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Water deprivation induces
hypoactivity in rats independently
of oxytocin receptor signaling at
the central amygdala
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and André S. Mecawi3*
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Introduction: Vasopressin (AVP) and oxytocin (OXT) are neuropeptides produced

by magnocellular neurons (MCNs) of the hypothalamus and secreted through

neurohypophysis to defend mammals against dehydration. It was recently

demonstrated that MCNs also project to limbic structures, modulating several

behavioral responses.

Methods and Results:We found that 24 h of water deprivation (WD) or salt loading

(SL) did not change exploration or anxiety-like behaviors in the elevated plus maze

(EPM) test. However, rats deprived of water for 48 h showed reduced exploration

of open field and the closed arms of EPM, indicating hypoactivity during night time.

We evaluated mRNA expression of glutamate decarboxylase 1 (Gad1), vesicular

glutamate transporter 2 (Slc17a6), AVP (Avpr1a) and OXT (Oxtr) receptors in the

lateral habenula (LHb), basolateral (BLA) and central (CeA) amygdala after 48 h of

WD or SL. WD, but not SL, increased Oxtr mRNA expression in the CeA. Bilateral

pharmacological inhibition of OXTR function in the CeA with the OXTR antagonist

L-371,257 was performed to evaluate its possible role in regulating the EPM

exploration or water intake induced by WD. The blockade of OXTR in the CeA

did not reverse the hypoactivity response in the EPM, nor did it change water intake

induced in 48-h water-deprived rats.

Discussion: We found that WD modulates exploratory activity in rats, but this

response is not mediated by oxytocin receptor signaling to the CeA, despite the

upregulated Oxtr mRNA expression in that structure after WD for 48 h.

KEYWORDS

central amygdala, oxytocin receptor, dehydration, exploratory behavior, elevated plus
maze test
1 Introduction

Water and sodium balance in vertebrates involves several neuroendocrine systems that

are finely orchestrated to maintain the extracellular fluid (ECF) osmolality and volume within

a narrow range of variation. One of the essential responses to this regulation is the

development of thirst, which motivates animals to seek and drink water (1). The
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hypothalamic-neurohypophysial system (HNS) is key to the plasma

osmolality control. It is composed of osmosensory magnocellular

neurons (MCNs) located at the paraventricular (PVN) and supraoptic

(SON) hypothalamic nuclei, and is responsible for producing and

secreting the neuropeptides arginine vasopressin (AVP) and oxytocin

(OXT) to the blood through neurohypophysis to control kidney

function (1). Recent neuroanatomical studies have consistently

demonstrated that AVP and OXT MCNs from both PVN and SON

send their main axonal projection to the neurohypophysis and also

send dense collateral axons to extra-neurohypophyseal brain regions

that control anxiety-like behavior, including, among others, the

amygdala and lateral habenula (2–5).

Challenges to nutritional homeostasis, such as water deprivation

(WD), motivate behaviors related to thirst sensation. Moreover, recent

studies of rodents have demonstrated the relationship between bodywater

and sodium balance on the one hand and exploratory behaviors, anxiety

and fear response on the other (6–9). Those findings strongly suggest that

mechanisms controlling body fluid homeostasis may modulate neuronal

circuitries, including the limbic system, related to anxiety and other

behavioral responses during dehydration (6). In addition, it has been

demonstrated thatAVPandOXTMCNs send collateral projections to the

basolateral and central amygdala (BLA and CeA, respectively) (4, 5).

Furthermore, MCNs AVPergic projections to the lateral habenula (LHb)

have also been observed (6). BLA, CeA and LHb have distinct populations

of glutamatergic and GABAergic neurons. The balance of their activity is

crucial to the final modulation response of those limbic structures at the

behavioral level (10, 11). Furthermore, the activation of AVP and OXT

receptors produces different physiological responses, with Avpr1a

inducing an anxiogenic response and Oxtr inducing an anxiolytic one

(5, 12–14).Hence, it is possible that the imbalance betweenAVPandOXT

contributes to the underlying mechanism of motivated exploratory

behaviors in dehydration conditions.

Hyperosmolality is the main stimulus that activates the

hypothalamic MCNs, and it can be experimentally induced by WD,

inducing both extra- and intracellular dehydration associated with

peripheral renin-angiotensin system (RAS) activation, or by salt

loading (SL), which induces intra- but not extracellular

dehydration, associated with peripheral RAS inhibition (1, 15).

Since the RAS has also been found to play an important role in

controlling anxiety levels (16), it is possible that the behavioral

responses are differentially expressed in WD and SL animals.

Therefore, recruitment of RAS, AVPergic and OXTergic systems is

an efficient homeostasis regulatory mechanism for coupling

hydromineral balance and anxiety-like behaviors.

This study aimed to investigate whether dehydration modulates

the exploratory or anxiety-like behaviors at night, the regular activity

period of rats. Therefore, we investigated the behavioral responses of

rats submitted WD or SL when exposed to the elevated plus maze

(EPM) or the open field (OF). We also analyzed Avpr1a, Oxtr,

glutamate decarboxylase 1 (Gad1), and vesicular glutamate

transporter 2 (Slc17a6) mRNA expression in the BLA, CeA and

LHb in both hyperosmolality models to elucidate possible plastic

molecular responses. Finally, bilateral pharmacological inhibition of

OXTR signaling in the CeA was applied to evaluate its potential role

in regulating nocturnal exploratory behaviors in rats submitted

to WD.
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2 Materials and methods

2.1 Animals

Male Wistar rats (~290g) were obtained from the Animal Facility

of the Department of Physiological Sciences, Institute of Biological

and Health Sciences, Federal Rural University of Rio de Janeiro

(UFRRJ), or from the Center for the Development of Experimental

Models for Biology and Medicine (CEDEME) Federal University of

São Paulo (UNIFESP). The rats were housed under controlled

conditions of temperature (22 ± 2 °C) and 12/12 hours light-dark

cycle (lights on at 6 a.m.). All procedures performed were in

accordance with current Brazilian legislation and the “Guide for the

Care and Use of Laboratory Animals” (17) and were evaluated and

approved by the ethical committees for animal use of Federal Rural

University of Rio de Janeiro (CEUA-ICBS, protocol number 001/

2017) and Federal University of São Paulo (CEUA-UNIFESP,

protocol number 7236281119, ID 009443, 2019).
2.2 Experimental protocols

Figure 1 illustrates the experimental procedures performed in this

work. A first set of rats was randomly separated into the following

groups: control (CT) which had free access to filtered water and

standard chow (1% w/v NaCl, Rhoster, São Paulo, Brazil); WD group,

in which water was removed for 24 or 48 hours with free access to

standard chow; and SL group, in which the only fluid available was

1.8% NaCl solution for 24 or 48 hours, also with free access to

standard chow. The exploratory and anxiety-like behaviors were

evaluated via 5 minutes of exposure to the elevated plus maze

(EPM) test. A different set of animals of control, 48h WD and 48

SL groups were tested for 10 min in the open field test. The behavioral

tests were performed at night (7:00 to 11:00 p.m.) because the dark

period is the normal activity period of rats (18) and also because

Martelli et al., 2012 (9) observed that changes in the locomotor

behaviors occur during the dark but not during the light period in

water deprived rats. Immediately after the EPM test, the animals were

euthanized and blood was collected to determine the hematocrit and

plasma osmolality.

A third set of rats was submitted to the control procedure, 48h

WD or 48h SL and euthanized at night (7:00 to 11:00 p.m.) for gene

expression evaluation by qPCR. The brains were rapidly removed

from the skull, frozen with dry ice, and stored at −80°C.

Additionally, to investigate the contribution of OXTR signaling to

the WD induced hypoactivity, a fourth set of rats was used to test

whether the microinjection of OXTR antagonist in the CeA would be

able to alter the dehydration-induced hypoactivity observed in the 48-

h WD rats when tested in the EPM. So, 7 days after CeA cannulation,

the rats were submitted to a control procedure or 48 h of WD and on

day 9 received the OXTR antagonist or vehicle microinjection 30 min

before EPM testing. At the end of the test, the rats were returned to

their home cages and were allowed to drink water freely. The water

consumption, measured in grams, was recorded at 30 and

120 minutes.
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2.3 Elevated plus maze test

The EPM was employed to analyze the exploratory and anxiety-

like behavior in rats (19). This apparatus consists of two opposed

open arms (50 × 10 cm each), and two opposed closed arms of the

same size with 40 cm high sidewalls, connected by a central area (10 ×

10 cm) and raised 50 cm from the ground. Rats were placed into the

center area of the apparatus facing a closed arm. Each animal was

tested in the EPM for 5 minutes and the apparatus was cleaned

between one rat and another with a 10% ethanol solution. The EPM is

used to evaluate anxiety-like behavior in rodents. The number of arm

entries reflects the locomotion of the animal and the open arm

exploration reflects the anxiety-like behaviors. Thus, increased

exploration of open arms is associated with decreases in anxiety

levels. In addition, the ethological parameter head dipping was

evaluated to support the assessment of emotional reactivity. The

entries in closed arms and rearing indicate horizontal and vertical

exploratory activity, respectively. The time in the center area and the

episodes of stretch-attend posture are associated with decision

making (19, 20).
2.4 Open field test

The open field test was carried out as previously described (21) to

confirm that 48 h of WD induced changes in exploratory activity.

Each rat was placed individually in the periphery area at the

beginning of the test and allowed to explore it freely for 10 min.

The arena was cleaned between one rat and another with a 10%

ethanol solution. Total, peripheric and central distance travelled and

percentage of time spent in the central area were subsequently

analyzed using the video-tracking software EthoVision 8.5 (Noldus

Information Technology, Leesburg, VA, USA).
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2.5 Hydromineral parameters

Trunk blood was collected in heparinized tubes and centrifuged

(20 min, 3000 rpm at 4 °C), after which plasma osmolality was

measured in 10 ml aliquots by using a benchtop osmometer (model

5005, Precision Systems, Natick, MA, USA), based on the freezing-

point method. For hematocrit determination, the blood was placed

into heparinized capillaries and centrifuged at 2000 rpm for five

minutes. Next, a microhematocrit scale was used to determine the

percentage of blood composed of erythrocytes.
2.6 Microdissection, RNA extraction and
cDNA synthesis

Immediately after the EPM test, rats were decapitated and their

brains were frozen on dry ice and stored at −80°C. The brains were cut

into 60 mm coronal sections using a cryostat (Leica Biosystems, CM

1860, Wetzlar, Germany), and the brain nuclei were identified and

delimited according to the rat brain atlas (22). A 1 mm diameter

micropunch needle (Fine Science Tools) was used to bilaterally collect

LHb (coordinates from Bregma −2.30 to −4.70 mm), BLA

(coordinated from Bregma −1.80 to −3.80 mm) and CeA

(coordinated from Bregma -1.80 to -3.30 mm). The micropunch

material was immediately placed in microtubes containing TRIzol®

reagent (Life Technologies, Waltham, MA, USA) and stored at −80°C.

Sections were mounted on glass slides and stained with 0.1% toluidine

blue to confirm the location of the punches using a light microscope.

Micropunches from incorrect dissection were not used. Total RNA

was extracted from punch samples using TRIzol® reagent as

recommended by the manufacturer, and was quantified in a

nanospectrophotometer (DS-11® Denovix Inc. Wilmington, DE,
FIGURE 1

Experimental procedures. Schematic illustration representing the experimental designs and basic procedures employed in the present study. “EPM”,
elevated plus maze; “OF”, open field; “LHb”, Lateral habenula; “BLA”, basolateral amygdala; “CeA”, Central amygdala; “OXTR”, oxytocin receptor.
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USA). Samples presenting a ratio of optical density (OD) 260/280 in

the 1.8-2.1 range were used for reverse transcription. The synthesis of

cDNA was performed using the QuantiTect Reverse Transcription

Kit (Qiagen) with 500 ng of total RNA. The cDNA obtained was

diluted in a proportion of 1:3 and stored at –20°C.
2.7 Quantitative real-time polymerase
chain reaction

The qPCR was performed in duplicate or triplicate using SYBR

green (Applied Biosystems) or Taqman Universal PCR Master Mix

kit (Carlsbad, CA, USA). The qPCR was performed with the

QuantStudio 3® system (ThermoFisher Scientific). With the SYBR

green, the following primers (Applied Biosystems) were used: Avpr1a

(5′-ATCTGCTACCACATCTGGCG-3′ and 5′-TTATGAAA

GGGACCCACGGC-3′), Oxtr (5′-CTTCATCCAACCCTGGGGAC-
3′ and 5′-CTTGAAGCTGATGAGGCCG–3′), and Rpl19 (5′-
GCGTCTGCAGCCATGAGTA-3′ and 5′-TGGCATTGGCG

ATTTCGTTG-3′) as the endogenous control gene. With the

Taqman Gene Expression Assays (Applied Biosystems), the

following probes were used: Gad1 (Rn00690300_m1), Slc17a6

(Rn00584780_m1), and Actb (Rn00667869_m1) as endogenous

control. The reactions were performed using an ABI 7500 Sequence

Detection System (ABI, Warrington, UK), with universal cycling

conditions carried out according to the manufacturer’s instructions.

The genes RPL19 and b-Actin give highly reproducible and stable

expression measurements between different physiological challenges

within the CeA, BLA and LHb. For relative quantification of gene

expression, the 2−DDCT method was employed (23).
2.8 The OXTR antagonist microinjection in
the CeA

Rats were anesthetized with ketamine (100 mg/Kg; i.p.) and

xylazine (10 mg/Kg; i.p.). After the onset of anesthesia, animals

received ketoprofen (3 mg/kg; s.c.) as analgesic, pentobiotic (30000

I.U./Kg; i.m.) as antibiotic, polyacrylic acid as eye lubricant and

lidocaine 0.5% as local anesthetic in ears and at the incision site. A

23 G and 14 mm length cannula was implanted bilaterally using the

following stereotaxic coordinates relative to the bregma: posterior

−2.2 mm, lateral ± 4.3 mm and ventral −7.6 mm. A stylet was inserted

into the guide cannula for obturation. The cannula guide and the

stylet were fixed with dental cement. Twenty-four hours after surgery,

the ketoprofen injection was repeated. Rats were allowed to recover

for one week after the surgical procedure. Two hours before the EPM

test, rats were individually placed in standard polyethylene cages and

the stylet was removed from the guide cannula. Thirty minutes before

the EPM test, a 32 G needle connected to a polyethylene tube (PE 10),

which in turn was connected to a 1 µL syringe (Hamilton) was

inserted and extended 0.2 mm from the end of the cannula guide.

Then, 0.4 µl of the OXTR antagonist L-371,257 (Santa Cruz

Biotechnology, Inc., Dallas, TX, 1; sc-204038; 4 µM in 0.9% saline-

10% DMSO) or vehicle (0.9% saline-10% DMSO) was manually

infused during 1 min. The needle was left for 1 additional minute
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to allow the complete diffusion of the drug and then it was removed.

The antagonist dose was chosen based on the literature (4, 24).

In order to verify the right infusion site at the CeA

(Supplementary Figures 1 and 2), at the end of the experiment the

rats were administrated identically as described above with 0.4 µl of

0.2% Evans blue, anesthetized with isoflurane and decapitated. Then

the brains were removed and fixed by placing them into a solution of

4% paraformaldehyde in 0.1 M phosphate buffer for two days. Fixed

brains were sliced into 60 µm coronal sections with a cryostat (Leica

Microsystems CM1850 Cryostat; Wetzlar, Germany) and light

microscopy was used to confirm the infusion site according to the

Paxinos atlas (22). Data from rats with one or two misplaced cannulas

were not included in the analyses.
2.9 Statistical analysis

All values are presented as means ± SD. Data from hematocrit,

plasma osmolarity, EPM, OF and qPCR with normal distribution

(depending on the Shapiro–Wilk test) were subjected to 1-way

analysis of variance (ANOVA; the value of the F-statistic is

reported) with 3 levels: control, WD and SL. Significant differences

between groups were further analyzed through the Tukey post hoc

test. When these variables were not normally distributed, data were

subjected to the Kruskal-Wallis test (the value of the H-statistic is

reported) with three levels: control, WD and SL. Significant

differences between groups were further analyzed through Dunn’s

multiple comparisons test. Data from OXTR antagonist were

submitted to 2-way ANOVA with the hydration status factor

having two levels (control and WD) and the drug administration

factor also with two levels (vehicle or OXTR antagonist). The values of

stretch-attend posture and rearing in EPM did not have normal

distribution and were rank transformed before statistical analysis

according to Hora and Conover, 1984 (25). All statistical analyses

were conducted with the GraphPad Prism software (version 8, San

Diego, USA). In all cases, p-values smaller than 0.05 were considered

to indicate a significant effect.
3 Results

3.1 Effects of dehydration on the plasma
osmolality and hematocrit

In order to validate our dehydration models (WD and SL), we

evaluated the plasma osmolality and the hematocrit (Figure 2 and

Supplementary Table 1). As expected, osmolality was significantly

affected by dehydration protocols after 24 [H=6.051; df=2; p=0.0485;

Figure 2B] and 48 hours [H=10.94; df=2; p=0.0042; Figure 2D]. The

hematocrit was affected by 48 h of WD [F(2,25)=12.86; p=0.0001] since

rats submitted to 48 h of WD showed higher hematocrit values than

the control and the SL groups (p=0.0003 and p=0.0019; respectively;

Figure 2C). These results demonstrated that after 48 h, both WD and

SL increased the plasma osmolality, thus validating our

dehydration models.
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3.2 Effects of WD and SL on the anxiety-like
and locomotory behaviors

Wecarried out the EPM test to assesswhether dehydration triggered

by WD and SL influences anxiety-like behavior and/or locomotion

(Figure 3 and Supplementary Table 2). Figure 3A–F shows that 24 h of

WDorSLdidnot alter rats’behavior in theEPMtest.However, after 48h

of dehydration (Figure 3G), we found a significant effect on closed arm

entries [F(2,33)=6.192; p=0.0052],withWDrats entering less in the closed

arms than the control (p=0.0085) and SL rats (p=0.0185). The other

parameters assessed were not altered by 48 h of WD or SL (Figures 3G–

L). These results suggest that 48 h of WD induces hypolocomotion in

EPM without affecting anxiety-like behavior.

Additionally, the open field test (Figure 4 and Supplementary

Table 3) showed a decrease in total (Figure 4A) and peripheral

(Figure 4B) exploration of 48 h WD group [F(2,12)=5.05; p=0.0256

and H=8.42; p=0.0068; d.f. = 12; respectively]. On the other hand, the

distance traveled and time spent in the central area were not affected

by WD or SL, confirming that 48 h reduced nocturnal exploratory

behavior without significantly affecting the anxiety-like behaviors.
3.3 Effects of WD and SL on the gene
expression in LHb, BLA, and CeA

Dehydration activates the MCNs, increasing AVP and OXT

synthesis and secretion (1). In addition to their classical
Frontiers in Endocrinology 05
osmoregulation function, these neuropeptides have key roles in

modulating anxiety-like and locomotory behaviors (6, 9). For this

reason, we investigated the gene expression of AVP and OXT

receptors in the CeA, BLA and LHb, limbic structures known to

regulate anxiety-like and locomotory behaviors and to receive

projections from MCNs (2, 5, 6). Additionally, we measured the

mRNA expression of gene markers of GABAergic (Gad1) or

glutamatergic (Slc17a6) neurons to infer whether the dehydration

could modulate the level of excitation or inhibition of the neurons of

the structures mentioned above (Figure 5 and Supplementary

Table 4).

While dehydration did not change the expression of these genes in

the LHb (Figures 5A–D) and BLA (Figures 5E–H), it altered Oxtr gene

expression in CeA [F(2,15)=5.994; p=0.0122]. Our data showed that rats

submitted to 48 h ofWD had higherOxtr gene expression levels in CeA

compared to controls (p=0.0103; Figure 5L). The gene expression

values of Slc17a6, Gad1 and Avpr1a in CeA were not altered by the

dehydration model (Figures 5I–K). Thus, we investigated whether

OXTR in CeA can modulate the locomotor response of rats.
3.4 Effect of OXTR antagonist microinjection
in CeA

To further investigate whether OXTR signaling in the CeA

mediates the behavioral alteration observed in WD rats, we injected

the OXTR antagonist L-371,257 into the CeA of rats after 48 h of WD.
A B

DC

FIGURE 2

Effects of (A, B) 24 h or (C, D) 48 h of dehydration in male adult rats on (A, C) hematocrit and (B, D) plasma osmolality. Values are mean ± SD. The
number of animals used per group was: Control = 9; 24 h WD = 11; 24 h SL = 10; 48 h WD = 11; 48 h SL = 9. Hematocrit data were submitted to one-
way ANOVA followed by the Tukey post hoc test. Osmolality data were analyzed by the Kruskal-Wallis test followed by Dunn’s post hoc test. *p<0.05,
**p<0.01 and ***p<0.001 compared to control groups; ##p<0.01 compared to the WD group.
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Twenty minutes later, the animals were submitted to the EPM test

(Figure 6 and Supplementary Table 5). Figure 6A shows that rats

submitted to 48 h of WD entered the closed arms less than the control

rats (not water deprived) [F(1,32)=8.154; p=0.0075]. However, the

OXTR antagonist used failed to reverse the reduction of closed arm

exploration in water-deprived rats. Open arm entries and time in the

center area, head dipping and stretch-attend posture episodes

(Figures 6B–F) were not affected by the OXTR antagonist or by

WD. Note that these data match those presented in Figure 3. There

was a significant effect of antagonist administration on reduction of

rearing episodes [F(1,32)=5.670; p=0.0234], demonstrating the

efficiency of the oxytocin receptor antagonist used (Supplementary

Figure 3 and Supplementary table 5).

At the end of the plus maze test, animals were allowed to drink water

freely, and the respective intakes at 30 and 120 minutes (Figures 7A, B
Frontiers in Endocrinology 06
and Supplementary Table 6) were recorded. As expected, water-deprived

rats drank more water than the control animals at 30 and at 120 minutes

[F(1,33)=504.8; p<0.0001 and F(1,33)=521.4; p<0.0001; respectively].

However, the oxytocin receptor antagonist had no effect on the water

drank by the rats (Figures 7A, B).
4 Discussion

It has been suggested that homeostatic signals, such as thirst, can

modulate emotion, motivation, and motor functions (6). Here we

used two dehydration models to induce thirst and activate the MCNs

of PVN and SON: WD and SL (1). As we expected, both protocols

increased plasma osmolarity, agreeing with previous results using

mice (26) and rats (27), and validating our models. Additionally, WD
A B

D

E F

G

I

H

J

K L

C

FIGURE 3

Effects of (A–F) 24 h or (G–L) 48 h of dehydration in male adult rats on (A, G) number of entries into closed arms, (B, H) percentage of entries into open
arms, (C, I) percentage of time spent in open arms, (D, J) percentage of time spent in the central area, (E, K) number of head dipping episodes, and
(F, L) number of stretch-attend postures during 5 min of evaluation in the elevated plus maze apparatus. Values are mean ± SD. The number of animals used
per group was: 24 h Control = 11; 24 h WD = 10; 24 h SL = 10; 48 h Control = 12; 48 h WD = 12; 48 h SL = 12. Data were submitted to one-way ANOVA
followed by the Tukey post hoc test, except for the percentage of time spent in the open arms after 24 h of dehydration and the number of stretch-attend
postures after 48 h of dehydration, in which the Kruskal-Wallis test was used. **p<0.01 compared to control group; #p<0.05 compared to the WD group.
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increased the hematocrit, as was also expected, coinciding with the

previously mentioned results of Fujio et al., 2006 (27).

Our results support the notion that locomotor alterations occur

in response to WD. A previous study (9) showed a decrease in

locomotion of water-deprived rats within their home cage only

during the dark period. Our results corroborate and extend those of

Martelli et al., 2012 (9), since we demonstrated that locomotion is

also impaired in novel environments. Interestingly, hyperosmotic

thirst induced by SL does not produce alterations in locomotion

even though both kinds of thirst activate hypothalamic MCNs (1,

28, 29). Although both models induce dehydration, they have

several differences (29). While plasma osmolality is progressively

increased following WD and SL, urinary osmolality only increases

with WD. In addition, WD reduces food intake by approximately

50% compared to SL. AVP and OXT levels are increased in both

models compared to controls. However, the AVP level is lower, but

the OXT level is higher in the WD compared to SL. It is likely that

the physiological and behavioral discrepancies in response to WD

and SL result from different central activation of several brain nuclei

in each model. Indeed, transcriptome analysis of SON after SL or

WD revealed 7060 genes are regulated by WD but not by SL (29).

On the other hand, the anxiety-like behavior evaluated in the EPM

was not affected by any of the thirst models used. In contrast, Zhang

et al. (2016) found a decrease in the open arm exploration after 24 h

of WD (6). In that work, rats were evaluated during the light period

of the light/dark cycle. Probably evaluating animals during the

normally non-active period and under an aversive stimulus such
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as light affected their behavior, explaining the differences with

our results.

In the cited work of Zhang et al. (2016), increased activation

(assessed by Fos-immunoreactivity) of GABAergic neurons of the

LHb was found (6). The authors suggested that the habenula may link

the forebrain with midbrain structures that regulate emotional

behavior, since habenula lesions resulted in stress, anxiety, reward

and motor dysfunctions (30). For example, habenular lesions

prompted animals to increase anxiety-like behavior in the EPM test

and increased locomotion in the open field test (31, 32). The

amygdala participates in the fluid intake regulation (33).

Additionally, it has already been shown that WD increases Fos

expression in the CeA (34) and it is well established that BLA (35,

36) and CeA (37, 38) mediate anxiety-like behavior. However, our

data show that Gad1, Slc17a6, Avpr1a and OxtrmRNA expression are

not changed in LHb or BLA after 48 h of WD or SL. Therefore, the

observed changes found in the locomotion of rats submitted to 48 h of

WD were not mediated by expression levels of these genes in the LHb

or BLA. However, we cannot discard that the protein expression and/

or post-transcriptional modifications may result in functional

alterations of oxytocin and/or vasopressin type 1a receptors, as well

as glutamatergic and/or GABAergic signaling in those brain areas.

Regarding the CeA, we found an increase in the Oxtr mRNA

expression. This brain structure has a large number of oxytocin

receptors involved, among others, in fear behavior inhibition (2, 39)

and stress-coping behavior (40). Moreover, subcutaneous (41) and

intracerebroventricular (42) oxytocin administration reduces anxiety-
A B

DC

FIGURE 4

Effects of 48 h of dehydration in male adult rats on (A) total locomotion, (B) locomotion in the peripheral area, (C) locomotion in the central area, and
(D) percentage the time spent in the central area during 10 min of evaluation in the open field test. Values are mean ± SD of 5 animals per group. Data
were submitted to one-way ANOVA followed by the Tukey post hoc test, except for the distance traveled in the peripheral area, in which the Kruskal-
Wallis test was used, followed by Dunn’s post hoc test. *p<0.05 compared to the control group.
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like behavior in rats. Also, Windle et al., 1997 (42) reported a reduction

of rearing by i.c.v. administration of oxytocin. Since the CeA has

oxytocin receptors, whose activation regulates several behaviors, we

investigated the possibility that OXT acting on the CeA could regulate

locomotion in rats. To determine whether oxytocin receptors were

involved in the locomotor alteration of water-deprived rats observed in

the EPM, we administrated an oxytocin receptor antagonist in the CeA.

The results showed that the OXTR antagonist did not reverse the

exploratory reduction of 48-h water-deprived rats or change water

intake of those rats. On the other hand, the OXTR antagonist decreased

vertical exploration (assessed as rearing episodes in the EPM test)

independently of the hydration state of the animal. In addition to

demonstrating that oxytocin receptor blockade was efficient, this result

indicates that although the general action of oxytocin on the central

nervous system can decrease exploration (41, 43), the activation of CeA

oxytocin receptors seems to stimulate exploration, since their blocked

reduced rearing. On the other hand, the WD-induced alteration in
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locomotory activity may involve other brain nuclei. In the present

work, we focus on limbic structures involved in anxiety-like and

exploratory behaviors. In future works, it would be interesting to

study gene expression in brain nuclei that control voluntary

motricity. Of particular interest may be the caudate-putamen, a

mesolimbic structure involved in motor activity and motivation

behaviors (44), which also participates in thirst regulation (45) and

expresses oxytocin receptors (46).

The present study provides evidence that WD modulates the

exploratory activity and upregulates Oxtr expression in the CeA.

However, our work has some limitations to consider. First, to dissolve

the OXT antagonist, we had to use 10% DMSO. This compound can

affect the excitability of neurons, having a considerable inhibitory

effect (47). Although the antagonist-treated groups were compared to

vehicle-treated groups that also received 10% DMSO, future works

using other antagonists or solvents are needed. Secondly, this work

would benefit from others that confirm the changes observed here in
A B D
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FIGURE 5

Effects of 48 h of dehydration in male adult rats on relative mRNA expression of (A, E, I) the Vesicular Glutamate Transporter 2 (Slc17a6), (B, F, J) the
Glutamate Decarboxylase 1 (Gad1), (C, G, K) the Arginine Vasopressin Receptor 1A (Avpr1a), and (D, H, L) the Oxytocin Receptor (Oxtr) in the (A–D)
lateral habenula, (E–H) the basolateral amygdala (BLA), and (I-L) the central amygdala (CeA). Values are mean ± SD of 6 animals per group. Data of gene
expression in BLA as well as Oxtr mRNA expression in CeA were analyzed by one-way ANOVA followed by the Tukey post hoc test. The other data were
submitted to the Kruskal-Wallis test. *p<0.05 compared to the control group.
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the Oxtr expression through different techniques, such as RNAscope,

to add information on the cellular location of the Oxtr whose

expression was altered. Finally, considering that plasma levels of

angiotensin II are increased by WD and decreased by SL (29), it

might be interesting to study the gene expression of the RAS

components in the brain areas regulating exploratory behavior,

such as the amygdaloid complex. It has been found that the

microinjection of a selective AT1 antagonist into the amygdala

induces an anxiolytic-like effect in rats, increasing the time spent in

the EPM open arms and the total of entries (48). On the other hand,

the microinjection of PD123319, a selective AT2 antagonist, into the
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medial amygdala of rats increased anxiety-like behavior assessed in

EPM (49). These data indicate that the differential levels of

angiotensin II at the circulation or in the brain, or even changes in

its signaling mechanisms, might contribute to locomotor activity

changes observed in rats submitted to WD but not to SL. Thus,

future studies might address the role of the RAS in the nocturnal

hypoactivity induced by WD in rats.

In summary, we found dehydration-induced hypoactivity and

increased levels of Oxtr mRNA expression in the CeA after 48 h of

WD. However, after blockade of the OXTR signaling to the CeA of

WD rats, we found no significant changes on the nocturnal
A B
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FIGURE 6

Effects of oxytocin receptor antagonist microinjection in the central amygdala of 48-h water-deprived male adult rats on (A) number of entries into
closed arms, (B) percentage of entries into open arms, (C) percentage of time spent in open arms, (D) percentage of time spent in the central area, (E)
number of head dipping episodes, and (F) number of stretch-attend postures during 5 min of evaluation in the elevated plus maze apparatus. Values are
mean ± SD. The number of animals used per group was: Control + vehicle = 8; Control + antagonist = 10; 48 h WD + vehicle = 9; 48 h WD +
antagonist = 9. Data were submitted to two-way ANOVA. The values of the number of stretch-attend postures were transformed to ranks before
ANOVA. **p<0.01 comparing Water Deprived vs. Control groups.
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exploration in the EPM, indicating that OXTR signaling to the CeA

does not mediate dehydration-induced hypoactivity in male rats.
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SUPPLEMENTARY FIGURE 1

Histological location at −2.16 mm posterior to bregma of the cannulas

implanted in CeA are shown for control rats administered with vehicle (blue
circles) or OXTR antagonist (green circles) and 48-h water-deprived rats

administered with vehicle (pink circles) or OXTR antagonist (violet circles).

SUPPLEMENTARY FIGURE 2

Drawing of a coronal section of rat brain at bregma -2.16 mm, and
representative microphotograph at 4x showing the microinjection site in the

central amygdala. “CeA”, central amygdala; “opt”, optic tract; “ec”, external
capsule; and “I.S.”, injection site.

SUPPLEMENTARY FIGURE 3

Effects of oxytocin receptor antagonist microinjection in the central amygdala

of 48-h water-deprived male adult rats on rearing episodes during 5 min of
evaluation in the elevated plus maze apparatus. Values are mean ± SD. The

number of animals used per group was: Control + vehicle = 8; Control +
antagonist = 10; 48 h WD + vehicle = 9; 48 h WD + antagonist = 9. Data were

submitted to two-way ANOVA. The values were transformed to ranks before

submission to two-way ANOVA. *p<0.05 comparing rats receiving OXTR
antagonist vs. rats receiving vehicle.
A B

FIGURE 7

Effects of oxytocin receptor antagonist microinjection in the central amygdala of 48 h water-deprived male adult rats on water intake during (A) 30 and
(B) 120 minutes. Values are mean ± SD. The number of animals used per group was: Control + vehicle = 8; Control + antagonist = 10; 48 h WD +
vehicle = 9; 48 h WD + antagonist = 9. Data were submitted to two-way ANOVA.
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