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Background: Primary aldosteronism (PA) is the leading cause of curable

endocrine hypertension, which is associated with a higher risk of

cardiovascular and metabolic insults compared to essential hypertension.

Aldosterone-producing adenoma (APA) is a major cause of PA, which can be

treated with adrenalectomy. Somatic mutations are the main pathogenesis of

aldosterone overproduction in APA, of which KCNJ5 somatic mutations are most

common, especially in Asian countries. This article aimed to review the literature

on the impacts of KCNJ5 somatic mutations on systemic organ damage.

Evidence acquisition: PubMed literature research using keywords combination,

including “aldosterone-producing adenoma,” “somatic mutations,” “KCNJ5,”

“organ damage,” “cardiovascular,” “diastolic function,” “metabolic syndrome,”

“autonomous cortisol secretion,” etc.

Results: APA patients with KCNJ5 somatic mutations are generally younger,

female, have higher aldosterone levels, lower potassium levels, larger tumor size,

and higher hypertension cure rate after adrenalectomy. This review focuses on the

cardiovascular andmetabolic aspects of KCNJ5 somaticmutations in APA patients,

including left ventricular remodeling and diastolic function, abdominal aortic

thickness and calcification, arterial stiffness, metabolic syndrome, abdominal

adipose tissue, and correlation with autonomous cortisol secretion.

Furthermore, we discuss modalities to differentiate the types of mutations

before surgery.
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Conclusion: KCNJ5 somatic mutations in patients with APA had higher left

ventricular mass (LVM), more impaired diastolic function, thicker aortic wall,

lower incidence of metabolic syndrome, and possibly a lower incidence of

concurrent autonomous cortisol secretion, but better improvement in LVM,

diastolic function, arterial stiffness, and aortic wall thickness after

adrenalectomy compared to patients without KCNJ5 mutations.
KEYWORDS

somatic mutation, KCNJ5, autonomous cortisol secretion (ACS), adrenocortical
adenoma, cardiovascular system, metabolic syndrome
Introduction

Primary aldosteronism and its impact
on the cardiovascular system and
metabolic system

Primary aldosteronism (PA) was considered to be a rare disease

but is now recognized to be the most common modifiable form of

secondary hypertension (1–3). The prevalence ranges from 5% to

15% in hypertensive patients, and up to 20%-30% in those with

resistant and refractory hypertension (4, 5). The two most common

causes of PA are aldosterone-producing adenoma (APA),

accounting for about 30-35% of all PA patients (6, 7) which can

be treated by adrenalectomy, and bilateral adrenal hyperplasia

(BAH), accounting for approximately 60-65% of patients with PA

and is often treated with medications. The aldosterone

overproduction in PA patients causes both cardiac structural

changes, including left ventricular hypertrophy and remodeling

(8), and declines in diastolic and systolic function (9). In

addition, aldosterone-induced endothelial dysfunction plays an

important role in vascular fibrosis and cellular hypertrophy,

resulting in increased arterial stiffness (10–12). Clinically, PA is

associated with higher cardiovascular morbidity and mortality,

including stroke, coronary artery disease, atrial fibrillation, and

heart failure, compared with essential hypertension (EH) (13–22).

Moreover, aldosterone impairs glucose-stimulated insulin secretion

and insulin sensitivity in skeletal muscle and adipocytes (23), which

contributes to insulin resistance in humans (24). The prevalence of

metabolic syndrome is also higher in PA patients compared to EH

patients (25).
Material and methods

We conducted a PubMed literature search, using a broad range

of keywords combination, including “primary aldosteronism,”

“aldosterone-producing adenoma,” “somatic mutations,”

“pathogenesis,” “CYP11B2,” “KCNJ5,” “ATP1A1,” “ATP2B3,”

“CLCN2,” “CACNA1D,” “CACNA1H,” “CTNNB1,” “organ

damage,” “cardiovascular,” “cardiac,” “vascular,” “left ventricular,”
02
“left ventricular mass,” “arterial stiffness,” “pulse wave velocity,”

“diastolic function,” “metabolic syndrome,” “aortic wall,”

“calcification,” “abdominal obesity,” “autonomous cortisol

secretion,” “subclinical Cushing’s syndrome,” “adrenal vein

sampling,” “NP59,” “steroid profiling.” We focused on various

trials discussing the somatic mutations in APA and their impacts

on clinical presentations published from 2011 to March 31, 2022.

The retrieved articles were hand-selected according to the relevance

cautiously. The reference lists of these selected articles were

attentively reviewed to look for additional publications.
The pathogenesis and types of somatic
mutations in APA

The primary mineralocorticoid, aldosterone, is synthesized in the

outer zone of the adrenal cortex, the zona glomerulosa (ZG) (26). In the

ZG, 11-deoxycorticosterone is converted sequentially to corticosterone,

18-hydroxycorticosterone, and then aldosterone, catalyzed by the

enzyme aldosterone synthase (encoded by the gene CYP11B2) (27).

The production of aldosterone is normally regulated by angiotensin II

(Ang II), serum potassium, and adrenocorticotropic hormone (ACTH)

(28). However, the autonomous excess secretion of aldosterone in PA is

independent of these factors.

In 2011, Lifton et al. were the first to report a somatic mutation in

patients with APA (29). Somatic mutations occur in normal somatic

cells, such as the adrenal gland, so that such mutations do not pass

from parents to offspring. The location of the somatic mutation

discovered by Lifton et al. is in the KCNJ5 gene (Potassium Inwardly

Rectifying Channel Subfamily J Member 5), which encodes G-protein-

activated inward rectifier potassium channel (GIRK4). This potassium

channel mediates the outward current of potassium ions to maintain

hyperpolarization and stabilize resting membrane potential (30).

However, mutations of the KCNJ5 gene result in the channel losing

its selectivity for potassium ions and increase the entry of extracellular

sodium ions into the cell, causing the cell membrane depolarization,

which causes the opening of voltage-gated calcium ion channel and

allowing calcium ions to enter the cell. The increase in intracellular

calcium ions induces transcription of the CYP11B2 gene through the

activation of calcium signaling. Activation of aldosterone synthase
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causes excessive production of aldosterone and PA. Many somatic

mutation sites of KCNJ5 have now been identified, most of which can

affect the selectivity of the GIRK4 channel (Figure 1), thus resulting in

cell membrane potential depolarization, and ultimately increasing

aldosterone production.

In addition, many other somatic mutations in APAs have been

found to cause an increase in intracellular calcium ion concentration

and result in aldosterone overproduction via various pathways,

including ATP2B3 (encoding the plasma membrane calcium-

transporting ATPase 3, PMCA3) (31), CLCN2 (encoding the

chloride channel 2, ClC-2) (32), CACNA1D (encoding the voltage-

gated calcium channels Cav1.3) (33) and CACNA1H (encoding

Cav3.2) (34) genes (Figure 1). While the somatic mutations of

ATP1A1(encoding the a1 subunit of Na+/K+ ATPase) genes result

in increased intracellular Na+ concentration and H+ influx, which

cause cells depolarized, but without significantly increased

intracellular Ca2+ activity, and intracellular acidification which

stimulate aldosterone production (31, 35). Mutations of CTNNB1

gene (encoding b-catenin) have been shown to decrease the

degradation of b-catenin, which causes an increase in the synthesis

of aldosterone by regulating the WNT/b-catenin signaling pathway

(36). In a recent study, double mutation of CTNNB1 and GNA11

(encoding the G protein subunit alpha11) or GNAQ (encoding the G

protein subunit alpha q) results in upregulation of LHCGR (encoding

the luteinizing hormone/choriogonadotropin receptor) and increase

of aldosterone production (37).
Prevalence of somatic mutations

The incidence of somatic mutations reported in a large

European multicenter study of 474 patients with APA ranged

from 27.2% to 56.8%, including 38% with KCNJ5, 9.3% with

CACNA1D , 5.3% with ATP1A1, and 1.7% with ATP2B3
Frontiers in Endocrinology 03
mutations (38). In our previous study in Taiwan, we found that

128 of 219 (58.4%) patients with APA had somatic mutations, most

of which were KCNJ5 mutations (52.9%), followed by CTNNB1

(3.7%), ATP1A1 (1.4%), and ATP2B3 (0.5%) (39). The expression of

KCNJ5 mutation differs in different ethnic groups. In Asia (Taiwan,

Japan (40)) the prevalence of KCNJ5 somatic mutations in APA

patients is up to 55-75%, compared to only about 25-50% in western

countries (41). These data are mainly based on adrenal specimens

from random biopsy and Sanger sequencing.

In recentyears,with theprogress inCYP11B2 immunohistochemical

(IHC) staining-guided biopsy and next-generation gene sequencing

(NGS), Rainey et al. reported that the detection rate of somatic

mutations was nearly 90% (42). De Sousa et al. rechecked 14

specimens which were found to be negative for somatic mutations

using traditional methods (random biopsy and Sanger sequencing)

with CYP11B2-IHC staining-guided biopsy, and detected 11 more

somatic mutations, thereby increasing the detection rate of somatic

mutations from 71% (by traditional methods) to 94% (IHC-guided

biopsy and NGS) (43). Interestingly, the newly detected mutations

included 8 in the CACN1D gene, 2 in the ATP1A1 gene, and 1 in the

ATP2B3 gene, but no new KCNJ5mutations were detected. In addition,

they also found thatKCNJ5 somaticmutations could be detected in high,

low, or even non-CYP11B2 IHC stained areas. These findings show that

CYP11B2 staining-guided biopsy is an important tool to detect somatic

mutations in PA patients, especially non-KCNJ5 somatic mutations.

As shown in Table 1, the incidence of KCNJ5 mutations in Asian

(54, 55) populations is much higher than that in European (43) and

American populations (42, 53), regardless of detection by traditional

random biopsy with Sanger sequencing or by CYP11B2 IHC staining-

guided biopsy and NGS. We previously found that KCNJ5 somatic

mutations were predominant in patients with APA harboring somatic

mutations [KCNJ5 accounts for 90.6% of APA patients with somatic

mutations (39) detected by traditional methods, 81.2% of APA patients

with somatic mutations by sequencing combined with Sanger and
FIGURE 1

Somatic mutations related pathogenesis of aldosterone producing adenomas. *PMCA3: plasma membrane calcium-transporting ATPase 3.
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IHC-guided biopsy and NGS (55)]. Besides, the majority of studies

investigating the clinical impacts of somatic mutations in APA patients

are almost limited to comparing “KCNJ5 mutations” with “non-

KCNJ5 mutations” (40, 41, 46, 48, 57–60). The clinical data of other

somatic mutations in APA patients is rare. Therefore, in this article, we

focus on the clinical impacts of KCNJ5 somatic mutations in patients

with APA.
KCNJ5 somatic mutations

Mutation sites of KCNJ5

The locations of most KCNJ5 somatic mutations are within or near

the potassium selectivity filter (among T149-G153) of the GIRK4

protein. The previously reported mutation sites in the literature are

shown in Table 2.
Frontiers in Endocrinology 04
Basic clinical characteristics

In a meta-analysis study including 13 studies and 1636 patients,

the patients with KCNJ5 somatic mutations were significantly

younger (45 ± 3 vs 52 ± 5 years), predominantly female (67% vs

44%), and had higher aldosterone level (42 ± 8 vs 33 ± 8 ng/dl), and

larger tumor size (16.1 ± 6.4 versus 14.9 ± 7.4 mm) (71). In addition,

lower potassium levels (38, 40, 48) and higher cure rates after

adrenalectomy (48, 57) have also been reported in patients with

KCNJ5 somatic mutations in other studies compared to patients

without KCNJ5 mutations. Asian patients with KCNJ5 somatic

mutations have similar characteristics (48) but without differences

in sex and tumor size compared to patients without KCNJ5 somatic

mutations (39, 46, 50, 72). Due to differences in the incidence of

KCNJ5 somatic mutations between Eastern and Western

populations, the cure rate of hypertension post-adrenalectomy

may also be affected by ethnicity. Investigations of the impacts of
TABLE 1 The detection rats of various somatic mutations in different countries dependent on traditional random biopsy or CYP11B2-IHC staining
guided biopsy.

Country Number KCNJ5,
%

ATP1A1,
%

ATP2B3,
%

CACNA1D,
%

CACNA1H,
%

CTNNB1,
%

CLCN2,
%

Non,
% Reference

Random biopsy + Sequencing

French, Germany,
Italy

308 38.3 5.2 1.6 NA NA NA NA 55.3 (31)

USA 64 32.8 1.6 3.1 7.8 NA 7.8 NA 46.9 (33)

French, Germany,
Italy

474 38 5.3 1.7 9.3 NA NA NA 45.7 (38)

Italy 112 39.3 6.3 0.9 NA NA NA NA 53.5 (44)

USA, Germany 90 37.1 8.2 3.1 10.3 NA 2.1 NA 39.2 (45)

China 168 76.8 2.4 0.6 0.6 NA NA NA 19.6 (46)

Japan 108 69.4 2.8 1.9 NA NA NA 25.9 (40)

China 114 75.4 0 0 0.9 NA NA NA 23.7 (47)

Taiwan 148 59.5 1.4 0.7 0 NA NA NA 38.4 (48)

Japan 159 73.5 0.6 2.5 2.5 NA NA NA 20.8 (49)

Korea 66 71.2 0 0 0 NA NA NA 28.8 (50)

Taiwan 219 52.9 1.4 0.5 0 NA 3.7 NA 40.6 (39)

Japan 142 74.6 0.7 2.8 2.1 NA 0.7 NA 19.1 (51)

Brazil 100 43.4 2.6 1.3 NA NA 2.6 NA 50.1 (52)

Addedly* or purely identified by CYP11B2 IHC-guided biopsy + Sequencing

USA 75 43 17 4 21 0 3 NA 12 (42)

USA 79 34 8 4 42 NA 0 NA 12 (53)

France* 48 42.9 12.2 10.2 26.5 0 0 0 6.1 (43)

Japan* 131 73 5 4 14 1 0 0 4 (54)

Taiwan* 240 63 2 1 4 2 5 1 22.5 (55)

Germany 41 56.1 12.2 4.9 9.8 0 0 2.4 14.6 (56)
f

NA, not available.
*Specimens detected by traditional random biopsy and Sanger sequencing. If there were no mutations detected, further CYP11B2-IHC guided biopsy and NGS would be applied for
these specimens.
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KCNJ5 mutations on symptoms, prognosis, and even systemic

target organ damage, including cardiovascular structure and

function, and metabolic disorders, may affect the treatment

strategy of patients.
Relationships of KCNJ5 somatic mutations
with cardiac structure and function

Left ventricular mass
In animal studies, excessive aldosterone with salt intake has

been shown to increase bilateral ventricular fibrosis (73–75) and left

ventricular hypertrophy (73, 75). Clinical studies have also revealed

that patients with PA have higher rates of cardiac fibrosis and left

ventricular hypertrophy than patients with EH (76–78). LVM can

be roughly divided into predicted LVM (pLVM) (79–81) and

inappropriately excessive LVM (ieLVM) (80, 82–84), denoting the

hemodynamic and non-hemodynamic contributions to LVM,

respectively. Inappropriate LVM has been shown to be higher in

APA patients compared with EH patients and to decrease after

adrenalectomy in APA patients (82).

Only some studies have discussed the impact of KCNJ5 somatic

mutations on the left ventricular structure. Rossi et al. (41) were the

first to report that APA patients with KCNJ5mutations had a higher

LVM index (LVMI) than patients without mutations, even with a

higher ratio of female patients. A similar trend albeit without

statistical significance was also noted in another study in China,

in which patients with KCNJ5 mutations had higher baseline
Frontiers in Endocrinology 05
systolic blood pressure, which may have led to an increase in

LVMI (47). Interestingly, other studies have not shown a

difference in LVMI between patients with and without mutations

(40, 46, 48). This discrepancy may be due to differences in age, sex,

hypertension duration, or the number of antihypertensive drugs

between the studies, which may have influenced LVM.

In our previous study, after matching for age, sex, body mass

index (BMI), and hypertension status, KCNJ5mutation carriers had

a higher aldosterone level, LVMI, and inappropriately excessive

LVMI (ieLVMI) than non-carriers (57). We also found that the

increased LVMI in KCNJ5 mutation carriers was mainly

attributable to ieLVMI via a non-hemodynamic pathway, thus

probably caused by a higher aldosterone level (57). Furthermore,

the decreases in LVMI and ieLVMI after adrenalectomy were higher

in KCNJ5 mutation carriers than in non-carriers (57).

In short, the impact of KCNJ5 somatic mutations on LVMI

seems to be discrepant in different studies, which may relate to

different patients’ baseline characteristics. However, after matching

age, sex, and blood pressure status, the APA patients with KCNJ5

somatic mutations seem to have higher LVMI, ieLVMI, and greater

improvement after adrenalectomy.

Diastolic function
Excessive aldosterone results in cardiac fibrosis and left

ventricular hypertrophy (76–78), which contribute to impaired

left ventricular relaxation in patients with PA (85–87). However,

few studies have discussed left ventricular diastolic function in

patients with KCNJ5 mutations. Rossi et al. (41) reported no
TABLE 2 KCNJ5 somatic mutations identified in APAs.

Mutations Reference (First description) Reported Year

p.Gly151Arg; Leu168Arg Choi et al. (29) 2011

p.Ile157del Murthy et al. (61) 2012

p.Glu145Gln Åkerström et al. (62) 2012

p.Thr158Ala Mulatero et al. (63) 2012

p.Glu145Lys Azizan et al. (64) 2013

p.Thr149_Ile150insThr Kuppusamy et al. (65) 2014

p.Trp126Arg Williams et al. (44) 2014

p.Thr148_Thr149insArg Zheng et al. (46) 2015

p.Arg115Trp; p.Glu246Gly Cheng et al. (66) 2015

p.Ile157Lys; p.Phe154Cys; p.Ile150_Gly151insMet; p.Ile144_Glu145insAlaIle Scholl et al. (45) 2015

p.Ala139_Phe142 dup Hardege et al. (67) 2015

p.Glu147Gln_Thr149_Ile150insThrThrThr; p.Gly153_Gly164dup Wang et al. (47) 2015

p.Thr148Ile; p.Thr149Ser Nanba et al. (68) 2016

p.Glu145_Glu147delinsLys Zheng et al. (69) 2017

p.Gly184Glu Kitamoto et al. (51) 2018

p.Phe140Leu; p.Thr149delinsThrIle; p.Gly151_Tyr152del Nanba et al. (42) 2018

p.Thr149delinsMetAla Nanba et al. (53) 2019

p.Ile157_Glu159del Peng et al. (70) 2021
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difference between patients with and without KCNJ5 mutations in

atrial contribution to left ventricular filling (ACLVF) or E/e’, and

only ACLVF was significantly lower in the patients with KCNJ5

mutations, but not in those without mutations after adrenalectomy.

In another study (57), only e’ was significantly higher in KCNJ5

mutation carriers compared to non-carriers before surgery, even

after matching for age, sex, and hypertension status between both

groups. After adrenalectomy, a significant decrease in E/e’ and a

borderline increase in e’ were noted in KCNJ5mutation carriers, but

not in non-carriers (57).

In short, patients with KCNJ5 mutations benefit from

adrenalectomy, not only in the left ventricular structure but also

in diastolic function.
Relationships of KCNJ5 somatic mutations
with vascular structure and function

Thickness and calcification of the aorta
PA is associated with increased intima-media thickness of the

carotid artery (88, 89). A recent study demonstrated that APA

patients with KCNJ5 mutations had a thicker abdominal aorta, but

less abdominal aorta calcification compared to patients without

mutations on abdominal CT (58). Moreover, patients harboring

KCNJ5 mutations had greater improvements in abdominal

aorta thickness compared to those without mutations after

adrenalectomy (58).

Arterial stiffness
Aldosterone infusion accompanied by a salty diet was shown to

increase arterial stiffness and fibronectin accumulation in an animal

study, which was independent of normotensive controls and reversed

by an aldosterone antagonist (90). Clinically, arterial stiffness can be

evaluated by pulse wave velocity (PWV). Previous studies have

reported higher PWV in PA patients compared with EH patients

(91). In addition, APA patients with KCNJ5 mutations have been

shown to have lower PWV compared to those without mutations (40,

48). However, the patients with mutations were younger in these

studies, which may have resulted in a lower PWV and interfered with

the effect of KCNJ5 mutations. In another study comparing patients

with and without KCNJ5 mutations matched for age, sex, and BMI,

there was no difference in PWV between the two groups. However,

there was a trend of a greater decrease in PWV after adrenalectomy in

the patients with KCNJ5 mutations (59).

A recent study (60) revealed lower brachial-ankle PWV

(baPWV) in patients with KCNJ5 mutations compared to those

without mutations before propensity score matching (PSM), but

similar baPWV in both patients with and without mutations after

matching for age, sex, BMI and hypertension status. After

adrenalectomy, the decrease in baPWV in APA patients with

KCNJ5 mutations was greater than that in those without

mutations both before and after PSM. Furthermore, only the APA

patients with KCNJ5 mutations had a significant decrease in

baPWV after adrenalectomy, which was not found in the patients

without mutations either before or after PSM. The patients with

KCNJ5 mutations were correlated with a change in baPWV even
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after adjusting for age, sex, and hypertension status both before and

after PSM. The possible causes of the greater decrease in PWV after

surgery in KCNJ5 mutation carriers may be due to higher baseline

aldosterone levels, less residual hypertension, and lower incidence

of autonomous cortisol secretion (92) compared to patients without

KCNJ5 mutations.

In short, with comparable age, sex, and hypertension status,

there is no difference in arterial stiffness between patients with and

without KCNJ5mutations, but patients with KCNJ5mutations have

a greater improvement in arterial stiffness after adrenalectomy.
Relationships of KCNJ5 somatic
mutations with metabolic disorder and
abdominal obesity

Metabolic syndrome (MetS) is a combination of metabolic

abnormalities, including obesity, diabetes, dyslipidemia, and

hypertension (93). In spite of the considerable amount of

previous studies that have revealed that excessive aldosterone is

related to the development of MetS (94, 95), a large controlled

cross-sectional study has shown no significant difference in

metabolic profiles between PA and EH patients (96). Various

diagnosis criteria of MetS and ratios of unilateral or bilateral PA

in different studies may cause heterogeneous prevalence of MetS in

patients with PA (97).

Although APA leads to higher aldosterone secretion compared

to BAH (98), several reports have revealed higher prevalence rates

of MetS, obesity, and dyslipidemia in patients with BAH compared

to those with APA (97, 99–101). Youichi et al. found that after

adjusting background characteristics, including PAC, patients with

BAH still have a higher prevalence of obesity than patients with

APA (100). These findings suggest PAC may be not the only

contributor to metabolic disorders in PA patients. Therefore,

obesity itself may be the potential contributor to the higher

prevalence of MetS in BAH. The relevance between aldosterone

overproduction and obesity is vague in patients with APA and BAH

and further investigations were needed.

CT is a well-established imaging tool to quantify abdominal

adipose tissue, utilizing the Hounsfield Units (HU) range to measure

the subcutaneous and visceral fat areas (102). Concerning the effect of

KCNJ5 somatic mutations on MetS, Chen et al. first reported that APA

patients with KCNJ5 mutations had fewer MetS, lower triglyceride

(TG) levels, waist circumference, and subcutaneous adipose tissue

(SAT) and visceral adipose tissue (VAT) area than those without

KCNJ5mutations even after matching for age (103). APA patients with

KCNJ5 mutations also had fewer MetS and lower triglyceride levels

compared to patients with BAH. Furthermore, APA patients with

KCNJ5 mutations have been reported to have significantly increased

abdominal adipose tissue after adrenalectomy, but not in patients

without mutations (103). A previous study has reported that

aldosterone and mineralocorticoid receptors play an important role

in adipose tissue development (104). An increase in adipose tissue area

after adrenalectomy was reported in APA patients (105). However, the

mechanism of these findings is still uncertain and may be intertwined

with many factors in addition to excessive aldosterone.
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The evidence about the direct effect of aldosterone on lipid

metabolism has not been confirmed. Some studies reported lipid

disorders were similar in patients with PA and EH (25, 106), but

others showed a positive correlation between aldosterone and TG

and low-density lipoprotein (107, 108). Interestingly, deterioration

in lipid metabolism has been found in APA patients after

adrenalectomy (105, 109). This change may be driven by the

decline of renal function after treatment of PA, which would lead

to a decrease of lipoprotein lipase and hepatic triglyceride lipase and

interfere with the metabolism of lipids (110). As for KCNJ5

mutation, the previous study revealed only patients with

mutations had a significant increase of TG after adrenalectomy,

but not in patients without mutations (103).

In short, APA patients appear lean, especially those with KCNJ5

mutations, but physicians should be aware of the high risk of

cardiovascular diseases related to aldosterone toxicity and

worsening dyslipidemia after adrenalectomy (103). However,

considering the complex interaction of aldosterone and MetS, and

the only study discussing the impacts of KCNJ5mutations on MetS,

further investigation is necessary.
Relationship of KCNJ5 somatic mutations
with subclinical hypercortisolism

Autonomous cortisol secretion (ACS), formerly known as

subclinical Cushing syndrome or subclinical hypercortisolism, is

characterized by autonomous cortisol hypersecretion from adrenal

adenomas or hyperplasia, but the absence of clinical symptoms of

overt Cushing’s syndrome (111–113). The prevalence of ACS has

been reported to be around 30% in patients with adrenal

incidentalomas (113), and 12.8% to 32% in patients with

concurrent ACS and PA (92, 114–116). Patients with ACS have a

higher risk of hypertension, obesity, dyslipidemia, hyperglycemia,

adverse cardiovascular events, and mortality compared to patients

with nonfunctional adrenal tumors (113, 117). PA patients with

concurrent ACS have also been reported to have a higher incidence

of cardiovascular and metabolic complications than patients with

pure PA (118–122).

Recently, KCNJ5 mutations have been identified in some

aldosterone- and cortisol-co-secreting adrenal adenomas (123).

Interestingly, results from the TAIPAI study group indicated that

ACS (1 mg dexamethasone suppression test > 1.5 µg/dL) is more

common in APA patients without KCNJ5 mutations than in

patients with KCNJ5 mutations (92). Furthermore, APA patients

without KCNJ5mutations and concurrent ACS were shown to have

a lower clinical success rate (36.8%) after adrenalectomy compared

to patients with KCNJ5 mutations and concurrent ACS

(42.9%) (92).

The IHC examination of CYP11B2 and CYP11B1, key enzymes

in aldosterone and cortisol biosynthesis, in adrenal slices is

commonly used to identify the source of aberrant secretions of

aldosterone and cortisol (124, 125). A recent study demonstrated

that the immunoreactivity of CYP11B1 was higher in adrenal

adenomas of PA patients with concurrent ACS compared to PA
Frontiers in Endocrinology 07
patients without ACS (126). Interestingly, some studies have

reported that the immunoreactivity of CYP11B1 was higher in

adenomas without KCNJ5 mutations compared with adenomas

harboring mutant KCNJ5 (92, 127). These results seem to support

that patients without KCNJ5 mutations are more likely to have

concurrent ACS than patients with adenomas harboring mutant

KCNJ5. However, other studies showed that the immunoreactivity

of CYP11B1 was relatively low in adenomas without KCNJ5

mutations (43, 128). Therefore, further research is still needed to

explore whether KCNJ5 mutations can directly or indirectly affect

the occurrence of ACS.
Pre-operative differentiation of mutations

Somatic mutations in APA patients can only be detected using

adrenal gland specimens after surgery. However, this is not helpful

to predict the cure rate or long-term prognosis before surgery.

Although adrenalectomy currently is preferred for patients with PA

concerning the risk of all-cause mortality and major adverse

cardiovascular events compared to medical treatment (129),

predicting the types of mutations with simple and safe methods

before surgery would possibly allow physicians to make a

comprehensive treatment strategy for patients. Future studies are

needed to explore the most appropriate diagnostic methods.
18-oxocortisol, 18-hydroxycortisol, and other
steroid fingerprints to predict KCNJ5 mutations

Steroid profiling using tandem mass spectrometry has shown

promising results for the pre-operative differentiation of somatic

mutations. APA patients with KCNJ5 mutations have been shown to

have a distinct steroid signature, with the highest concentrations of 18-

hydroxycortisol and 18-oxocortisol in the plasma from both adrenal

and peripheral veins (130). A comprehensive mass spectrometry

imaging study also reported elevated intensities of 18-hydroxycortisol

and 18-oxocortisol in KCNJ5-mutated APA specimens (127). A study

utilizing a steroid panel consisting of aldosterone, 18-hydroxycortisol,

18-oxocortisol, 11-deoxycorticosterone, corticosterone, cortisol, and

21-deoxycortisol in plasma from peripheral veins showed that 92%

of APAs could be classified according to their underlying somatic

mutations (130).

Adrenal vein sampling to predict
KCNJ5 mutations

Adrenal vein sampling is the gold-standard diagnostic

procedure for the identification of surgically curable patients with

PA. Conflicting results have been reported regarding the

relationship between somatic mutations of PA and adrenal vein

sampling results. Seccia et al. reported a higher lateralization index

in PA patients with KCNJ5 mutations, probably due to higher

aldosterone secretion (131). In contrast, another study showed that

the lateralization index between mutation non-carriers, ATPase-

mutated, and KCNJ5 mutated patients was not significantly

different (132). These discrepant findings may be due to the
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different lateralization indexes used (2 and 4 respectively) impeding

direct comparisons of the two studies.

NP-59 to predict KCNJ5 mutations
NP-59 adrenal scintigraphy is a functional study used to evaluate

adrenal cortical activity. Lu et al. reported using semiquantitative NP-

59 adrenal scintigraphy as an imaging biomarker to predict KCNJ5

mutations in PA patients (133). Among 62 PA patients who

underwent NP-59 adrenal scintigraphy with available KCNJ5

mutation status, adrenal-to-liver ratio (ALR) and maximal count

ratio between two adrenal glands (contrast, CON) derived from NP-

59 adrenal scintigraphy were used to differentiate patients with and

without KCNJ5 mutations. The results showed that the patients with

KCNJ5 mutations had significantly higher ALR and CON compared

to those without KCNJ5 mutations. Using optimal cutoff values of

ALR and CON, NP-59 adrenal scintigraphy could predict KCNJ5

mutations with sensitivity and specificity of 85% and 57%,

respectively. This is the first study using single photon emission

computed tomography (SPECT) to predict somatic mutation status

in PA patients.
Limitations

There are two major limitations in this review. First, in most of

the studies discussing the cardiovascular or metabolic impacts of

KCNJ5 somatic mutations in APA patients, the mutation

detection was made by traditional methods (random biopsy and

Sanger sequencing). The group called “non-KCNJ5 mutations”

were not homogeneous, that might induce a bias in the

interpretation of the results. As the advance of genotype

detection improved, further studies discussing the difference of

cardiovascular or metabolic impacts among various somatic

mutations are expected. Second, the majority of the studies
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analyzing the impacts of KCNJ5 somatic mutations on

cardiovascular or metabolism were performed in Asian cohorts.

Since the prevalence of KCNJ5 somatic mutations in Asia is higher

than in other western countries, the ethnic and environmental

factors may involve in the difference observed among APA

patients with or without KCNJ5 mutations. We look forward to

the clinical outcome data of KCNJ5 somatic mutations from other

countries other than Asia.
Prospects

KCNJ5 somatic mutations have been shown to be a good

prognostic predictor for the remission of hypertension after

unilateral adrenalectomy in APA patients (52), and steroid

profiling to predict mutation status may be of value to make a

comprehensive plan of treatments. However, more studies are still

needed to validate the diagnostic value of steroid profiling in APA

patients of different ethnicity.

Mutated potassium channel GIRK4, coded by a mutated KCNJ5

gene, has been demonstrated to have different pharmacological

characteristics to the wild-type channel. The calcium channel

blocker verapamil and macrolides such as amiloride have shown

particularly strong inhibitive abilities for mutant channels (134,

135). Targeted blockade of mutated GIRK4 may offer new

therapeutic strategies for APA patients with KCNJ5 mutations

who are unsuitable for surgery.

In conclusion, KCNJ5 somatic mutations in patients with APA

play an important role in cardiovascular outcomes (Figure 2),

including higher LVM, more impaired diastolic function, thicker

aortic wall, lower incidence of MetS, and possibly a lower incidence

of concurrent ACS, but better improvement in LVM, diastolic

function, arterial stiffness, and aortic wall thickness after

adrenalectomy compared to patients without KCNJ5 mutations.
FIGURE 2

The schematic diagram of the effect of KCNJ5 somatic mutations on target organ damage in patients with aldosterone producing adenoma. *~: similar
results between patients with or without KCNJ5 somatic mutations. *D (+): Improvement after adrenalectomy. *D (-): Deterioration after adrenalectomy.
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