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The production and secretion of saliva is an essential function of the salivary

glands. Saliva is a complicated liquid with different functions, including moistening,

digestion, mineralization, lubrication, and mucosal protection. This review focuses

on themechanism and neural regulation of salivary secretion, and saliva is secreted

in response to various stimuli, including odor, taste, vision, and mastication. The

chemical and physical properties of saliva change dynamically during physiological

and pathophysiological processes. Moreover, the central nervous system

modulates salivary secretion and function via various neurotransmitters and

neuroreceptors. Smell, vision, and taste have been investigated for the

connection between salivation and brain function. The immune and endocrine

functions of the salivary glands have been explored recently. Salivary glands play an

essential role in innate and adaptive immunity and protection. Various immune

cells such as B cells, T cells, macrophages, and dendritic cells, as well as

immunoglobins like IgA and IgG have been found in salivary glands. Evidence

supports the synthesis of corticosterone, testosterone, and melatonin in salivary

glands. Saliva contains many potential biomarkers derived from epithelial cells,

gingival crevicular fluid, and serum. High level of matrix metalloproteinases and

cytokines are potential markers for oral carcinoma, infectious disease in the oral

cavity, and systemic disease. Further research is required to monitor and predict

potential salivary biomarkers for health and disease in clinical practice and

precision medicine.
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Introduction

The production and secretion of saliva are the typical functions of

the salivary gland (SG). The SG is the first immune barrier in humans

and animals, constantly facing external pathogens. Antibodies are

known to be present in saliva, and salivary biomarkers are used to

diagnose inflammation and antigen challenge, so SGs are considered

to be potential immunization sites and useful proxies (1–5). The

structure and function of SGs and the properties and composition of

saliva, as well as other tissues in the oral cavity are summarized in

Table 1 (1–23). SGs contain a variety of cells, including acinar,

epithelial, immune, and endocrine cells. Saliva contains water, ions

(Na+ and Ca2+), immunoglobulins, enzymes, mucins, and hormones.

Besides, the more granular convoluted tubules in the submandibular

glands produce cell growth factors in mice and rats (Table 1) (6).

There are three bilateral salivary glands, the parotid (PG),

submandibular (SMG), and sublingual (SLG) gland, as well as
Frontiers in Endocrinology 02
thousands of minor SGs in the oral cavity. The PG, located in front

of the ear, is the largest SG in humans, but in mice and rats, the SMG

is the largest. The SMG lies in the submandibular area and the SLG in

the floor of the mouth (6, 24, 25). Stensen’s duct is the main excretory

duct of the PG and opens into the oral cavity in the buccal mucosa

near the second maxillary molar. The main excretory duct of the SMG

is Wharton’s duct, which enters the oral cavity under the tongue by

the lingual frenum called the sublingual caruncle. The SLG has small

ducts called ducts of Rivinus and a common duct, Bartholin’s duct,

which connects with Wharton’s duct at the sublingual caruncle

(24, 25).

The SG is composed of parenchyma (glandular secretory tissue)

with serous and mucous acinar cells, ductal cells, and myoepithelial

cells along with connective tissue. Also, there are fibroblasts, immune

cells, neuroendocrine cells, endothelial cells, stromal cells, and

pericytes (Figure 1) (8, 13). The average daily flow of salivary

secretion in adults is 1000–1500 mL/day and >90% is secreted from
TABLE 1 Cells, molecules, and microorganisms in oral tissue and saliva.

Tissue Salivary gland Saliva Tonsils Gingival tissue

Functions Secretion, Endocrine,
Immune

Immune, Regeneration,Digestion,
Protection, Mineralization, Lubrication

Immune Immune, Protection

Cell Epithelial cell + + (6) + +

Immune cell + (1, 3, 4) + (6) + +

Neuronal cell + – + +

Mesenchymal
stem cell

+ (7) – – +

Nuclear acid DNA + + + +

mRNA + + + +

miRNA + + + +

ncRNA + + + +

Protein,
peptide

Immunoglobin + (3–5) + (5) + +

Growth factor + (8, 9) + (10, 11) - + (12)

Enzyme + (13) + + + (14)

Functional
protein

Mucin,
Proline-rich protein,

a-amylase,
Cystatin,

Agglutinin, Glycoprotein;

Albumin,
Peroxidase,
Mucin,

Proline-rich protein,
a-amylase,
Cystatin,
Statherin,
Lactoferrin,
Defensin;

Defensin
(15);

Fractalkine
(16);

Collagenase (12),
Cathepsin (12),
Elastase (12),
Tryptase (12),

Dipeptidyl eptidase (12),
Myeloperoxidase (12),

Lactate dehydrogenase (12),
Lysosome,
Lactoferrin,
Albumin;

Hormone + (2, 17, 18) + (19, 20) – + (21)

Inorganic
substance

NO, Na+, K+, Cl–, HCO3
–,

Ca2+, NO3
– (6, 22),

NO, Na+, K+, Cl-, HCO3
–, F–, PO4

3-, Ca2+, NO2
– (22),

NO3
– (22), SCN− (23), Mg2+ (23)

– NO, Na+, K+, F–, Ca2+, I–

(14);

Microorganism Bacteria + (13) + (13) + +

Fungi + (13) + (13 - +

Viruses + (13) + (13) + +
+, reported; -, not reported; the numbers of references in brackets or mentioned on maintext.
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these three major SGs. Saliva is a fluid that contains water, ions (14,

22, 23, 26), carbohydrates, peptides (enzymes, hormones (9–12, 17–

21), and immunoglobulins), exfoliated cells (epithelial and immune

cells), nucleic acids, and microorganisms (Table 1). Saliva plays

important roles in moistening and lubrication, mucosal protection

and wound healing, anti-microbial action, tooth protection and

immunization (27, 28).

In addition, SGs are involved in neuroendocrine and endocrine

functions, taste and smell perception (29, 30). The human minor SG

single-cell RNA sequencing atlas (9 samples, 13,824 cells) shows not

only the traditional epithelial cells such as acini cells and duct cells,

but also diverse immune cells (B lymphocytes) with immunoglobins

(such as IgA and IgG), neuroendocrine cells (acidic glycoprotein

chromogranin A, CGA and glial cell line-derived neurotrophic factor

family receptor a3), and epithelial cells with antibacterial proteins

(such as lactoferrin and defensin) (31). Recently, the synthesis and

production of corticosterone, testosterone, and melatonin have been

reported in the SG of rats, supporting the hypothesis that the SG is an

endocrine gland and is involved in the regulation of endocrine

function (17, 32).
Molecular and neural mechanisms of
salivary secretion

Salivation is one of the classic Pavlov’s conditioned reflexes via

environment signals and neuronal mechanisms. The nervous system

mediates salivary function, sensory and motor stimuli induce changes

in salivary flow and components via cellular and molecular

mechanisms (8, 33, 34).

Odor induces secretion from SMGs and SLGs but not PGs in

humans. The salivary secretion rate increases in response to food or

taste-related odors, while different taste-related odors (sweet, savory,

and sour) and macronutrient-related odors (carbohydrates, proteins,
Frontiers in Endocrinology 03
fats, and low-calorie compounds) induce a similar increase in salivary

secretion rate, but do not influence the viscosity, elasticity, ɑ-amylase,

and lingual lipase activity. Combinations of stimuli are essential to

induce higher flow rates and increase the activity of salivary enzymes

to facilitate digestion (35). Human salivary proteome data show that

mechanical and gustatory stimuli do not change the total protein

concentration, but increases the volume and total amount of protein.

It seems that masticatory and gustatory stimuli activate the

parasympathetic and sympathetic nervous systems. Both chewing

and gustatory stimuli co-regulate the components and concentrations

of proteins in human SGs (36). Swallowing efficiency was positively

correlated with cerebellar gray matter volume, however, negatively

correlated with age in healthy older adults (52-82 years old, 28 female)

(37). In clinical study, reconstructing physiological homeostasis of the

masticatory complex decrease the thickness of the masseter muscle

and increase the height of the maxillary 2nd molar with flattened

occlusal curves and curves of Wilson via botulinum toxin-A injection,

it seems reshaping the masticatory complex can reset the muscle-

brain neurocircuits in orthodontics (38).

In humans, tastant recognition signals from the taste buds in the

mouth, pharynx, and larynx are transmitted through the facial,

glossopharyngeal, and vagus nerves, which terminate in the nucleus

of the solitary tract in the brainstem (29, 39). A study designed

multisensory food cues (1) odor, (2) odor+vision, (3) odor+vision

+taste, and (4) odor+vision+taste+mastication to test the saliva

secretion response. The multisensory stimuli result in significant

changes in salivary secretion rate and its components depending on

the combinations of sensory modalities (40). Transient receptor

potential (TRP) ion channels in oral epithelial cells respond to

temperature change, irritants (capsaicin), and cooling agents

(menthol). Capsaicin (a TRPV1 agonist) also induces a higher sIgA

secretion rate with an increase of the b-wave and heart rate variability
in the electroencephalogram, TRPV1 increases the sIgA secretion rate

through the sympathetic nervous system (41, 42). In another report,
FIGURE 1

Schematic graph of anatomy, histology, and cell types for the salivary glands and the neurocircuits of saliva secretion.
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TRPV1 agonists (nonivamide, 6.0 × 102 ppm) and TRPM8 agonists

(menthol, 1.0 × 104 ppm) also modify the components of saliva and

increase protein output from whole mouth saliva. And TRPV1

agonists (nonivamide, 6.0 × 102 ppm) induce an acute salivary

cystatin S response, which improves mucosal adhesion. The TRPA1

agonist cinnamaldehyde (1.8 × 104 ppm) is more effective than

menthol, but it cannot evoke saliva secretion, suggesting that

salivary responses are TRP agonist-specific (43).

Besides, reduced perception of basic taste and smell has been

reported in older patients, while there is no significant difference in

oral TRP stimulation between older and young groups, indicating that

chemo-sensation is retained in the older group. Salivary viscoelasticity

decreases with age (higher viscoelasticity in younger vs older groups)

(44). In humans, chewing induces salivary secretion through the

activation of mechanoreceptors in the periodontal ligaments, and

proprioceptors and/or nociceptors in the oral mucosa (10).

The salivary flow rate follows a circadian rhythm with the

acrophase at ~15:30 and falling to almost zero during sleep. The

concentrations of Na+, Cl–, Ca2+, K+, and protein in whole saliva also

show diverse circadian rhythms in SGs (45). There are rhythmic

expression of aquaporin 5 and anoctamin 1 in rat SMG by light

condition (46). Since the known clock gene, brain-muscle arnt-like 1

(Bmal1) and period 2(Per2) mRNA expression are expressed in a

circadian rhythm pattern in mouse mucous acini and striated ducts,

SGs might contain a peripheral clock regulating salivary flow and

electrolyte flux (47).

Repeated exposure to an image consistently paired with sour

candy immediately increases the saliva secretion rate, but this is not

maintained in a second experiment days later (48). In general, food

imagination can induce salivary secretion and the mouthwatering

sensation (8). In another report, images of foods did not induce an

increased salivary flow (49). Increased salivary flow has been found

after seeing actual food, and much greater flow occurs when watching

other people food. The belief of the participants as to whether they

can actually consume these foods has an impact on saliva flow. When

the same cookies are colored an unattractive green, the increased

salivary flow is eliminated, confirming that humans can develop

preferences for palatable food through social learning and

emphasizing the importance of palatability (50). Antidepressants

and antiparkinsonian medications cause xerostomia because of

disturbance in the central nervous system (CNS) (51, 52), this

mechanism may be the central accumulation of norepinephrine,

which activates a2-adrenoceptors and decreases the activity of

parasympathetic salivary neurons in the brainstem (53). Schematic

graph summarized the anatomy, histology, and cell types for the

salivary glands and the neurocircuits of saliva secretion (Figure 1).

The signals from taste-activated chemoreceptors, chewing-

activated mechanoreceptors, or nociceptors are transmitted to the

nucleus of the solitary tract and then the signals are transmitted to the

salivary nuclei (54). Stimulation of the parasympathetic nerves

induces protein-poor along with an increased volume of saliva via

muscarinic cholinergic receptors in SG acinar cells, whereas

stimulation of the sympathetic nerves induces protein-rich along

with a small volume of saliva via b1-adrenoceptors (34, 55, 56).

VIP mediates protein secretion and participates in parasympathetic-

mediated vasodilatation. VIP-immunoreactive nerve fibers are close

to acinar cells, secretory ducts, and blood vessels in human SMGs and
Frontiers in Endocrinology 04
PGs. In rat SMGs, VIP evokes acinar degranulation through cAMP-

activated protein kinase A (57, 58). Polypeptides in saliva can

modulate taste through interacting with the receptors on taste buds.

Neuropeptide Y in saliva acts on Y2 receptors expressed in the lingual

epithelial cells to induce satiation (59).
Endocrine and immune functions of
salivary glands

SGs produce saliva with endocrine and immune functions, review

literature overviewed the resident immune cells (B cells, T cells,

macrophages, and dendritic cells) in SGs (60, 61). CgA is stored in

the secretory granules of endocrine cells, and it is found in serous and

ductal cells in human SMGs through immunohistochemistry (IHC)

and in situ hybridization (62). In the SMGs of both rats and humans,

melatonin and its synthesizing enzyme arylalkylamine N-

acetyltransferase have been found in the striated ducts of SMGs; so

SGs can produce melatonin (2). In human PGs, SMGs, and labial

glands, melatonin is stored in the acinar cells, and released to saliva;

heavy immunogold staining has been found in the PG (17). The

primary substrate of steroid synthesis and enzyme activity for

corticosterone and testosterone production has been detected in the

rat SG (32), and estrogen receptor expression has been demonstrated

in normal human minor SGs (63). Sex hormone receptors and human

epidermal growth factor receptor 2 (HER-2) have been reported in

both benign and malignant salivary tumors (64). Androgen receptors

and HER-2 are present in high-grade SG carcinomas, and the

evaluation of these hormones receptors might benefit targeted

therapy or hormone treatment. Steroid hormones are thought to

modulate salivary components through autocrine or paracrine

pathways (32). Therefore, salivary corticosterone, testosterone, and

melatonin might be derived from SGs.

SGs might be one of the critical immune organs involved in innate

and adaptive immunity. Vaccines are usually delivered by

intramuscular injection, and SGs can be a candidate target for

enhancing the immunization response. Immunization of the SG has

already been confirmed to protect lethal challenge models of

infectious pathogens (65). In the lethal influenza virus infection

mouse model, soluble innate inhibitors in saliva such as agglutinin

can protect against lower respiratory tract infection. In mice, a potent

inhibitor of the virus in saliva can stop the deposited virus in the

upper respiratory tract progressing to the lower respiratory tract.

Since the saliva in the oral cavity bathes the oropharynx, the potent

inhibitor in the saliva can stop the virus in there (66). Since saliva

exerts the action of washing away materials such as viruses, a low

salivary flow may increase the risk of virus transmission, and a high

flow can clean and kill the virus in short time (67, 68).

Saliva functions in innate immunity of the oral cavity may protect

against demineralization of teeth. Gel-forming mucins (MUC) are a

major constituent, MUC19 is the salivary MUC in mice. A study

found MUC19 plays a key role in bacterial clearance, and formation

of heterotypic complexes in saliva (binding Streptococcus mutans) in

WT- and Mut-Muc19 mice, this represented a novel innate immune

function for mucins. Human MUC19 transcripts in salivary glands (n

= 7) and MUC19 glycoproteins in glandular mucous cells and saliva

are also found (69). Mucosal immunity including the mucus covering
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the respiratory tract, surfactants, anti-infectious molecules (sIgA,

defensins, and interferons), respiratory epithelial cells, and innate

immunity cells (nasal goblet cells and macrophages), form a mucosal

barrier that plays a vital role in COVID-19 (70). The mucosal immune

system in the nasal and oral cavities, acts as the first barrier, with the

appearance of sIgA in the saliva (4). It has been reported that the

salivary IgA responding to SARS-CoV-2 persists long-term (3

months) and shows a weak correlation with serum IgA. This

suggests that the IgA of the oral cavity comes from the SGs as sIgA

(5). IgA is dominant in early virus neutralization. Furthermore, after

day 49 post-symptom onset, saliva samples neutralize SARS-CoV-2-

pseudotyped viral particles. Anti-receptor binding domain IgA is

consistently more abundant in saliva than in serum (71). After a

second mRNA vaccine injection, IgG and IgA responses to S-protein

and its receptor-binding domain are detectable in human saliva (72).

Furthermore, cross-reactive sIgA against SARS-CoV-2 spike 1 is

detectable in saliva samples from people without SARS-CoV-2

infection (73). So specific salivary IgA, IgG, and IgM play

important roles in airway defense during ongoing SARS-CoV-2 and

its prognosis. The decrease in lactoferrin and IgA in COVID-19

patients suggests impairment of the immunoprotective mechanisms

of the mucosal barrier; lactoferrin may play an essential role in the

pathophysiology of severe cases, since these patients might be

vulnerable to secondary airway infection. The concentration of

lactoferrin is decreased in patients infected with COVID-19 even

after rehabilitation (74). IgA can prevent mucosal infection in the

mouth and airway, the lower levels of IgA damage this defense

mechanism and promote infection with SARS-CoV-2 and other

pathogens during and after infection.

Nasal-spray vaccines not only provoke a whole-body immune

response, but also activate a mucosal immune response in the nose

and respiratory tract to stop pathogens more quickly (75). Nasal

vaccines can make up for the defects of mRNA vaccines in lacking

respiratory mucosal immunity, in reaction to the acceleration of viruses

evading the immune responses and the increase of transmissibility (76).

Intranasal treatment with the novel engineered trimeric ACE2 (eT-

ACE2) protein fully protected mice from a d-variant challenge (500

pfu), and the viral load in lung homogenates was lower 4 days post-

infection, while the mortality in the control group was 100% within 8

days in the absence of eT-ACE2 treatment. This study demonstrated

that eT-ACE2 (1.5 mg/kg) has a high affinity for S-protein to neutralize

SARS-CoV-2 (77). Reducing ACE2 protect from SARS-CoV-2

infection via a novel function of farnesoid X receptor, the drug of

suppressing this receptor reduced ACE2 mRNA expression in human

nasal epithelial cell (78). With regard to mesenchymal stem cell-derived

extracellular vesicles from the oral cavity, a review discusses the

mechanisms of how this special stem cell can improve

neurodegenerative conditions (7). Enteric viruses infect SGs and

release into saliva in mice (79), this indicated the viruses infection in

SG and saliva as a potential risk transmission route through talking,

coughing, sneezing and kissing, not just fecal contamination. The new

study from healthcare workers reported the mRNA-BNT162b2

vaccination drastically induced a systemic immune response by

boosting neutralizing antibodies in serum, but not in saliva, therefore

oral mucosal immunity is not activated and cannot stop virus

acquisition via this route (80). Mosquito (Aedes aegypti) salivary

gland extract is known to regulate host immune responses and
Frontiers in Endocrinology 05
pathogen transmission, a salivary protein (LTRIN) have been

identified from mosquito, this protein can facilitates the transmission

of Zika virus by lymphotoxin-b receptor and interfering, LTRIN might

a target for Zika infection and treatment (81). In mosquito saliva,

anticoagulant, vasodilatory, and immunomodulatory activities is

detectable after the bite, the review discussed the innate and adaptive

response in skin to mosquito saliva (82).
Dysfunction and disorder in the
salivary gland

Systemic diseases, such as infection, inflammatory disorders,

genetic diseases, and neoplastic diseases and disorders impact the

function of oral organs (83–85). There are many reviews of salivary

function and secretion in health and disease (10, 86). Hyposalivation

is the objective reduction of salivary secretion, Xerostomia is the

feeling of oral dryness and a complaint in hyposalivation. Sjögren

syndrome (SS) is a well-known autoimmune disease, in which the

exocrine glands are primarily affected by oral dryness, and

autoimmune epithelitis is its major pathogenesis. Epithelial cells act

as the central regulators of autoimmune responses through presenting

antigens. The accumulation of immune cells regulates the local

immune responses and further activates epithelial cells leading to a

vicious cycle of epithelial cell and immune cell interaction. The

epithelium of the SGs is impaired by abnormal B cell and T cell

infiltration and secondary chronic inflammation causes the loss of

physiological functions (87). IL-17 and chemokine receptor 9+/a4b7-

Th17 cells promoted the inflammation, dysfunction, and cell death in

salivary gland of NOD/ShiLtJ mice, in human SS patient, serum IgA

and IL-17 level are higher with lower retinoic acid level, and there are

a numbers of chemokine receptor 9 and IL-17 double-positive cells in

biopsy specimens of salivary gland (88). A test from the minor

salivary glands of SS patients and healthy individuals, there is no

significant difference in leptin expression and leptin receptor

distribution in SG, therefore leptin seems not association with the

pathogenesis of SS (18). In patients with plaque psoriasis, a chronic,

immune-related disease, the secretory function of the PG and SMG is

lost and salivary amylase activity and total protein concentration is

decreased, meanwhile TNF-1, IL-2, and INF-g level are higher with

lower IL-10 (89), salivary total oxidant status and oxidative status

index may be potential diagnostic biomarkers for plaque

psoriasis (90).

Angiotensin-converting enzyme 2 (ACE2) and transmembrane

protease serine 2 (TMPRSS2) are target molecules for SARS-CoV-2.

ACE2 is the only human cellular receptor, furthermore, TMPRSS2

cleavage of the viral spike protein and ACE2 begin the host-pathogen

interaction process (91, 92). In saliva, furin cleaves the S protein into

S1 and S2 domains and is associated with the infectivity of SARS-

CoV-2 (93). S1 with the ACE2 recognition motif is responsible for

binding to the cell. The S2 domain regulates fusion of the virus with

the host cell (94). So the co-expression of ACE2, TMPRSS2, and furin

in the SGs is pivotal for SARS-CoV-2 to change the function of

salivary secretion, IHC analyses have shown these three proteins are

expressed in the SMGs of humans and rats (95). In SG sections from

adult patients with benign disorders (sialolithiasis and mucocele),

ACE2 and TMPRSS2 expression is present in the cytoplasm of serous
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acinar cells (96). Moreover, when samples of SGs from fatal COVID-

19 cases are tested using qRT-PCR, IHC, electron microscopy, and

histopathological analysis, infection and replication of COVID-19 are

found, as shown by the presence of ACE2 and TMPRSS receptors

(97). The interaction between ACE2 and the virus downregulates the

receptor and induces the accumulation of angiotensin II (98), which

reduces parotid secretion through vasoconstrictor action and changes

in water and electrolyte transport (99). Losartan (an angiotensin II

receptor blocker) decreases saliva and total protein secretion, on

account of reducing the mRNA expression of the renin-angiotensin

system (RAS) in the parotid and the microthrombotic occlusion in

vessels of the SGs (100). The downregulation of ACE2 leads to a

dysregulated RAS, inflammation, and constant damage throughout

the duration of COVID-19. The plasma ACE2 activity is elevated in

patients even after COVID-19 infection for 114 days (101). SARS-

CoV-2 can bind to ACE2 receptors in SGs and lyses the cells to induce

acute sialadenitis. Although fibrous repair and hyperplasia can repair

the damage, the consequence is SG hyposecretion and stenosis in the

ducts (102).

Aging is a physiological process with dry mouth and lower

salivary flow rates. Fat tissue is increased in SGs from the aged

population, and the proportional volume of acinar cell secretion is

reduced in elderly individuals (103). Notably, the reduction in the

number of olfactory and taste receptors leads to the diminished

intensity of stimulation and a decrease in the blood perfusion at the

glandular level in elderly individuals (103), supporting the idea that

the CNS is involved in the functions of SGs.

Medication-induced salivary dysfunction is a common cause of

xerostomia; the drugs target various receptors in SGs and the CNS,

hyposalivation, alteration of chemical composition and physical

properties, as well as cognitive functions are the causes of

xerostomia (60, 104, 105). SG damage includes radiation-induced

loss of acinar cells, impaired parasympathetic innervation, and

damaged vascular structures (106). Atrophy of the SGs occurs

secondary to their denervation in patients (107). The weight of

SMGs and aquaporin 5 expression in SMGs are decreased after

parasympathectomy (108). Chronic denervation of the trigeminal

nerve is linked to atrophy, and increased fatty tissue in the dog PG has

been reported, trigeminal dysfunction results in accumulation of

abnormal saliva and decreased weight and size of the ipsilateral SG.

Denervation and loss of the masticatory–salivary reflex is one of the

reasons for the atrophy of SGs (109).

Endocrine diseases such as diabetes mellitus are associated with

salivary gland dysfunction in humans (110), polyuria and

dehydration cause reduced salivary flow. Enlarged acinar cells and

ductal atrophy occur in the SMG, and salivary flow is reduced in mice

with type-2 diabetes along with increased mitochondrial dysfunction

and higher expression of PTEN-induced putative kinase 1 and parkin.

This suggests a mitophagy mechanism in hyposalivation (111).

Patients with SG dysfunction often complain about difficulty in

swallowing, chewing, and speaking (51) as well as manifestations of

halitosis (112), dry buccal mucosa, glossitis (113), cracked and peeling

lips (114), oral candidiasis (115, 116), and active caries (117).

Moreover, salivary dysfunction can have severe consequences,

including appetite loss, sleep deprivation, depression, and impaired

immune function. Saliva and SGs are critical for taste sensation:

dissolved tastants in saliva act on the taste receptors on taste buds to
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produce sensation (30). Hyposalivation decreases the tastants released

from foods, resulting in changed taste. Xerostomia is one of the severe

consequences in patients undergoing chemotherapy (118), so it is

important to assess the changes in taste and smell to guide the dosage

of drug in real time, rather than computed tomography or magnetic

resonance imaging. Salivary hypofunction in the elderly is associated

with less food consumption. Hyposalivation impairs chewing and

swallowing, resulting in the loss of appetite and an imbalance of food

intake, since flavor perception contributes to food intake (119, 120).

Hyposalivation in older adults along with lower nutrient intake causes

further health problems (121). Besides, hyposalivation leads to

insomnia, fragmented sleep, and daytime somnolence, because of

drinking at night and disruption of the circadian rhythm. In SS

patients, poor sleep quality results in depression and impaired

immune function (122, 123). Given the deficiency of anti-viral

proteins in saliva and of the oral and respiratory mucosal barrier,

hyposalivation is a potential risk factor for SARAS-CoV-2 and other

respiratory infections (124, 125).
Salivary biomarkers in health
and diseases

Salivary biomarkers are a powerful tool for prognosis, diagnosis,

and precision medicine. Increasingly, discoveries in the study of saliva

and meta-analysis by clinical scientists support the conclusion that

salivary biomarkers can act as a reporter for physiological and

pathophysiological condition, as well as the local oral and

periodontal environment. This has been applied to early detection

and monitoring in health and disease (126–128).

Increases in matrix metalloproteinase (MMP)-8, MMP-9, tissue

inhibitor of matrix metalloproteinase-1, myeloperoxidase, and

complement component C3c in saliva are strongly correlated with

periodontitis (129). The study reported increased S100A12 expression

in inflamed gingival tissue and involved in periodontitis (130). And

high baseline levels of complement component C3c in saliva can serve

as a marker for evaluating responses to full-mouth non-surgical

periodontal treatment, including oral hygiene instructions, scaling,

and root planing (131).

SS is characterized by lymphoplasmacytic infiltration of the

salivary and lacrimal glands. In the salivary proteome of SS

patients, fatty acid-binding protein, b-actin, and glutathione S-

transferase are decreased, while a-amylase precursor, cystatin

precursor, and keratin6-L are increased (132). Another study

reported that the levels of cystatin C, lysozyme C, and carbonic

anhydrase VI are lower, while the levels of psoriasin and caspase 14

are higher in SS patients (133).

COVID-19, the infectious disease caused by SARS-CoV-2 (one of

the coronaviruses), was declared a pandemic by the World Health

Organization and remains at a steady state (134). Salivary testing and

monitoring might provide an easy and effective point-of-care

platform for the quick and long-term diagnosis of COVID-19

(135). Eleven cases out of 12 (91.67%) and 20 out of 23 (86.96%)

COVID-19 patients are reported to be 2019-nCoV RNA-positive in

saliva (136, 137). However, in saliva swabs, half of 15 COVID-19

patients and 13 cases out of 31 (41.94%) are 2019-nCoV RNA-

positive in saliva (135, 138). The diagnostic value of saliva greatly
frontiersin.org

https://doi.org/10.3389/fendo.2023.1061235
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shang et al. 10.3389/fendo.2023.1061235
depends on how it is obtained. In samples from salivary gland ducts, 4

of 31 COVID-19 patients (12.90%) are found to be 2019-nCoV RNA-

positive (135).

Saliva is a sensitive and specific prognostic and diagnostic tool by

measuring the concentration of free circulating cortisol and melatonin

(139, 140). It is also used as a conventional test in clinical and basic

research. Salivary samples permit the real-time diagnosis and

monitoring of hormonal secretions and the control of the

concentration of hormones used as drugs (such as glucocorticoid

replacement therapy) (141). In 100 healthy volunteers, there are

different patterns in 3 biomarkers (cortisol, amylase and CGA) on

day- and night-saliva: higher level cortisol in lower BMI (body mass

index) group, and higher CGA with lower amylase in older group, and

lower CGA in male group (vs female); the cortisol levels follow the

higher level on day with lower on night as previous studies (142).

Salivary cortisol is useful for the screening of Cushing’s syndrome, it

is easy to detect the impaired circadian rhythm of the hypothalamic–

pituitary–adrenal axis presented by Cushing’s syndrome patients by

the higher cortisol values in saliva at night (143, 144). Inflammatory

profiles of saliva and serum in inflammatory bowel disease share

similar elevated IL-6 and MMP-10 levels in stimulated saliva (145).

Macrophage colony-stimulating factor 1 in saliva is positively

associated with caries in healthy children (7–9 years old) (146).

Several cytokines in saliva have been regarded as possible

biomarkers for oral squamous cell carcinoma (OSCC). Salivary IL-6

levels are elevated not only in OSCC patients but also in chronic oral

inflammatory diseases such as chronic periodontitis (CP) and oral

lichen planus (OLP). The salivary IL-6 level in OSCC patients is

significantly higher than that of in healthy volunteers, CP, and OLP

patients, indicating that IL-6 can serve as a promising biomarker for

OSCC detection, and can also be biomarker for identifying CP and/or

OLP (147, 148). The salivary IL-8 level is also elevated in both OSCC

patients and oral pre-cancer patients compared to healthy controls, so

it might be candidate for the risk of oral diseases (149).

A salivary microRNA has been reported as a new biomarker for

OSCC screening. miR-30c-5p is significantly decreased in the saliva of

OSCC patients. High expression of the miR-targeted genes is

negatively correlated with miR-30c-5p in tissue, and this might be

linked to the short overall survival in patients (150).

In HIV/SIV-induced periodontal disease in the rhesus macaques

model, phytocannabinoids reduce gingival/systemic inflammation

and salivary dysbiosis and improve the metabolic dysfunction

(151). In children with chronic kidney disease, the higher activity of

peroxidase and superoxide dismutase in stimulated saliva, as well as

elevated concentrations of uric acid and albumin in non-stimulated

saliva and stimulated saliva have been reported (vs control). Salivary

advanced oxidation protein products can be a potential biomarker

and diagnostic value in children patients. Additionally, ferric ion
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reducing antioxidant and uric acid in salivary are higher in children

patients, it might be as marker for disease progression (152, 153).

Salivary biomarkers will be effective and non-invasive in the

prognosis and monitoring of disease progression and evaluating the

response to treatment.
Conclusions and perspectives

In this review, we summarize the progress in studies of salivary

secretion and function. Many sensory stimuli can modulate the

salivary secretion, flow rate, and composition via the CNS.

Substantial evidence supports the endocrine and immune functions

of SGs. Abundant biomarkers in saliva are a potential tool for

monitoring, prognosis, diagnosis, and precision medicine in health

and disease. Based on endocrine and neuroendocrine reflexes in

salivary secretion, it is necessary to explore the neural circuits in

the brain–peripheral organ axis.
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