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Objective: Sepsis is a life-threatening condition secondary to infection that evolves

into a dysregulated host response and is associated with acute organ dysfunction.

Sepsis-induced cardiac dysfunction is one of the most complex organ failures to

characterize. This study performed comprehensive metabolomic profiling that

distinguished between septic patients with and without cardiac dysfunction.

Method: Plasma samples collected from 80 septic patients were analysed by

untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics.

Principal component analysis (PCA), partial least squares discrimination analysis

(PLS-DA), and orthogonal partial least square discriminant analysis (OPLS-DA) were

applied to analyse the metabolic model between septic patients with and without

cardiac dysfunction. The screening criteria for potential candidate metabolites

were as follows: variable importance in the projection (VIP) >1, P < 0.05, and fold

change (FC) > 1.5 or < 0.7. Pathway enrichment analysis further revealed associated

metabolic pathways. In addition, we constructed a subgroup metabolic analysis

between the survivors and non-survivors according to 28-day mortality in the

cardiac dysfunction group.

Results: Two metabolite markers, kynurenic acid and gluconolactone, could

distinguish the cardiac dysfunction group from the normal cardiac function

group. Two metabolites, kynurenic acid and galactitol, could distinguish

survivors and non-survivors in the subgroup analysis. Kynurenic acid is a

common differential metabolite that could be used as a candidate for both

diagnosis and prognosis for septic patients with cardiac dysfunction. The main

associated pathways were amino acid metabolism, glucose metabolism and bile

acid metabolism.

Conclusion: Metabolomic technology could be a promising approach for identifying

diagnostic and prognostic biomarkers of sepsis-induced cardiac dysfunction.
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Introduction

In critically ill patients, sepsis remains a common condition that is

associated with high mortality and substantial morbidity (1). Cardiac

dysfunction caused by sepsis, referred to as sepsis-induced

cardiomyopathy, has long been a subject of interest because

mortality can be greatly increased if sepsis is combined with this

complication (2). Thus, it is critical to assess the probability of septic

cardiomyopathy and predict clinical outcome in the early stage of

patient admission. However, the prognostic and therapeutic

importance of physiological changes observed in sepsis-induced

cardiac dysfunction remains poorly understood. In addition,

although early application of ultrasonography is helpful for the

diagnosis of septic cardiomyopathy, it lacks the basis for prognostic

prediction. There is also no robust evidence to identify the association

of troponin and brain natriuretic peptide (BNP) with septic

cardiomyopathy (3). Troponins, including troponin T and troponin

I, are widely used markers for myocardial injury. The proportion of

patients with elevated troponin T is up to 80% in sepsis (4), but no

evidence has been found to identify the relationship between left

ventricular (LV) dysfunction and troponin T (5). Another study

reported that troponin I level was also not an independent

predictor of mortality rate in sepsis (6). BNP, secreted by

cardiomyocytes of the ventricle, is dependent on LV filling

pressures and myocardial wall stretch (7). Julien et al. reported that

BNP plasma levels are possibly useful for detecting myocardial

dysfunction, but persistence of high BNP levels is associated with

age and acute kidney injury (8). These confounders should also

be considered.

Metabolomics technology is an emerging omics science developed

after genomics and proteomics. As an important part of systems

biology, this technology qualitatively and quantitatively analyses a

broad spectrum of small molecule metabolites, especially energy

metabolites, in organisms (9). The metabolome influences cellular

physiology by regulating other levels of “omics”, including the

genome, epigenome, transcriptome and proteome (10). Recent

advances in metabolomic technology have led to its increasing

application in biomedicine. In particular, the application of

metabolomics provides a strategic advantage for elucidating the

mechanism of disease, discovering biomarkers, and innovating new

therapeutics (11).

Emerging studies highlight the potential application of

metabolomics technology in sepsis (12). Feng and colleagues

reported that sepsis-induced acute kidney injury is accompanied by

an increased oxygen consumption, systemic aerobic and anaerobic

metabolism, and abnormal fatty acid metabolism (13). A preliminary

study demonstrated that 2-ethyl-2-hydroxybutyric acid regulates the

expression of programmed cell death protein-1 on the surface of

CD4+ T cells through the action of interleukin-2 or lactate, thereby

affecting the prognosis of septic patients (14). However, to our

knowledge, no study has been reported to clarify metabolomics

changes in sepsis-induced cardiac dysfunction.

In this study, nontargeted metabolomic profiling was utilized to

investigate metabolomic alterations in patients with sepsis-induced

cardiac dysfunction and to provide evidence for early metabolic

biomarkers for diagnosis and prognosis. Moreover, related

metabolic pathways were also explored.
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Materials and methods

Study design and participants

Between November 2020 and March 2022, adults who had been

admitted to the emergency department of Hunan Provincial People’s

Hospital were selected for the study. Patients with sepsis were

included in the study within the first 24 hours after admission. The

inclusion criteria of patients were based on Sepsis 3.0 in the Third

International Consensus Conference. Sepsis was defined as life-

threatening organ dysfunction induced by a dysregulated host

response to infection and a Sequential Organ Failure Assessment

(SOFA) score ≥ 2 (15). Sepsis-induced cardiac dysfunction was

defined as impaired but reversible cardiac dysfunction under

echocardiography, including LV systolic dysfunction, LV diastolic

dysfunction, and right ventricle (RV) systolic dysfunction (16).

Patients who met the exclusion criteria were as follows: (1) age < 18

years old; (2) pregnancy; and (3) history of heart disease, such as acute

coronary ischaemia, LV insufficiency, dilated cardiomyopathy,

hypertrophic cardiomyopathy, valvular heart disease, or recurrent

arrhythmia (5). The study complied with the guidelines of the

Declaration of Helsinki and the Conference for Coordination of

Clinical Practice and was approved by the Ethics Committee of

Hunan Provincial People’s Hospital. Informed consent was

obtained from all participants.
Blood sampling

Fasting venous blood was obtained from patients diagnosed with

sepsis within 24 hours of admission. Blood samples were collected in

ethylenediaminetetraacetic acid (EDTA) anticoagulant tubes and

centrifuged for 10 min at 4°C and 3,000 rpm to obtain plasma. The

fasting plasma samples were stored in a -80°C freezer and kept frozen

until metabolomic analysis.
Metabolite extraction and data processing

One hundred microlitres of the plasma sample was transferred to

a 1.5 mL Eppendorf tube, and 20 mL of L-2-chlorophenylalanine (0.3

mg/mL) was dissolved in methanol as an internal standard. The tube

was vortexed for 10 seconds. Subsequently, 300 mL of protein

precipitant (methanol and acetonitrile, 2:1, vol/vol) was added, and

the mixture was vortexed for 1 min. Then, the whole sample was

sonicated for 10 min in an ice-water bath and stored at -20°C for

30 min. The extract was centrifuged at 4°C (13,000 rpm) for 10 min.

The supernatant of each sample was collected. Quality control

samples (QCs) were prepared by mixing equal volumes of extracts

from all samples.

An ACQUITY UPLC I-Class system (Waters Corporation,

Milford, USA) and a VION IMS QTOF mass spectrometer (Waters

Corporation, Milford, USA) were used to analyse the metabolic

profiles in both ESI positive and ESI negative ion modes. The target

compounds were separated by an ACQUITY UPLC BEH C18 column

(1.7 mm, 2.1 × 100 mm) at 45°C with 2 mL sample injection. Water

and acetonitrile, both containing 0.1% formic acid, were used as
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mobile phases A and B, respectively. The gradient was set as follows:

0–2 min, 5% B; 4 min, 30% B; 8 min, 50% B; 10 min, 80% B; 14 min,

100% B; 15 min, 100% B; 15.1 min, 5% B and 16 min, 5% B. The flow

rate was 0.35 mL/min, and the column temperature was 45 °C.

Primary and secondary mass spectrometry data were collected by

a VION IMS QTOF mass spectrometer. The parameters of mass

spectrometry were set as follows: a low-energy scan (CE 4 eV) and a

high-energy scan (CE ramp 20–45 eV) to fragment the ions. Argon

was used as the collision-induced dissociation gas; scan time: 0.2 s;

interscan delay: 0.02 s; capillary voltage, 1 kV (negative mode) or 2 kV

(positive mode); capillary voltage: 2.5 kV; cone voltage: 40 V; source

temperature: 115°C; desolvation gas temperature: 450°C; and

desolvation gas flow, 900 L/h.

The original data were analysed by Progenesis QI V2.3 (Nonlinear

Dynamics, Newcastle, UK) software for baseline filtering, peak

recognition, integration, retention time correction, peak alignment

and normalization. Compound identification was based on the

precise mass-to-charge ratio (m/z), MS2 fragments, and isotopic

distribution using the Human Metabolome Database (HMDB) or

Metlin, and self-built databases to do qualitative analysis. The

metabolites in the self-built database are all established by

standards, which contain retention time, first-level accurate mass

information and second-level mass spectrum fragment information.

The module pathway analysis was based on the KEGG database.
Statistical analysis

Clinical data were analysed using SPSS Statistics 25 software

(IBM®, Armonk, NY, USA). Data are represented as the mean ±

standard deviation or median and interquartile range. Continuous

variables were compared using Student’s t test or the Mann−Whitney

U test. Student’s t test is used when two samples are small and meet

the conditions of normal distribution and homogeneity of variance.

The Mann−Whitney U test was used when the samples did not meet

the conditions of normal distribution and homogeneity of variance.

Categorical variables between the two groups were compared by

Fisher’s exact probability method. P < 0.05 was considered

statistically significant.

The metabolic profiles were imported into R for principal

component analysis (PCA) to observe the overall distribution

among the samples and the stability of the entire analysis process.

Partial least squares discriminant analysis (PLS-DA) and orthogonal

partial least squares discriminant analysis (OPLS-DA) were used to

distinguish differential metabolites between groups. To prevent

overfitting, 7-fold cross-validation and 200 response permutation

tests were utilized to evaluate the quality of the model. Variable

importance of projection (VIP) values obtained from the OPLS-DA

model were used to rank the overall contribution of each variable to

group discrimination. A two-tailed Student’s t test was further used to

verify whether the differences in metabolites between groups were

significant. Differential metabolites were selected with VIP >1.0,

P < 0.05, and fold change (FC) >1.5 or <0.7. Binary logistic

regression analysis was constructed to screen independent risk

factors. Receiver operating characteristic (ROC) curves were

constructed to evaluate the diagnostic ability of differential

metabolites between the tested groups.
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Results

Study design and clinical synopsis

Initially, a total of 132 patients were enrolled. Based on the

exclusion criteria, 37 patients with normal cardiac function and 43

patients with cardiac dysfunction were eventually included in our

study. The flow chart is shown in Figure 1.

The clinical characteristics are shown in Table 1. Cardiac

dysfunction is common in sepsis, affecting 54% (n=43) of patients.

No significant differences in sex, age, comorbidities, or site of

infection were noted between the two groups. Lactate levels and

troponin I levels were higher in the cardiac dysfunction group

(P=0.037 and P=0.023, respectively). N-terminal pro-brain

natriuretic peptide (NT-proBNP) was elevated in the cardiac

dysfunction group, but the difference was not statistically significant

(P=0.051). The 28-day mortality was increased in the cardiac

dysfunction group, although the difference was not statistically

significant (P=0.178). ROC curves were constructed to determine

the predictive value of variables in diagnosing sepsis-induced cardiac

dysfunction. The AUC for lactate level (AUC 0.636, SE 95%

confidence interval 0.513 to 0.759, P = 0.037) was equivalent to

troponin I (AUC 0.647, SE 95% confidence interval 0.519 to 0.775,

P = 0.024) and NT-proBNP (AUC 0.627, SE, 95% confidence interval

0.505 to 0.750, P = 0.051). The three AUCs were less than 0.75,

indicating that the three variables were not robust enough for

diagnosing sepsis-induced cardiac dysfunction.
Metabolite analysis and model validation in
the normal cardiac function group and
cardiac dysfunction group

The PCA model in the positive and negative ion modes showed

that the instrument was stable throughout the experiment. The red

squares, green triangles, and green circles in the figure represent the

cardiac dysfunction group, normal cardiac function group, and QC

group, respectively (Figures 2A, B).

Then, the PLS-DA method was applied to analyse the metabolite

profile: in the positive ion mode, there were significant differences

between the normal cardiac function group and the cardiac

dysfunction group (CV-ANOVA,F=17.796, P<0.001]; in the

negative ion mode, the two groups also exhibited significant

differences (CV-ANOVA, F=19.066, P<0.001) (Figures 2C, D).

These findings indicate that the PLS-DA model could be used to

distinguish septic patients with cardiac dysfunction from those with

normal cardiac function.

To achieve the greatest separation of differential metabolites

between the two groups, OPLS-DA was performed based on values

of VIP > 1. OPLS-DA demonstrated notable separation in metabolic

profiles between the cardiac dysfunction group and the normal

cardiac function group (Figures 2E, F). The permutation chart

verified the validity of the model. R2 and Q2 were generated by

permutation test. When R2 > 0, Q2 < 0, it indicates that the model is

reliable (17). The results of the permutation chart showed that the

models were reliable (Figures 2G, H).
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Screening of differential metabolites
between the normal cardiac function group
and cardiac dysfunction group

Univariate statistical analysis was applied to screen differential

metabolites. A volcano plot was utilized to visualize the P value, VIP

and fold change value. The red dots represent the upregulated

metabolites, while the blue dots represent the downregulated

metabolites (Figures 3A, C). The heatmap intuitively displays

differential metabolites in different samples. In the heatmap of

positive and negative ion modes, the Z scores of potential

biomarkers were labelled in terms of the types of metabolites

(Figures 3B, D). The most differential metabolites, which can be

candidate for biomarkers, are presented in Table 2. The screening

criteria for potential biomarkers were as follows: VIP >1, P < 0.05, and

FC > 1.5 or < 0.7 (17). Seventeen metabolites differed significantly

between the normal cardiac function group and the cardiac

dysfunction group.

Subsequently, we constructed binary logistic regression analysis to

screen risk factors and ROC curve analysis to evaluate the predictive

ability in the differential metabolites. Kynurenic acid, gluconolactone,

3-hydroxy-N6,N6,N6-trimethyl-L-lysine and 25-hydroxycholesterol

were indentified as independent risk factors for sepsis-induced
Frontiers in Endocrinology 04
cardiac dysfunction, and the AUC values of kynurenic acid and

gluconolactone were > 0.75 (Supplymentary Tables 1, 2). The

AUCs for kynurenic acid and gluconolactone were 0.801, 0.754,

respectively. We also constructed ROC analysis combining

kynurenic acid and gluconolactone. However, the AUC for

combining kynurenic acid and gluconolactone was 0.789, which

was not superior to kynurenic acid (Figures 3E–G).
Differential metabolic pathways between the
normal cardiac function group and cardiac
dysfunction group

KEGG and HMDB were applied to analyse cardiac dysfunction-

associated metabolites, and the results were submitted to

MetaboAnalyst. In the top 20 metabolic pathway enrichment maps,

significance is indicated by logarithm of the reciprocal of P value

based on 10 (Figure 4A). In the top 20 bubble chart, the colour and

size of each circle are determined by P values. (Figure 4B). The

following three important metabolic pathways were identified:

tryptophan metabolism, the pentose phosphate pathway, and lysine

degradation. The results of pathway enrichment analysis for these

differential metabolites are summarized in Supplementary Table 3.
A

B

FIGURE 1

Flowchart and study design. (A) Flowchart of individuals enrollment and study design in total patients with sepsis. (B) flowchart of subgroup analysis
between survivors and non-survivors in sepsis with cardiac dysfunction.
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Metabolite analysis and model validation in
the survivors and non-survivors of cardiac
dysfunction group

It has been reported that mortality can be increased if sepsis is

combined with cardiac dysfunction (2). In our study, 28-day mortality

was increased in the cardiac dysfunction group, although the difference

was not statistically significant due to the small sample size. It is crucial

for physicians to predict clinical outcome exactly in the early stage of

patient admission; thus, clarifying the metabolic changes in non-

survivors is of great importance. A comparison between the survivors

and non-survivors in the cardiac dysfunction group was performed. The

PCA, PLS-DA and OPLS-DA models distinguished the metabolic

profiles of the survivors from those of the non-survivors. The blue

squares, red triangles and green circles in the figure represent the non-

survivors, survivors and QC samples, respectively. PLS-DA analysis of

the metabolite profile of the plasma sample: results in the positive ion
Frontiers in Endocrinology 05
mode suggested that there were significant differences between survivors

and non-survivors (CV-ANOVA, F=23.301, P<0.001); in the negative

ion mode, the two groups also exhibited significant differences (CV-

ANOVA, F=26.217, P<0.001). In the OPLS-DAmodel, permutation tests

showed that the model is reliable. (Figures 5A–H).

Screening of differential metabolites
between the survivors and non-survivors
of cardiac dysfunction group

Volcano maps and heatmaps were generated (Figures 6A–D). The

most differential metabolites are presented in Table 3 following these

criteria: VIP >1, P < 0.05, and FC > 1.5 or < 0.7. Twenty-five

metabolites differed significantly between the survivors and

non-survivors.

Then, we constructed binary logistic regression analysis to screen

risk factors and ROC curve analysis to evaluate the predictive ability.
TABLE 1 Clinical characteristics of subjects enrolled in the study.

Variables Overall (N=80) Septic patients with normal cardiac
function (N=37)

Septic patients with cardiac
dysfunction (N=43)

P value

Characteristic

Sex (Male%) 47 (58.8) 25 (67.6) 22 (51.2) 0.208

Age (years) 59.2 ± 13.9 59.7 ± 13.6 58.7 ± 14.4 0.731

Combidities

Hypertension 26 (32.5) 12 (32.4) 14 (32.6) 0.990

Diabetes 19 (23.8) 8 (21.6) 11 (25.6) 0.678

Chronic
respiratory
disease

20 (25.0) 9 (24.3) 11 (25.6) 0.897

Chronic kidney
disease

8 (10.0) 2 (5.4) 6 (14.0) 0.275

Neurologic
disease

7 (8.8) 2 (5.4) 5 (11.6) 0.316

Site of infection

Lung 44 (55.0) 22 (59.5) 22 (51.2) 0.457

Gentiourinary
tract

30 (37.5) 11 (29.7) 19 (44.2) 0.248

Hepatobiliary 22 (27.5) 12 (32.4) 10 (23.3) 0.359

Gastrointestine 14 (17.5) 6 (16.2) 8 (18.6) 0.779

Blood 15 (18.8) 5 (13.5) 10 (23.3) 0.390

Neural system 2 (2.5) 1 (2.7) 1 (2.3) 0.914

Soft tissue 6 (7.5) 3 (8.1) 3 (7.0) 0.848

Lactate(mmol/L) 2.0 (1.3-3.6) 1.7 (1.3-2.4) 2.2 (1.6-4.9) 0.037

Troponin I (ng/
ml)

0.07 (0.02-0.84) 0.03 (0.01-0.93) 0.10 (0.04-0.92) 0.023

NT-proBNP (pg/
ml)

1405.0 (526.3-5972.5) 925.0 (479.8-2596.8) 2740.0 (621.0-6910.0) 0.051

28-day mortality 16 (20.0) 5 (13.5) 11 (25.6) 0.178
Data represented as mean ± standard deviation or median and interquartile range. Continuous variables were compared using Student’s t-test or the Mann-Whitney U test.Categorical variable were
compared using the chi-square test or Fisher’s exact test as appropriate.Patients with sepsis was enrolled into the study within 24 hours from admission to emergency department.
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Only kynurenic acid and galactitol were indentified as independent

risk factors for 28-day mortality in sepsis-induced cardiac dysfunction

and the AUC values were > 0.75 (Supplementary Tables 4, 5).The

AUCs for kynurenic acid and galactitol were 0.821, 0.773,

respectively. We also constructed ROC analysis combining

kynurenic acid and galactitol. Whereas, the AUC for combining

kynurenic acid and alactitol was 0.796, which was not superior to

kynurenic acid (Figures 6E–G).
Differential metabolic pathways between
survivors and non-survivors in the cardiac
dysfunction group

In the top 20 metabolic pathway enrichment maps and bubble

chart (Figures 7A, B), the following three important metabolic
Frontiers in Endocrinology 06
pathways were identified as differential metabolic pathways between

the survivors and non-survivors: galactose metabolism, primary bile

acid biosynthesis, and phenylalanine metabolism. The results of

pathway enrichment analysis for these differential metabolites are

summarized in Supplementary Table 6.
Discussion

Metabolomics is a rapidly developing technology that has been

applied in many fields, such as biomarker investigation. To the best of

our knowledge, this is the first study to perform metabolic analysis for

septic patients with cardiac dysfunction. We first identified that key

metabolites were changed during the development of sepsis-induced

cardiac dysfunction. Two metabolite markers, kynurenic acid, and

gluconolactone could distinguish the cardiac dysfunction group from
A B

D

E F

G H

C

FIGURE 2

The multidimensional results in positive and negative ionization mode in total patients. (A) PCA score plot in positive ionization mode [R2X (cum) = 0.519,
Q2 (cum) = 0.442]. (B) PCA score plot in negative ionization mode [R2X (cum) = 0.502, Q2 (cum) = 0.439]. (C) PLS-DA score plot in positive ionization
mode [R2X (cum) = 0.219, R2Y (cum) = 0.756, Q2 (cum) = 0.563]. (D) PLS-DA score plot in negative ionization mode [R2X(cum) = 0.249, R2Y(cum) =
0.778 Q2(cum) = 0.595]. (E) OPLS-DA score plot in positive ionization mode [R2X (cum) = 0.219, R2Y (cum) = 0.756, Q2 (cum) = 0.459]. (F) OPLS-DA
score plot in negative ionization mode [R2X(cum) = 0.249, R2Y(cum) = 0.778 Q2(cum) = 0.398]. (G) Permutation test in positive ionization mode (R2 =
0.620, Q2= -0.386). (H) Permutation test in negative ionization mode (R2 = 0.636, Q2= -0.356). PCA, principal component analysis; PLS-DA, partial least
squares discrimination analysis; OPLS-DA, orthogonal partial least squares-discriminant analysis.
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the normal cardiac function group. Accordingly, we also discovered

three important metabolic pathways related to sepsis-induced cardiac

dysfunction, including tryptophan metabolism, pentose phosphate

pathway, and lysine degradation. Next, we performed a comparison

between the survivors and non-survivors in the cardiac dysfunction

group. Two metabolites, including kynurenic acid and galactitol,

could distinguish survivors and non-survivors in patients with

sepsis-induced cardiac dysfunction. The crucial metabolic pathways

are galactose metabolism, primary bile acid biosynthesis, and

phenylalanine metabolism.

The most important finding was the identification of kynurenic

acid as a potential metabolite biomarker for diagnosing sepsis-

induced cardiac dysfunction and predicting poor outcomes.

Kynurenic acid is a key degradation metabolite of tryptophan

through the kynurenine pathway. Compared with kynurenine,

kynurenic acid is not metabolized and stable in solution (18).

Hence, kynurenic acid is reported to be a potential candidate

laboratory biomarker of metabolic diseases as atherosclerosis and

diabetes (19). Tryptophan is an essential amino acid that can only be

provided from nutrition intake. Its metabolites play key roles in a

variety of physiological processes, from cell growth and maintenance
Frontiers in Endocrinology 07
to coordinating the organism’s response to the environment (20).

Tryptophan catabolism by the kynurenine pathway is a pivotal

metabolic pathway closely associated with the innate immune

system (21). In the early stage of sepsis, indoleamine 2,3-

dioxygenase 1 (IDO1), a key enzyme that converts tryptophan to

kynurenine, is activated and enhances proinflammatory effects that

may result in severe tissue damage and septic shock (22). Afterwards,

the accumulation of kynurenine and its metabolites, such as

kynurenic acid , can induce immunotolerance or even

immunoparalysis through the expansion of regulatory T cells

(Tregs) and T helper 2 (Th2) cells and with the mitigation of

inflammatory Th1 and Th17-mediated responses (23) .

Immunosuppression may contribute to the inability to overcome

secondary infection and late mortality. These findings may explain

why kynurenic acid levels were remarkably elevated in the cardiac

dysfunction group and the non-survivors in this group. To our

knowledge, this is the first study to find increased kynurenic acid in

sepsis-induced cardiac injury. However, the underlying mechanism

needs further investigation.

Our data also revealed that another important metabolite,

gluconolactone, in the pentose phosphate pathway could be used to
A B

D
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C

FIGURE 3

Volcano diagrams and heatmaps in total patients. (A) Volcano map in positive ionization mode. (B) Heatmap in positive ionization mode. (C) Volcano
map in negative ionization mode. (D) Heatmap in negative ionization mode. In the volcano diagrams, the red dots represent up-regulated metabolites,
and the gray dots represent no significant difference, and the blue dots represent down-regulated metabolites. (E–G) ROC curve analysis of the ability of
differential metabolites to predict sepsis with cardiac dysfunction.
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distinguish the cardiac dysfunction group and normal cardiac

function group. Gluconolactone is considered to be a free radical

scavenger. It relieves ischaemia/perfusion-induced cardiac injury

although activation of extracellular signal-regulated kinase

signalling (24). However, the levels of gluconolactone were not

greatly increased in the non-survivors of the cardiac dysfunction
Frontiers in Endocrinology 08
group. According to relevant literature and our results, we speculate

that the alteration of gluconolactone might be a protective adaptive

response to overcome the cardiotoxic effects of sepsis.

Another important finding is that the level of galactitol was

markedly increased in the non-survivors of the cardiac dysfunction

group. ROC analysis demonstrated that it is an independent risk
TABLE 2 In two ionization modes, differential metabolites between normal cardiac function group and cardiac dysfunction group.

Ionization mode Metabolites Formula Compound ID
HMDB (or Metlin)

Normal cardiac function group vs.
cardiac dysfunction group

VIP FC P value

Pos L-Acetylcarnitine C9H17NO4 HMDB0000201 11.359 1.901 <0.001

Creatine C4H9N3O2 7 5.159 1.708 0.022

5-Aminopentanoic acid C5H11NO2 HMDB0003355 2.740 0.591 <0.001

N1-Methyl-4-pyridone-3-carboxamide C7H8N2O2 HMDB0004194 1.638 1.689 0.042

3-Hydroxy-N6,N6,N6-
4-trimethyl-L-lysine

C9H20N2O3 6234 1.227 1.731 0.013

Quinolinic acid C7H5NO4 HMDB0000232 1.159 2.720 0.017

5-Methoxyindoleacetate C11H11NO3 7016 1.049 1.625 0.010

25-Hydroxycholesterol C27H46O2 HMDB0006247 1.220 0.677 0.004

Neg Gluconic acid C6H12O7 345 9.590 3.622 0.009

Glycochenodeoxycholic acid 3-glucuronide C32H51NO11 HMDB0002579 4.715 0.367 0.033

3alpha-Androstanediol glucuronide C25H40O8 HMDB0246252 4.201 1.748 0.016

D-Xylonic acid C5H4N4O3 HMDB0059750 3.233 1.899 <0.001

Pregnanediol-3-
glucuronide

C27H44O8 HMDB0010318 2.821 2.068 0.008

Uridine C9H12N2O6 HMDB0000296 2.782 1.677 0.001

Kynurenic acid C10H7NO3 HMDB0000715 1.389 4.698 0.003

5’-Phosphoribosyl-N-formylglycinamide C8H15N2O9P HMDB0001308 1.347 1.583 0.018

Gluconolactone C6H10O6 HMDB0000150 1.180 2.299 <0.001
Given VIP >1.0, P < 0.05, and FC >1.5 or < 0.7, 17 metabolites were identified.
The differential metabolites that enriched into pathways were listed in a decreasing order according to VIP.
A B

FIGURE 4

The significantly enriched pathways involved in total patients. (A) Top-20 metabolic pathway enrichment map.The red line indicates a P value of 0.01,
and the blue line indicates a P value of 0.05. When the top of the bar is higher than the blue line, the pathway is considered to be significant. (B) Top-20
bubble chart. The colour changed from green to red indicates that significance increases in turn; the larger the point is, the greater the number of
metabolites enriched in the pathway.
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factor to predict 28-day mortality in cardiac dysfunction patients.

Galactitol, a downstream metabolite of galactose metabolism, is

generated by the hydrogenation of galactose via aldose reductase

and cannot be further metabolized (25). A study also reported that

galactitol emerged as the most obvious differential product in sepsis-

related liver injury, suggesting that galactose metabolites are related to

liver injury in the endotoxaemic state (26). However, the underlying

mechanisms of galactitol and sepsis-induced organ dysfunction need

further discussion. Under physiological conditions, aldose reductase

has relatively low affinity for galactose. In the case of galactose

accumulation, the production of galactitol increases, and multiple-

aspect damage is induced. Galactitol leads to the exhaustion of

nicotinamide adenine dinucleotide phosphate and the reduction of

glutathione reductase activity and then acts as a metabolic toxin to the

body and induces the accumulation of free radicals (25). Galactitol is

incapable of diffusing across cellular membranes because of poor

liposolubility, resulting in an increase in intracellular osmotic
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pressure (27). The free radicals together with the osmotic effect of

galactitol eventually result in rupture of the cellular membrane and

impairment of mitochondrial DNA and proteins (28). Further studies

are needed to verify these potential mechanisms in sepsis.

Particular changes in the metabolic pathway occurred in this study.

In the cardiac dysfunction group of septic patients, we found that the

altered pathways were mainly involved in tryptophan metabolism,

lysine degradation, and pentose phosphate pathway. In the non-

survivors of the cardiac dysfunction group, we found that the

changed pathways were mainly involved in galactose metabolism,

primary bile acid biosynthesis and phenylalanine metabolism.

Tryptophan metabolism, lysine degradation and phenylalanine

metabolism belong to amino acid metabolism pathways. Both

pentose phosphate pathway and galactose metabolism belong to the

glucose metabolism pathways. Primary bile acid biosynthesis is

associated with bile acid metabolism. Among these, tryptophan

metabolism deserves special attention. Kynurenic acid, a candidate
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FIGURE 5

The multidimensional results in positive and negative ionization between survivors and non-surviviors of cardiac dysfunction group. (A) PCA score plot in
positive ionization mode [R2X (cum) = 0.497, Q2 (cum) = 0.401]. (B) PCA score plot in negative ionization mode [R2X (cum) = 0.507, Q2 (cum) = 0.369].
(C) PLS-DA score plot in positive ionization mode [R2X (cum) = 0.409, R2Y (cum) = 0.787 Q2 (cum) = 0.582]. (D) PLS-DA score plot in negative ionization
mode [R2X(cum) = 0.447, R2Y(cum) = 0.795, Q2(cum) = 0.576]. (E) OPLS-DA score plot in positive ionization mode [R2X (cum) = 0.409, R2Y (cum) =
0.787 Q2 (cum) = 0.483]. (F) OPLS-DA score plot in negative ionization mode [R2X(cum) = 0.447, R2Y(cum) = 0.795, Q2(cum) = 0.462]. (G) Permutation
test in positive ionization mode(R2 = 0.792, Q2= -0.245). (H) Permutation test in negative ionization mode(R2 = 0.767, Q2= -0.242).
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biomarker for diagnosing sepsis-induced cardiac dysfunction and

predicting outcome, is an important metabolite of tryptophan

metabolism. An increasing number of studies have revealed that

tryptophan and its metabolites play key roles in inflammation-

associated processes (29). In addition to influencing T-cell immunity

and leading to immune tolerance, emerging studies have highlighted

the pivotal role of tryptophan metabolism in modulating B-cell

functions and humorall immunity (30). Aryl hydrocarbon receptor, a

receptor that responds to tryptophan metabolites, affects the

proliferation and switching of the immunoglobulin isotype in B cells

(31). It has been reported that B cells and neutrophils regulate each

other in bone marrow, and B cells modulate neutrophils’ tissue-

damaging properties by influencing neutrophils in sepsis (32). Given

the above, tryptophan metabolism has a major influence on clinical

outcomes in critically ill septic patients.

Some limitations of our study should be considered. This study is a

small, single-centre trial. Blood samples were analysed at only one time

point. Further research with more participants will be performed to

comprehensively evaluate the timing and dynamic changes in

differential metabolites and metabolic pathways, providing a more

precise view of changes during convalescence or deterioration. Our
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study also has some advantages. Currently, this is the first study to

evaluate differential metabolites in septic patients with cardiac

dysfunction. Patients were prospectively observed until 28 days after

emergency admission. Mitochondrial function has a close relationship

with cardiovascular disease. Future studies should include correlation

analysis between the differential metabolites and mitochondrial

bioenergetics and homeostasis to explore the underlying mechanism.
Conclusion

We used metabolomics technique to demonstrate that the

metabolites of patients with sepsis-induced cardiac dysfunction

change substantially and are mainly associated with the metabolic

pathways of amino acid metabolism, glucose metabolism and bile acid

metabolism. We also clearly distinguished septic patients with and

without cardiac dysfunction using metabolites. As a consequence,

kynurenic acid and gluconolactone are candidate biomarkers for

diagnosing sepsis-induced cardiac dysfunction; kynurenic acid and

galactitol are candidate biomarkers for predicting 28-day mortality.

Kynurenic acid is a common differential metabolite in the two analyses
A B
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FIGURE 6

Volcano diagrams and heatmaps between survivors and non-surviviors of cardiac dysfunction group. (A) Volcano map in positive ionization mode.
(B) Heatmap in positive ionization mode. (C) Volcano map in negative ionization mode. (D) Heatmap in negative ionization mode. (E–G) ROC curve
analysis of the ability of differential metabolites to predict 28-mortality in sepsis with cardiac dysfunction.
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TABLE 3 In two ionization modes, differential metabolites between survivors and non-survivors.

Ionization mode Metabolites Formula Compound ID
HMDB (or Metlin)

Survivors vs.Non-survivors

VIP FC P value

Pos L-Acetylcarnitine C9H17NO4 HMDB0000201 9.657 1.712 0.014

Glycocholic acid C26H43NO6 HMDB0000138 6.943 2.566 0.026

Taurochenodesoxycholic acid C12H22O11 137 5.993 8.927 0.041

Sucrose C7H8N2O2 HMDB0004194 1.638 4.943 0.042

Taurocholic acid C26H45NO7S 34542 5.505 6.274 0.029

Creatine C4H9N3O2 7 5.002 1.935 0.034

Phytosphingosine C18H39NO3 7066 3.534 6.773 0.023

Sorbitol C6H14O6 HMDB0000247 2.740 2.742 0.002

N-Acetylserotonin C12H14N2O2 HMDB0001238 2.542 6.847 <0.001

UDP-D-galacturonic acid C15H22N2O18P2 HMDB0012302 2.449 3.118 0.025

N1-Methyl-4-pyridone-3-carboxamide C7H8N2O2 HMDB0004194 2.284 1.899 0.039

N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole C14H18N2O4 HMDB0011112 1.651 4.026 0.003

S-Adenosylmethioninam-ine C14H23N6O3S HMDB0000988 1.650 12.208 0.048

L-Tryptophan C11H12N2O2 33 1.625 3.565 <0.001

beta-D-ribosylnicotinate C11H13NO6 HMDB0304540 1.418 5.141 0.017

L-Histidine C6H9N3O2 21 1.338 1.401 0.044

S-Adenosylhomocysteine C14H20N6O5S HMDB0000939 1.013 3.515 0.006

Neg Phenylacetylglutamine C13H16N2O4 HMDB0006344 9.023 5.673 0.043

Hippuric acid C9H9NO3 HMDB0000714 2.469 3.321 0.035

D-Maltose C12H22O11 HMDB0000163 2.109 5.619 0.017

Uridine C9H12N2O6 HMDB0000296 1.646 1.508 0.046

Salicylic acid C7H6O3 HMDB0001895 1.485 2.614 0.034

Galactitol C6H14O6 HMDB0000107 1.310 3.640 0.001

Kynurenic acid C10H7NO3 HMDB0000715 1.211 2.850 0.022

Prostaglandin I2 C20H32O5 HMDB0001335 1.206 1.764 0.036
F
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Given VIP >1.0, P < 0.05, and FC >1.5 or < 0.7, 25 metabolites were identified.
The differential metabolites that enriched into pathways were listed in a decreasing order according to VIP.
A B

FIGURE 7

The significantly enriched pathways involved in cardiac dysfunction group. (A) Top-20 metabolic pathway enrichment map. (B) Top-20 bubble chart.
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and could be used as a diagnostic and prognostic biomarker. The

differential metabolites and pathways may also be useful as targets

for the development of new therapies for septic patients with

cardiac dysfunction.
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