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subsequently leads to failure of
uterine spiral artery remodeling
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Uterine spiral artery remodeling is necessary for fetal growth and development as

well as pregnancy outcomes. During remodeling, trophoblasts invade the

arteries, replace the endothelium and disrupt the vascular smooth muscle, and

are strictly regulated by the local microenvironment. Elevated glucose levels at

the fetal-maternal interface are associated with disorganized placental villi and

poor placental blood flow. Hyperglycemia disturbs trophoblast proliferation and

invasion via inhibiting the epithelial-mesenchymal transition, altering the protein

expression of related proteases (MMP9, MMP2, and uPA) and angiogenic factors

(VEGF, PIGF). Besides, hyperglycemia influences the cellular crosstalk between

immune cells, trophoblast, and vascular cells, leading to the failure of spiral artery

remodeling. This review provides insight into molecular mechanisms and

signaling pathways of hyperglycemia that influence trophoblast functions and

uterine spiral artery remodeling.
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1 Introduction

Hyperglycemia (HG) is a common metabolic imbalance in pregnant women with Type

1 diabetes mellitus (T1DM), Type 2 diabetes mellitus (T2DM), or combined with

pregnancy and gestational diabetes mellitus (GDM) (1). Abnormally high blood glucose

levels in the pregnancy may lead to abnormal uterine glucose concentration (2). Unhealthy

dietary habits, such as a high glucose intake, are prevalent nowadays. Both HG and HG-

induced cytokines releasing affect trophoblast function and uterine spiral arteries (SAs)

remodeling, which can in turn increase the incidence of pregnancy complications, such as

pre-eclampsia, malformations and miscarriage, and thus endanger the health of pregnant

women and fetuses (3, 4).
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SAs facilitate the exchange of nutrients, gases, and waste

between mother and fetus (5). During SA remodeling, the

original uterine SA converts into low-resistance and highly dilated

vessels to meet the pregnancy blood requirements and prevent

damage to the villi (6). Uterine SA remodeling has four stages.

Firstly, trophoblasts and leukocytes in the vessel wall are not yet

invasion, the endothelial cells (ECs) and smooth muscle cell layers

of the vessel wall are intact. Secondly, the vascular structure begins

to be destroyed by decidual NK (dNK) cells and macrophages in the

vessel wall before trophoblast invasion (7). Thirdly, extravillous

trophoblasts (EVTs) appear in the vessel wall and lumen. Finally,

vascular smooth muscle cells (VSMCs) and ECs are completely lost

and replaced by intravascular EVTs, and the wall matrix is replaced

by fibrin-like substances. In addition, cytokines, angiogenic factors,

enzymes, and extracellular matrix (ECM) also participate in

regulating SA remodeling (8, 9). Trophoblasts are exposed to the

maternal circulation and are influenced by the maternal endocrine,

metabolic, and inflammatory environments. Hence, the influence of

various maternal microenvironmental factors, such as high fat, high

sugar diets, obesity and diabetes may affect trophoblast functions

and the SA remodeling (10).

There are fewer blood vessels and villi in placenta of diabetic

women with unexplained stillbirths than those with live births (11).

Different from being replaced by trophoblasts in normal pregnancy,

VSMCs in the placenta of biobreeding diabetes-prone rat were

almost complete while SA remodeling was failure (12). Taken

together, HG may cause insufficient SA remodeling via impaired

trophoblasts. Herein, we will summarize the current knowledge on

the possible effects of HG on trophoblast function as well as their

role in uterine SA remodeling.
2 Trophoblasts and uterine
SA remodeling

Trophoblasts are the first cell type to differentiate during

embryogenesis. In this process, trophoblast stem cells are derived

from embryonic trophectoderm. They can differentiate into various

trophoblast cell lines and acquire many specialized functions,

including invasion potential and endocrine activity (13).

Cytotrophoblasts (CTBs) are stem cells that proliferate rapidly

once embedded in maternal decidua. The outer layer of CTBs

fuses into primitive syncytiotrophoblasts (STBs), which erode

surrounding decidua and generate lacunae filled with blood (14).

Placental villi bathed in maternal blood are floating villi in charge of

placenta material transport, whereas villi, anchored in the placental

basal plate, differentiate into EVTs (15).

During differentiation, trophoblasts lose adherent epithelial

phenotype and acquire a mesenchymal phenotype and invasion

ability through epithelial-mesenchymal transition (EMT). The E-

cadherin/b-catenin complex is a calcium-dependent transmembrane

protein distributing in epithelial tissues which form cell tight junctions,

inhibit cell movement and maintain epithelial integrity (16). Decreased

E-cadherin expression results in the upregulation of integrin a1b1,
a5b1 and aVb3, VE-cadherin, intercellular adhesion molecule-1
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(ICAM-1), and vascular cell adhesion molecule-1(VCAM-1) (17, 18).

EVTs invade the decidual stroma to form the interstitial extravillous

trophoblasts (iEVTs) to promote the muscular layer of vessel wall

degradation (19). EVTs invade the decidual blood vessels to form the

endovascular extravillous trophoblasts (enEVTs) to replace ECs and

VSMCs (20). VSMCs undergo morphological changes while EVTs

penetrate the vessel wall via intravascular or interstitial pathways. They

shift to a synthetic phenotype, migrate from the vessel wall, and

undergo apoptosis. Trophoblasts secrete platelet derived growth

factor BB (PDGF-BB) to bind the PDGF receptor b (PDGFR-b) of
VSMCs to activate the PDGF signaling pathway and induce de-

differentiation of VSMCs (21). EVT secretes tumor necrosis factor a
(TNF-a), tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL), and Fas ligand to induce apoptosis of VSMCs

(22) (Figure 1A).

In addition, trophoblast-immune cell-vascular interactions are

important determinants of adequate SA remodeling. The dNK cells,

macrophages, trophoblasts, and their crosstalk are important for

adequate SA remodeling, and any dysregulation may lead to

remodeling obstacles (23, 24).
3 HG affects the biological
functions of trophoblasts in uterine
SA remodeling

Proliferation, signaling disorders, impaired placenta blood flow,

and increased vascular resistance were observed in streptozotocin-

induced GDM rat model (25–27). And decreased VSMC apoptosis

was observed in placentas of mice with GDM (28). In addition, HG

impaired the differentiation of trophoblast stem cell into an

invasion phenotype and inhibited the trophoblast invasion, which

further demonstrated that HG directly alters trophoblast lineage

development (10). In the following paragraphs, we discuss in depth

how HG influenced trophoblasts proliferation and invasion.
3.1 HG damages trophoblasts proliferation
involved in uterine SA remodeling

Highly proliferating trophoblasts are necessary for placenta

formation. And cell cycle control is very important in the

proliferation process. In vitro studies have demonstrated that HG

induced cell cycle arrest at G0/G1 in human trophoblast BeWo, JAR

and HTR-8 cells, indicating that HG has the potential to inhibit

trophoblasts proliferation (29, 30). Transcriptome and metabolome

analysis showed that HG perturbed the phosphatidylinositol

phosphate signaling pathways that involved in cell proliferation in

BeWo cells (31). HG may inhibit cell proliferation by regulating the

process of translation via epigenetic modifications, such as non-

coding small molecule RNAs (32). HG upregulated the expression

of miR-137, resulting in a negative modulatory effect on

AMP-activated protein kinase, which ultimately stimulated the

expression of IL-6 to inhibit cell proliferation (33). HG also

promoted the expression of miR-136, inhibited the trophoblasts
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proliferation by suppressing E2F1 which is an important cell cycle

regulator mediating the G1/S transition (34). MiR-362-5p was

downregulated under HG conditions and inhibited the PI3K/AKT

pathway by upregulating glutathione-disulfide reductase (GSR)

directly, ultimately leading the inhibition of HTR-8 cells

proliferation (35). MiR-520h was upregulated and inhibited cell

proliferation by downregulating mTOR expression in HG-treated

HTR-8 cells (36).

In vivo, immature villi in human diabetic placentas in term

pregnancies suggested that HG provided more nutrition for

continuous cell growth but delayed the cell differentiation and

maturation (37). Upregulated Ki67 was observed in the term

placenta of patients with GDM (38). However, Ki67 was

downregulated in first-trimester human placental tissue with

T1DM (39). In rat, the proliferative capacity of trophoblasts was

weakened and the number of Ki67 positive cells decreased as the

gestational day increases. At day 17 of pregnancy, Ki67 positive cells

was higher in diabetic rat placentas than normal control (40). The

different effects of HG on the proliferation of trophoblasts

depend on gestational periods. HG provided excess nutrients for
Frontiers in Endocrinology 03
cell growth at the end of pregnancy, which also could explain why

women with diabetes had higher placenta weight. Conversely,

HG inhibited trophoblast proliferation in the first trimester

because this period of placental development is particularly

susceptible to environmental perturbations and any changes in

the microenvironment may lead to impairment of trophoblast

function (41).
3.2 HG damages trophoblasts invasion
involved in uterine SA remodeling

In the progress of trophoblasts invasion into decidual tissue,

EVTs produce proteases, such as fibrinogen activation system

enzymes, matrix metalloproteinases (MMPs), and tissue inhibitor

of metalloproteinases (TIMPs), to regulate the ECM remodeling

and trophoblast invasion (42). The fibrinogen activation system

comprises fibrinogen activators, such as urokinase-type

plasminogen activator (uPA), and enzyme inhibitors such as

fibrinogen activator inhibitor type 1 (PAI-1) (43). MMPs are a
B

C

A

FIGURE 1

Roles of HBCs, EVTs and dNK cells in SA remodeling. (A) During the SA remodeling, VSMCs surrounding the arteries are removed and ECs are
gradually replaced by EVTs. (B) dNK cells secrete cytokines such as IL-10, GM-CSF, TNF-a, and IFN-g and chemokine IL-8, CXCL10 to regulate
trophoblasts invasion. Meanwhile, dNK cells are potent sources of angiogenic factors such as Ang-1, Ang-2, VEGF. dNK cells secrete MMP-2, MMP-
9, uPA and ICAM-1 that participate in ECM remodeling. (C) HBCs can secrete MMP and TIMP to remodel the extracellular matrix. Besides, HBCs
secrete a range of factors that play a role in remodeling vessels such as OPN, FGF, VEGF-A and IL-8.
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family of more than 23 zinc-binding enzymes, exhibiting proteolytic

activity promoting trophoblast invasion to the uterine wall. MMP

activity is mainly regulated by TIMP. MMP2 and MMP9 are the

most important MMP enzymes involved in trophoblasts during the

first trimester (44). Pro-uPA zymogen activates uPA after binding

uPAR. Activated uPA in turn cleaves and activates MMPs as well as

degrades local matrix protein (45). Exposure to excess glucose may

lead to shallow trophoblast migration and invasion, leading to

abnormal uterine SA remodeling.

In vitro, trophoblast cell invasion is adversely disturbed under HG

condition (46–51). Belkacemi et al. showed that trophoblasts invasion

was reduced by approximately 62% and the activity of uPA was lower

when HTR-8 cells were treated with 10mM of glucose (52).

Furthermore, uPA in human early pregnancy trophoblast cell Sw.71

also decreased with the increasing glucose concentration (53). The

increased E-cadherin, decreased Twist1 and Vimentin in HTR-8 cells

under HG indicated a failure of EMT. EMT not only participates in

EVT invasion but also balances the CTB-EVT differentiation (54). It

was reported that MiR-137 was elevated in HG-treated HTR-8 cells,

and the upregulation of miR-137 decreased the expression of

fibronectin type III domain-containing 5, thereby inhibited the

viability and migration of HTR-8 cells (55).

Some in vitro studies has shown that HG promoted the invasion

of trophoblasts. HG induced proteoglycans alterations in 3A-Sub-E

cells which is isolated from human full-term placenta, followed the

increased MMP-2 and MMP-9 and decreased TIMP-2 (56).

However, the HG altered proteoglycans on the surface of

trophoblasts can lead to ECM deposition and complications in

diabetic placenta (57). Normally, physiological levels of reactive

oxygen species (ROS) promote angiogenesis, and the placental

antioxidant system prevents ROS overproduction (58). HG

induced the expression of the Cytochrome P450 enzyme family 1,

subfamily B, polypeptide 1 (CYP1B1) which promoted trophoblast

migration via MMP2. Inhibition of CYP1B1 may suppress ROS

production under HG condition, which may provide a new method

for diabetic complications caused by ROS overload (59). In

placentas of diabetic rats at mid-gestation, increased ROS triggers

trophoblast spreading with the increased expression of MMP-2 and

MMP-9 (60).

Collectively, it is not difficult to suppose that HG inhibits the

invasion and migration of trophoblasts derived from the first trimester,

but promotes the invasion and migration of trophoblasts derived from

the third trimester. Primary trophoblasts isolated from human

placentas culture under HG could further verify our inference.
3.3 HG alters oxygen tension in placenta
during uterine SA remodeling

Before the first 10 weeks of gestation, EVT forms a trophoblast

plug to prevent maternal blood from entering the intervillous space

and creates a physiologically hypoxic environment (2%–3% O2)

(61). The hypoxia-inducible factor 1 (HIF-1) plays a transcriptional

regulatory role in hypoxic environment. There is an increased

expression of TGF-b under hypoxia, thereby inhibiting

trophoblasts differentiation (62). At the 12th week of gestation,
Frontiers in Endocrinology 04
the trophoblast plug dissolves and uterine SA begins to remodel,

following a gradually increased oxygen concentration (8% O2)

around the trophoblast (63). Both HIF-1a and TGF-b expression

decreases with increasing oxygen concentration, enabling

trophoblast differentiation and ensuring extensive EVTs invasion

into SA with increased MMP9 (64). However, after trophoblast

differentiation into mature EVT, hypoxia and elevated HIF can

promote EVT invasion (65, 66).

HG increased the thickness of trophoblast membranes and the

massive collagen deposition, resulting in altered oxygen gradients in

placenta and local hypoxia at the maternal-fetal interface (40).

Downregulation of miR-29b in placenta with GDM promoted

trophoblast invasion by upregulating the expression of HIF3A

(67). Hypoxia promotes the invasion of mature EVTs. It is

reasonable to suppose that HG promotes the invasion of

trophoblasts in the third trimester placenta. It is also suggested

that mild HG increased capillaries through negative feedback

regulation of ischemia and hypoxia, however, sustained severe

HG triggered hypoxia/ischemia and inhibited vascular endothelial

growth factor (VEGF)/VEGFR-2 binding, thereby reducing

excessive capillary formation (68, 69). What is more, HG can

alter trophoblasts development by blunting trophoblast stem cell

responses to low oxygen levels (10).
3.4 HG disrupts trophoblasts releasing
angiogenic factors

Trophoblasts secrete angiogenic factors during uterine SA

remodeling. VEGF disrupts the VSMC and ECs. Placental growth

factor (PlGF), prominently expressed in villous CTBs and STBs,

promotes angiogenesis under hypoxic conditions (70). Angiopoietins

(Ang1, Ang2) and their receptor Tie-2 play an important role in

stabilization or breakdown of blood vessel (71). Fibroblast growth

factor (FGF) and PDGF-BB are involved in vasculogenesis and

angiogenesis (72). Anti-angiogenic factors, such as soluble fms-like

tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng), are secreted.

SFlt-1 is the soluble form of VEGFR-1, with a high affinity for VEGF,

but no signal transduction function (73). Besides, sEng interferes with

transforming growth factor b (TGF-b) and inhibits endothelial nitric

oxide synthase activation, thereby disrupting angiogenesis (74).

In the first trimester trophoblasts HTR-8 and SW.71, HG

decreased the secretions of VEGF, PlGF and uPA, while increased

the secretions of anti-angiogenic factors sFlt-1 and sEng to inhibit

artery remodeling (48, 52, 53, 75, 76). In placenta of women with

GDM, increased VEGF, Ang, Eng and endothelin may lead to a

collapse between angiogenic and anti-angiogenic factors (77).

However, mild HG did not change the expression of VEGF (78).

Persistent HG might thicken the placenta, increased the expression of

HIF, thereby promoting the expression of angiogenic factors, such as

VEGF and PIGF (79). FK506-binding protein like, acting as an anti-

angiogenic protein and a regulator of inflammation, decreased in

T1MD placenta and trophoblast cell line ACH-3P treated with HG

under hypoxia condition (80). HG also promoted MT1-MMP and

angiogenesis via PI3k signaling in GDM placenta (81). Despite these

conflicting reports, it is certain that the balance between angiogenic and
frontiersin.org
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anti-angiogenic factors is disrupted under HG. HG in the first trimester

inhibits uterine SA remodeling by inhibiting the proliferation, invasion,

and migration of trophoblasts. HG may cause hypercapillarization of

villi due to collagen deposition caused by hypoxia and abnormal

trophoblasts migrations in the third trimester, but these vessels are

immature (82).
4 HG affects the crosstalk between
immune cells and trophoblasts

Pregnant uteri are colonized by large number of immune cells,

the most abundant cells of which are dNK cells and macrophages,

followed by T cells and dendritic cells. Approximately 75% of

decidual leukocytes are CD56brightCD16- dNK cells and are not

cytotoxic (83). Decidual macrophages, recruited from the maternal

circulation, are polarized toward M1 macrophages during peri-

implantation period while a profile of a mixed M1 and M2 type

during EVTs invading the SA (84). Different from decidual

macrophages, Hofbauer cells (HBCs) are the villous macrophages

in the stroma of the first-trimester placenta arising from

hematopoietic stem cells and are characterized as CD14+ CD68+

cells (85).

Chemokines and their receptors also play important roles in

trophoblast migration and immune cells recruitment at the

maternal-fetal interface (86). The dNK cells secrete IL8, CXCL10,

TNF, interferon (INF) g, TGF-b, and angiogenic factors such as

VEGF-A, VEGF-C and PlGF (15, 87). Trophoblasts express the IL8

receptor CXCR1, the CXCL10 receptor CXCR3, TNF receptor

TNFR1, as well as VEGFR-1 and VEGFR-3. Trophoblasts

produce human leukocyte antigen to increase the levels of

inhibitory receptors in dNK cells, maintaining their inactive

phenotype (CD16−CD56+) (88). Meanwhile, macrophages secret

IL-33, granulocyte colony-stimulating factor (G-CSF), CXCL1,

TGF-b, TNF-a and Wnt5a to regulate trophoblasts invasion and

migration (89). Immune cells, interacting with ECs, fibroblasts, and

trophoblasts, promote the SA remodeling and placental growth.

Any dysregulation of these factors may lead to remodeling

obstacles (15).

In vitro, HG could mediate trophoblast releasing inflammatory

factors IL-1b, IL-4, IL-8, and IL-6, IFN-g, TNF-b, CXCL1 and G-

CSF, indicating that HG created a pro-inflammatory environment

at the maternal-fetal interface (76, 90, 91). High level of pro-

inflammatory TNF-a was found both in GDM and TD2M

placenta. Decreased IL-4 was found in T2DM and MGH placenta,

promoting NK cell into active phenotype (92). This also reminds us

that maternal HG caused by diabetes mellitus can lead to a

disturbance in the balance of pro-inflammatory and anti-

inflammatory factors at the maternal-fetal interface. In the

following sections, we discuss in depth how HG disturbed

immune cells and lead to the failure of SA remodeling.
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4.1 HG affects crosstalk between dNK cells
and trophoblasts

The dNK cells and EVTs interact with vascular ECs to promote

SA remodeling (93). Firstly, dNK cells induce the apoptosis of VSMC

and ECs, destruct blood vessel and secrete Ang-1, Ang-2, VEGF and

MMPs tomediate angiogenesis (94, 95). The dNK cells secreteMMP-

2, MMP-9, uPA, adhesion molecules such as ICAM-1 to regulate

ECM remodeling (96–98). DNK cells express killer immunoglobulin

receptor (KIR), CD94/NKG2A, and immunoglobulin like transcripts

2 (ILT2). These three receptors can interact with HLA-C, HLA-E and

HLA-G on trophoblasts respectively, regulating trophoblast invasion

(87). Cytokines, such as IL-10 and granulocyte-macrophage colony-

stimulating factor (GM-CSF) and chemokines IL-8, CXCL10

produced by dNK cells could promote EVTs invasion while the

cytokines TNFa and IFN-g inhibited trophoblast invasion by

upregulating PAI expression (87, 99). IL-8 can also increase

trophoblast expressing integrins a1 and b5 to gain an invasive

phenotype (100) (Figure 1B).

A test for GDM peripheral blood showed a higher percent of

cytotoxic NK cells (CD16+CD56dim) in the GDM group than in

controls (101). Some scholars believe that dNK cells are derived

from the recruitment of peripheral CD56bright NK cells, which

acquire dNK cells phenotype under the influence of a specific

decidual microenvironment (102). Thus, changes in peripheral

blood NK cells may lead to changes in the decidual NK cells.

Fewer CD56+cells adhere to decidual endothelium, while more

diabetic CD56+ cells adhere to pancreatic endothelium in

pregnant women with T1DM and T2DM, indicating that HG

impairs egression of CD56+ cells into the decidua (103).

Cytotoxic CD16+ CD56−NK cell both increased in maternal blood

and placenta extravilli of GDM and T2MD. Placental CD16-CD56+

NK cells were higher in GDM and lower in T2DM, irrespective of

region (92). GDM and T2MD are characterized by excessive insulin

resistance, followed by maternal HG, triggering a “glucose stress”

response and concurrent systemic inflammation (104). This

response involves altered infiltration, differentiation, and

activation of maternal innate and adaptive immune cells, which

may explain increased CD16+ NK cells. The control of blood sugar

affects the expression of cytokines. Besides, cytokines differ in

recent-onset DM and long-standing DM (105, 106). Thus, we

don not exclude glycemic control conditions and duration of

maternal HG are responsible for CD56+ NK cells percentage and

cytokine levels different in GDM and T2DM. In addition to the

phenotypic changes of NK cells, the cytokines secreted by NK cells

also change. Simultaneously, CD56+ cells producing TGF-b and

VEGF decreased significantly in patients with GDM (107). This

secretory change may affect the regulation of trophoblast migration

and invasion by dNK cells in high-risk pregnancy (108). Above all,

HG may decrease dNK in the uterine wall, leading to a diminished

interstitial trophoblast invasion and less SA remodeling.
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4.2 HG affects crosstalk between
macrophages and trophoblasts

Adopting an M2 polarity phenotype, HBCs express TIMP-1,

MMP9, VEGF-A, osteopontin (OPN), and FGF to affect ECM and

vascular remodeling (109–111). HBCs also secrete inflammatory

factors such as IL-8, CCL-2, CCL-3, and CCL-4 with proangiogenic

properties (109) (Figure 1C). Moreover, CD14+ macrophages in

early pregnancy decidua induce the breakdown of ECM and

phagocytose apoptotic VSMCs to remodel the uterine SA (112).

HBCs treated by HG switched their M2 polarity profile towards

M1 phenotype, which is not conducive to angiogenesis (113). M2

macrophages involve in anti-inflammatory processes and promote

angiogenesis and tumor progression, which can produce protease to

degrade the ECM (114). Thus, a reduction in the number of M2

phenotype cells may lead to impaired vascular remodeling.

However, Schliefsteiner et al. showed HBCs maintain their M2

polarization to maintain a successful pregnancy, even in

inflammatory states such as GDM. The co-cultivation of HBCs

from GDM placentas and placental arterial endothelial cells

(pAECs) did not alter ECs activation (115). Zhang et al. reported

that M2a macrophages, majoring in tissue repair, increased in villi

and more collagen was deposited in uncontrolled T2DM group

compared with the healthy group (116). All in all, HG can disturb

the balance between pro-inflammatory and anti-inflammatory

subtypes of HBCs, which may cause adverse pregnancy outcomes.
5 Limitation and future direction

A recent study isolated SA from 12 to 23 weeks of gestation and

found that the vascular remodeling was not complete until 23 weeks

of gestation (117). Previous studies have mainly focused on pregnant

women with GDM with few studies focusing on pregnant women

with T1DM or T2DM. GDM is mainly screened at 24-28 weeks of

gestation, but hyperglycemia occurs before 24 weeks. In addition,

early GDMmay has worse pregnancy outcomes (118). Therefore, the

molecular and signaling pathway changes in the placenta of patients
Frontiers in Endocrinology 06
with GDM are also valuable for understanding the effect of HG on the

uterine SA.

However, previous in vivo studies also had some limitations. First,

the number of placenta cases in these studies is relatively small and the

individual differences in patients are large. Secondly, no information

was discussed on medication of women in the case group. Another

limitation is lack of protein involved in ECM remodeling and

angiogenesis such as MMP2, MMP9, uPA, PIGF and VEGF. SA

remodeling occurs mainly before 24 weeks, therefore, staining of

above protein in the first and second trimester placenta villi is more

indicative of the effect of HG on trophoblast function.

All previous in vitro studies differed in terms of glucose dose,

treatment time and cell line. Different or opposite conclusions have

been drawn regarding the effect of HG on trophoblast function and

uterine SA remodeling. For example, Basak et al. reported tube

formation substantially increased at 25-30mM glucose and decreased

at 40mM glucose in HTR-8 cells (119). In addition, McLeese et al.

pointed out that HTR-8 cells did not survive in 5 mmol/L glucose over

48h, possibly due to the rapid glucose consumption (120). Inadera et al.

pointed out that when BeWo cells were cultured at physiological levels

of 5 mM glucose, the cells detached from dishes (31). Thus, the above

researches remind us choosing appropriate glucose concentration is

necessary to study the effects of HG on trophoblasts biological behavior

and SA remodeling. The in vitro experiments used in this review are

summarized in Table 1.

Although the relevant molecular mechanisms and signaling

pathways of HG influencing trophoblast functions have been

reported in these studies, the studies have mostly focused on cell

lines and animal models. However, cell lines do not truly reflect in

vivo conditions. Information obtained from animal models is also

limited because SA remodeling differs between human and rats

(121, 122). Therefore, it is crucial to establish a suitable model with

appropriate sugar concentration for further study. Ex vivo model,

such as human placenta-decidua co-culture, can also be used to

quantify the extent of SA remodeling (123). In addition, human

trophoblast organoids show similar cellular composition and

biological behavior to those of immature human placentas.

Despite the lack of such studies, we believe that human

trophoblast organoid models cultured under HG conditions will
frontiersin.or
)

TABLE 1 The in vitro experiments used in this study are summarized.

Reference Phenotype cell line key molecule pathway glucose
concentration

proliferation

29 HG inhibited the proliferation of first-trimester
trophoblast

BeWo, JAR,
JEG-3

Cyclin B1↓ / 5mM VS 25mM

30 HG inhibited the proliferation and arrested
trophoblast in G0/G1 phase

HTR-8 PCNA↓ circ_FOXP1/miR-508-
3p/SMAD2

5.5mM VS 30mM

31 HG perturbed biochemical networks via elevated
oxidative stress

BeWo / / 11mM VS 25mM

32
HG inhibited cell proliferation

HTR-8,
BeWo

/ miR-132/PENT 5mM VS 25mM

33 HG inhibited HTR-8 viability and proliferation HTR-8 / miR-137/PRKAA1/IL-6 5mM VS 25mM

(Continued
g
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help us understand the effect of HG on the remodeling of uterine

SAs (124).
6 Conclusion

Uterine SA remodeling requires appropriate trophoblast

proliferation, invasion, and tissue remodeling, which involves a

balanced MMP, TIMP and uPA. Meanwhile, trophoblasts, dNK

cells and HBCs can secrete serious cytokines and angiogenic
Frontiers in Endocrinology 07
factors to regulate SA remodeling. Crosstalk between immunity

cells and both trophoblast and vascular cells at maternal-fetal

interface is also a part of the remodeling process. Inappropriate

glucose concentrations may lead to abnormal trophoblast

proliferation, migration, and invasion by disrupting the

balance between MMP and TIMP. In addition, HG disrupts

the balance between angiogenic factors Ang-1, VEGF, PlGF and

anti-angiogenic factors sFlt-1 and sEng. Furthermore, an

impaired immune cell profile under HG conditions influences

SA remodeling (Figure 2). Understanding how HG affects SA
TABLE 1 Continued

Reference Phenotype cell line key molecule pathway glucose
concentration

34
HG inhibited cell proliferation

HRT-8,
BeWo

E2F1↓ miR-136/E2F1 5mM VS 25mM

35 HG inhibited HTR-8 proliferation and induced
apoptosis

HTR-8 / MiR-362-5p/GSR/PI3K/
AKT

5mM VS 25mM

36 HG inhibited HTR-8 proliferation and induced
apoptosis

HTR-8 / miR-520/mTOR 5.5mM VS 25mM

39 HG reduced trophoblast proliferation Primary
trophoblasts

ki67↓ / 5.5mM VS 25mM

Invasion, migration, and angiogenesis

46 HG inhibited cell proliferation and migration HTR-8 / miR-134-5p/FOXP2 5mM VS 25mM

47 HG suppresses trophoblast viability,migration and
induces apoptosis

HTR-8 / circ-PNPT1/miR-889-
3p/PAK1

5mM VS 25mM

48 HG inhibited HTR-8 viability, migration, and
invasion

HTR-8 / PLGF/ROS 0, 10, 15, 20, 25, 30 mM

49 HG inhibited cell migration and promoted
apoptosis

HTR-8 / FOXC1/FGF19/AMPK 5mM VS 25mM

50 HG inhibited cell viability, migration, and invasion,
and promoted cell apoptosis

HTR-8 / CTRP6/PPARg 5.5mM(control), 10mM,
20mM, 30mM

51 HG enhanced HTR-8 autophagy and reduced
invasion

HTR-8 LC3-II↑, p62↓ / 5mM VS 30mM

52
HG inhibited HTR-8 invasion

HTR-8 uPA↓ / 2.5mM VS 5mM and
10mM

53
HG inhibited Sw.71 invasive profile

Sw.71 uPA↓; VEGF, PIGF↓;
sENG, sFIt-1↑

/ 45(control), 135, 225, 49,
945mg/dl

54
HG inhibited HTR-8 EMT

HTR-8 E-cadherin↑,
Vimentin, Twist1↓

ST2/PI3K/AKT/AMPK;
ST2/P62/Twist

5mM VS 30mM

55 HG inhibited HTR-8 invasion HTR-8 / miR-137/FNDC5 5mM VS 25mM

56 HG stimulated trophoblast invasion and
angiogenesis

3A-Sub-E MMP-2, MMP-9↑,
TIMP-2 ↓

/ 5.6mM VS 30mM

59 HG stimulated trophoblast invasion and migration HTR-8 / / normal medium VS
20mM

75 HG induced anti-angiogenic signaling in CTBs Sw.71
VEGF, PIGF↓; sENG,
sFIt-1, IL-6↑

/
100 (control), 150, 200,
300, or 400 mg/d

76 HG induced anti-angiogenic, and anti-migratory in
first trimester trophoblast cells.

Sw.71 sENG, sFIt-1↑ /
5mM(control), 10mM,
25mM, 50mM

80
HG cause aberrant angiogenesis profile ACH-3P

FKBPL↓, SIRT-1↓,
PlGF↑

/ 5mM VS 25 mM

119 HG promoted tube formation at 25 mM and
inhibited tube formation at 40mM

HTR-8 MMP9 ↑ /
5.5 (control), 11, 25, and
40 mM
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remodeling by influencing trophoblast function is crucial for

revealing the mechanisms by which diabetes leads to pregnancy

complications and adverse pregnancy outcomes. This review

may provide a theoretical basis for future foundation and

clinical research.
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A B

FIGURE 2

Mechanism of SA remodeling in normal pregnancy and hyperglycemia pregnancy. (A) CTBs proliferate rapidly once embedded in maternal decidua.
The outer layer of CTBs fuses into primitive STBs, which can form proliferative proximal cell column trophoblasts. EVTs differentiate from distal cell
column and break through the overlying STB layer, detaching from distal cell columns, migrating into the decidual stroma, and remodeling the SA.
(B) Under hyperglycemia conditions, the proliferation and invasion ability of trophoblasts alters. Increased cytotoxic CD16+CD56dim NK cells can
form an inflammatory environment. Meanwhile, HBCs switch their M2 polarity profile towards M1 phenotype, which is not conducive to
angiogenesis. Deficient artery transformation and immature new blood vessels can be observed in hyperglycemic placenta.
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40. Zorn TM, Zúñiga M, Madrid E, Tostes R, Fortes Z, Giachini F, et al. Maternal
diabetes affects cell proliferation in developing rat placenta. Histol Histopathol (2011)
26:1049–56. doi: 10.14670/HH-26.1049

41. Hoch D, Gauster M, Hauguel-de Mouzon S, Desoye G. Diabesity-associated
oxidative and inflammatory stress signalling in the early human placenta. Mol Aspects
Med (2019) 66:21–30. doi: 10.1016/j.mam.2018.11.002

42. Chakraborty C, Gleeson LM, McKinnon T, Lala PK. Regulation of human
trophoblast migration and invasiveness. Can J Physiol Pharmacol (2002) 80:116–24.
doi: 10.1139/y02-016

43. Behrendt N, Rønne E, Danø K. The structure and function of the urokinase
receptor, a membrane protein governing plasminogen activation on the cell surface.
Biol Chem Hoppe Seyler (1995) 376:269–79.

44. Isaka K, Usuda S, Ito H, Sagawa Y, Nakamura H, Nishi H, et al. Expression and
activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta (2003)
24:53–64. doi: 10.1053/plac.2002.0867
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