). Intriguingly, it has been noted that measurement of oxidative

stress might be important for infertile subjects who can benefit from

antioxidant supplementation or an alteration in lifestyle (152). These

considerations show that there is a dire need to understand the

correlation between seminal plasma oxidative stress and sperm DNA

damage and for the development of new diagnostic methods. More

recently, a novel galvanostat-based technique was used to measure

OS. This technique determines the balance between oxidants and

reductants in semen, which is known as the oxidation-reduction

potential (ORP) (153).

Spermatozoa possess a one-base excision repair (BER) enzyme

upstream during their development, which is helpful for DNA repair.

This enzyme is known as 8-oxoguanine DNA glycosylase 1 (OGG1),

and it assists in the release of adducts into the extracellular space

through the excision of DNA base adducts (154, 155). Spermatozoa

do not possess BER enzymes, such as apurinic endonuclease 1 (APE1)

and x-ray repair cross-complementing protein 1 (XRCC1). For that

reason, the DNA repair ability of spermatozoa is delicate, resulting in

the repair of oxidized DNA base adducts, such as 8-OHdG (155).

Moreover, it has been found that 8-OHdG triggers germline

mutat ions, indirect ly causing DNA damage in human

spermatozoa (156).
Male infertility preventive strategies

Male infertility is a highly concerning issue that has not received

much focus in terms of better understanding its magnitude and

prevalence. Several factors of male infertility are idiopathic in

nature. As such, there is an emerging need to address the problem

and investigate preventive strategies (157).

The following approaches should be considered for preventing

male infertility problems:
Fron
1. Oxidative stress is the main cause of male infertility

induction and attempts should be made to limit the

production of oxidative stress. However, it should be kept

in mind that some ROS production is needed to maintain

male fertility.

2. The cellular mechanism involved in male infertility may

provide new pathways for drug development from

antioxidant compounds that are safe and secure and exert

less toxic effects than commercially available classical drugs.

3. Nanoparticle-based approaches could be useful for the

targeted delivery of polyphenol-derived drugs.

4. The integration of knowledge and computer science through

machine learning algorithms should be adopted in male

infertility diagnostic approaches, as well as in searches for

targeted therapies (158).

5. An integrated AI system should assist the assessment of

computerized semen analysis; AI-based applications can

estimate environmental conditions and lifestyle to improve

semen quality forecasts.
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6. The cause of idiopathic male infertility is unknown but AI-

based technology can improve the classification of fertile/

infertile couples using biological and clinical signatures.

7. An attempt should be made to break down barriers linked to

religious and cultural beliefs that prevent individuals from

speaking openly about their infertility issues.

8. There is need of create awareness among populations so that

male infertility problems can be discussed more frequently.

9. Excessive weight has been linked with reduced sperm

production. Therefore, diet and daily exercise need to

planned appropriately.

10. Addiction tends to influence physiological function.

Addictive behavior needs to be avoided and monitored.

11. Tightly fitting clothing influences blood circulation to the

genital organs and raises testicular temperature, thus

disturbing semen production and decreasing fertility.

Therefore, tight clothes need to be avoided.

12. Electronic gadgets that produce low levels of radiation

eventually disturb sperm production. Therefore, it is better

to minimize the use of these gadgets.

13. Deficiency of nutrients, particularly zinc and vitamin C, may

disturb sperm production. Therefore, it is important to have

a healthy and balanced diet. Supplementation can be used if

the diet lacks the required nutrition.

14. Infection and inflammation may severely influence sperm

production. Proper treatment following the doctor’s

instructions and daily exercise boost the immune system

and normalize the situation.
Conclusions

In conclusion, we have reviewed the relationship between

oxidative stress and male infertility and the involvement of

proteomic studies in male infertility. We have compared the values

of differential protein profiles in seminal plasma in both oxidative and

physiological conditions. The proteomic profile of seminal plasma

may play an important role in preventing oxidative stress, and it has

been recognized as a putative marker/indicator of the prevalence of

oxidative stress. With the literature in mind, the pathway analysis

indicates the contribution of proteins to stress, cellular, metabolic,

and regulatory pathways. The compiled studies in this Review will

contribute to the exploration of the prominent causes of idiopathic

male infertility. It is hoped that if male infertility is recognized at a

molecular level, its diagnosis, treatment, and prevention can be

improved. It was difficult to enumerate which mechanism should

be targeted In normozoospermic conditions. However, this scenario is

still incomplete and further research is needed to develop diagnostic

assays based on methylated patterns, such as RNA and

phosphorylation profiles. We further highlighted the attractiveness

of sperm DNA integrity as a biomarker for unexplained infertility. In

the coming years, it is expected that idiopathic fertility can be

diagnosed using omics technologies.
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