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Endothelial-to-
mesenchymal transition: An
underappreciated mediator
of diabetic complications

Eric Wang †, Honglin Wang † and Subrata Chakrabarti*

Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western
University, London, ON, Canada
Diabetes and its complications represent a great burden on the global healthcare

system. Diabetic complications are fundamentally diseases of the vasculature, with

endothelial cells being the centerpiece of early hyperglycemia-induced changes.

Endothelial-to-mesenchymal transition is a tightly regulated process that results in

endothelial cells losing endothelial characteristics and developing mesenchymal

traits. Although endothelial-to-mesenchymal transition has been found to occur

within most of the major complications of diabetes, it has not been a major focus

of study or a common target in the treatment or prevention of diabetic

complications. In this review we summarize the importance of endothelial-to-

mesenchymal transition in each major diabetic complication, examine specific

mechanisms at play, and highlight potential mechanisms to prevent endothelial-

to-mesenchymal transition in each of themajor chronic complications of diabetes.
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1 Introduction

Diabetes has long since reached epidemic levels around the globe and shows no signs of

slowing down any time soon (1, 2). The current prevalence of diabetes has far surpassed

projections made in the beginning of the century, and the number of people affected by

diabetes is predicted to increase by nearly 50% by 2045 (3–5). Many people living

with diabetes are affected by chronic diabetic complications, and with the increase in

prevalence of diabetes, the burden of diabetic complications is sure to increase. Diabetes

and its complications are significant causes of morbidity and mortality. Not only was diabetes

directly responsible for 1.5 million deaths in 2019—making it the 9th leading cause of death—

diabetes is also a major risk factor for other leading causes of death such as heart disease,

stroke, and kidney failure (1, 4).

The pathology of diabetic complications begins with vascular endothelial cells and

eventually snowball into dysfunction of organs (6–8). Besides glycemic control, current
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approaches to management and treatment of these complications are

focused on late-stage occurrences, and do not address the root

problems (9–11). ln an attempt to shift the focus of conversations

surrounding diabetic complications away from later stage outcomes

and toward the early events and root causes, we examine the

importance of endothelial-to-mesenchymal transition (EndMT), an

early occurrence in diabetic complications that may represent a

common target for prevention or management of different

complications of diabetes.
1.1 Diabetic complications

Diabetic complications are broadly separated into two categories,

micro- and macrovascular (12–14). As their names imply,

microvascular complications affect capillaries and small vessels,

while macrovascular complications affect larger vessels. Major

microvascular complications of diabetes include diabetic

retinopathy, diabetic nephropathy, diabetic neuropathy, and

diabetic cardiomyopathy (12–14). Both micro- and macrovascular

diabetic complications are primarily the result of hyperglycemia.

Excessive amounts of circulating glucose is taken up by vascular

endothelial cells (ECs), causing metabolic derangements within the

ECs and resulting in damage (12–14).

ECs are among the first to be damaged by hyperglycemia during

diabetes. Because ECs express the insulin-independent glucose

transporter, GLUT1, their rate of glucose uptake is proportional to

the amount of glucose in circulation (12–15). Excessive uptake of

glucose overloads the glycolytic pathway, leading to the shunting of

glycolytic intermediates into other, more harmful routes (12, 13).

Furthermore, elevated rates of oxidative respiration downstream of

increased glycolysis causes enhanced production of reactive oxygen

species (ROS) in the mitochondria, leading to oxidative damage (12,

13). Oxidative damage triggers the activation of anti-ROS responses,

one side-effect of which is the inhibition a glycolytic enzyme—

GAPDH—which further compounds the shunting of glycolytic

intermediates into harmful pathways (12, 13).

Harmful pathways activated by hyperglycemia include the polyol,

hexosamine, protein kinase C (PKC) and advanced glycation end-

product (AGE) pathways (12, 13). The polyol pathway reduces

glucose into sorbitol at the expenditure of NADPH, an important

cofactor in regenerating the antioxidant glutathione (12, 13, 16).

Sorbitol can be oxidized into fructose, which can be fed back to the

glycolytic pathway, but the depletion of NADPH increases

susceptibility to damage by mitochondrial ROS (12, 13, 16). The

hexosamine pathway shunts fructose-6-phosphate to generate uridine

diphosphate N-acetyl glucosamine, which can covalently attach to

transcription factors and disrupt gene expression (12, 13, 17). The

PKC pathway involves PKC activation by diacylglycerol, converted

from high levels of dihydroxyacetone phosphate, leading to widescale

changes in gene expression (12, 13, 18). PKC activation in diabetes

promotes angiogenic, fibrotic, and proinflammatory changes (12, 13,

18). Finally, the AGE pathway involves the non-enzymatic glycation

of proteins by a variety of glucose-derived molecules, resulting in
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dysfunction of the glycated protein, and promoting inflammation by

activating receptors of AGEs (RAGEs) (12, 13, 19).

The shunting of glucose into damaging pathways is a well-established

part of hyperglycemia-induced endothelial dysfunction and occurs in

large and small vessels alike. These pathways are activated early on during

the pathogenesis of diabetic complications, but clinical manifestations of

diabetic complications do not appear until much later. Thus, these

occurrences alone do not paint the whole picture of early endothelial

dysfunction and diabetic vascular complications.
1.2 Endothelial-to-mesenchymal transition

In response to specific stimuli, ECs can undergo a dramatic

transformation known as EndMT. EndMT is a process whereby ECs,

in response to specific internal and environmental triggers,

transdifferentiate into mesenchymal like cells, losing their original

endothelial characteristics and adopting mesenchymal phenotype (20–

24). EndMT can be a physiological process and is a crucial occurrence in

the embryonic development of heart valves (20–23). However, when

aberrantly induced by environmental stressors such as hyperglycemia,

EndMT gives rise to issues that contribute to dysfunction (21–24). The

loss of endothelial junctional markers such as vascular endothelial

cadherin (VE-CAD) and platelet endothelial cell adhesion molecule-1

(PECAM1) can lead to increased vascular permeability, resulting in

increased infiltration of immune cells and unwanted exchange offluids or

factors between blood and the impacted tissue (25–27). While the gain of

mesenchymal phenotype leads to increased production and deposition of

extracellular matrix (ECM) proteins, contributing to sclerosis and fibrosis

during later stages of disease (28–30).

EndMT, whether physiological or pathological, is a regulated

process mediated by specific extracellular signals and intracellular

changes. Transforming growth factor b (TGF-b) family of growth

factors are the most common and most well-studied drivers of EndMT,

thus the induction of EndMT can be broadly split into TGF-b and non-
TGF-b pathways (22, 23, 31–33). The TGF-b pathway of EndMT itself

can be subdivided into canonical and non-canonical pathways. The

canonical pathway is mediated by Smad2/3, while the non-canonical

pathway is Smad2/3-independent and can act through a variety of other

signal transducers such as mitogen-activated protein kinase (MAPK),

phosphatidylinositol 3-kinase (PI3K), and PKC-d (22, 23, 31–35). Non-
TGF-b pathways of EndMT include Notch, Wnt, endothelin-1 (ET-1),

and inflammatory signaling (22, 23, 31–33). Though the exact

mechanisms of these pathways are varied and have not been fully

elucidated, most pathways ultimately converge through the regulation

of transcription factors such as SNAI1 and TWIST to suppress the

expression of ECmarkers and promote the expression of mesenchymal

proteins (22, 23, 31–39) (Figure 1). All of these pathways have been

implicated in diabetes-induced EndMT in one or more diabetic

complication, though there has not been any studies simultaneously

examining specific pathways across different diabetic complications

(12, 24, 40–46). Once an EC has undergone EndMT, the EC-derived

mesenchymal cell remains committed to the mesenchymal phenotype,

even if the driving stimulus is no longer present.
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1.3 Epigenetic regulation and EndMT

The persistence of the mesenchymal phenotype in EC-derived

mesenchymal cells is dependent on changes in epigenetic regulation.

Epigenetic regulation describes heritable phenotypical changes absent

changes in the genomic sequence. Epigenetic regulation encompasses

several processes, including DNA methylation, histone modification,

and non-coding RNA (ncRNA)-associated gene regulation (47–49).

DNA methylation involves the covalent attachment of methyl groups

to nucleotides, most commonly to the 5th carbon of the cytosine

residue in a CpG pair, and generally results in transcriptional

inhibition (47–50). Histone modifications involve covalent changes

to the histone proteins that bind the DNA, leading to either activation

or repression of the associated DNA regions (47–49, 51). Common

histone modifications include methylation, acetylation,

phosphorylation, SUMOylation, and citrullination; the specific

effects of histone modifications typically depend on the type of

modification, the amino acid residue that is modified, and the

location of the modification (47–49, 51). ncRNA-associated gene

regulation involves RNA molecules that are transcribed from DNA

but not translated into proteins; ncRNAs can potentiate or disrupt

gene expression both at and beyond the transcriptional level (47–49,

52). Long ncRNAs (lncRNAs, greater than 200 nucleotides in length)

can form complex tertiary structures and interact with RNA-binding

proteins, serving as scaffolds, guides, or decoys for protein complexes,

and leading to activation or repression of target loci (53–55).

microRNAs (miR, short ncRNAs roughly 22 nucleotides in length)
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regulate translational silencing of specific mRNAs through

complementarity (56–58). Circular RNAs (circRNAs) are ncRNAs

derived from mRNA transcripts but circularized via back-splicing.

circRNAs can modulate the expression of their parental genes by a

decoy for translational machinery or inhibitory miRNAs, they can

also interact with other proteins in order to produce specific outcomes

(59–63).

Epigenetic changes are involved at a variety of levels during

EndMT, from modulating pro-EndMT signaling to enforcing long-

term changes in endothelial and mesenchymal marker expression.

Removal of DNA methylation has been shown to increase the

expression of SNAI1 in epithelial cells (64). SNAI1 has been shown

in a various cells to recruit histone deacetylases (HDACs) to target

genes to suppress their expression (65, 66). HDAC9 has been found to

mediate changes in endothelial and mesenchymal markers in EndMT,

and targeted suppression of HDAC9 prevented EndMT in human

coronary artery ECs (67). HDAC3a has been shown to promote TGF-

b2 secretion, which acts as an autocrine inducer of EndMT (68).

ncRNAs H19 and miR-200b have been found to modulate TGF-b
signaling in the induction of EndMT (40–42). Beyond individual

effects of each of the epigenetic mechanisms, epigenetic regulators

also have reciprocal regulatory effects on one another. Covalent

modifications to the DNA or the histones can influence the

transcription of ncRNAs (56, 69–73). lncRNAs can inhibit miRNA

activity by acting as a molecular sponge (53–55), or influence DNA

and histone modification by guiding or obstructing the protein

complexes (53–55, 74). miRNAs can inhibit the translation of
FIGURE 1

Endothelial to mesenchymal transition. ECs can undergo EndMT in response to a variety of stimuli. EndMT is characterized by reduced expression of
endothelial markers (green) and increased expression of mesenchymal markers (red). Common inducers of EndMT include NOTCH, WNT, TGF-b, ET-1,
and inflammatory signaling. TGF-b is the best characterized and most common driver of EndMT. Canonical TGF-b signaling through SMAD2/3, non-
canonical TGF-b signaling through other mechanisms such as MAPK, PI3K and PKC-d, as well as other EndMT inducers such as NOTCH, WNT, and ET-1
generally converge through the regulation of key transcription factors such as SNAI and Twist in order to reduce endothelial protein expression and
promote mesenchymal protein expression. Inflammatory cytokines contribute to EndMT by activating NF-kB. Cells undergoing EndMT co-express
endothelial and mesenchymal markers.
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proteins involved in DNA and histone modifications (75–77); they

can also inhibit lncRNAs by inducing degradation (78–80). circRNAs

can regulate DNA/histone modifying machinery and sponge miRNAs

(59–62, 81). This creates an intricate network of regulation that

underlies the process of EndMT, the precise balance of which

determines the endothelial or mesenchymal nature of the affected

cells (Figure 2).
2 EndMT in diabetic complications

Hyperglycemia is a known driver of EndMT in diabetes. High

glucose-mediated endothelial damage activates a variety of EndMT-

inducing pathways. High glucose promotes TGF-b signaling in ECs

through the activation of the PKC pathway, which can trigger EndMT

through both Smad-dependent and -independent pathways (12, 24, 40–

42). The PKC pathway also triggers ET-1 production, which promotes

EndMT independently from TGF-b (12, 43, 82). Furthermore,

inflammatory responses triggered by ROS, AGE-RAGE and other

hyperglycemia-induced pathways also contribute to EndMT in

diabetes (12, 22, 39). Additionally, hyperglycemia effects changes in

epigenetic regulation, and can increase the susceptibility of ECs to

EndMT. Specific mechanistic links between hyperglycemia and EndMT

have been reported in different diabetic complications organs (44, 83–

87). Hyperglycemia and EndMT are closely intertwined in the early

pathogenesis diabetic vascular complications, thus highlighting the
Frontiers in Endocrinology 04
importance of EndMT may provide new perspective and insight into

the understanding of these complications.
2.1 Diabetic retinopathy and endothelial-
tomesenchymal transition

Diabetic retinopathy is the leading cause of blindness in working-

aged adults. Diabetic retinopathy is broadly divided into two stages,

non-proliferative (NPDR) and proliferative (PDR) (9, 88–90). NPDR

begins with asymptomatic glucose-induced changes in the retinal

vasculature which compound and worsen, leading to increased

vascular permeability, capillary non-perfusion, microaneurysms,

microhemorrhages, neuronal damage, and intraretinal microvascular

abnormalities (9, 88–90). The non-proliferative changes disrupt the

perfusion of the retina, causing overexpression of angiogenic factors,

leading to the characteristic growth of abnormal vessels, i.e.,

neovascularization in PDR (9, 88–90). Vision loss in diabetic

retinopathy typically involves one of the following mechanisms:

diabetic macular edema (DME), or hemorrhage and tractional retinal

detachment (TRD) (9, 88–90). DME can occur during NPDR or PDR

and is caused by fluid buildup as a result of leaky blood vessels (9, 88–

90). TRD more limited to PDR and is caused by fibrovascular scarring

of the abnormal vessels generated during neovascularization (9, 88–90).

EndMT occurs throughout NPDR and PDR, and may contribute to

either mechanism of vision loss in diabetic retinopathy.
FIGURE 2

Epigenetic regulation of endothelial to mesenchymal transition. Induction and maintenance of EndMT is facilitated by changes in epigenetic regulation.
Stimuli such as TGF-b, NOTCH, WNT, ET-1, inflammatory cytokines, which may result from hyperglycemia can effect changes in epigenetic regulation,
resulting in persistently altered patterns of gene expression. Different epigenetic mechanisms also reciprocally regulate one another. DNA methylation,
and histone modifications can influence the transcription of ncRNAs, while ncRNAs can regulate the proteins required for covalent modifications of DNA
and histones. Different types of ncRNAs regulate also each other, with circRNAs and lncRNAs sponging miRNAs while miRNAs can target circRNAs and
lncRNAs for degradation.
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ECs in the retina play an important role in maintaining the blood-

retinal barrier (BRB), a highly selective barrier that keeps the retinal

environment separate from general circulation (91, 92). Losing

endothelial characteristics through EndMT disrupts the barrier

function of these retinal ECs and results in increased permeability.

Furthermore, increased deposition of matrix proteins such as type I

collagen, type IV collagen and fibronectin due to the gain of

mesenchymal traits may lead to thickening of the basement

membrane, which also contributes to increased vascular

permeability in diabetic retinopathy (40, 93). Increased vascular

permeability not only contributes to risk of DME, but also allows

circulating factors such as inflammatory mediators to enter the retina,

leading to inflammation and further damage (91, 92). Breakdown of

the BRB is a well-documented part of diabetic retinopathy and has

many contributors, but EndMT does appear to play a substantial role.

Inducing EndMT in non-diabetic mice has been shown to result in

similar retinal vascular leakage levels to diabetic mice (42). Apart

from disrupting the barrier function of the BRB, EndMT also

contributes to other harmful pathways within diabetic retinopathy.

EC-derived mesenchymal-like cells contribute to the population of

myofibroblasts that participate in fibrosis and mediate TRD during

PDR (94).

EndMT in diabetic retinopathy has been verified to be mediated by a

variety of pathways. High glucose induced the suppression of two

lncRNAs, MEG3 and H19, which reportedly mediate EndMT in the

retina through Smad-independent TGF-b signaling (42, 83). MEG3

inhibition was mediated by glucose-induced promoter hypermethylation,

while the mechanism of H19 has not been reported (42, 83). High glucose-

induced suppression of miR-200b, facilitated EndMT in diabetic

retinopathy through canonical TGF-b signaling (40). Experimentally

induced overexpression of H19, MEG3 or miR-200b prevented EndMT

by inhibiting MAPK, PI3K/AKT/mTOR, and Smad2 respectively,

effectively cutting off TGF-b signal transduction (40, 42, 83). Other

EndMT-inducing pathways are also at play in the diabetic retina.

Notch2 is significantly upregulated in retinal ECs under high glucose

conditions, and drove EndMT independently of TGF-b (44).

Overexpression of miR-29a/b was able to suppress Notch2 and prevent

EndMT (44). Differential expression of a variety of circRNAs has been

reported in diabetic retinopathy and non-diabetic retinopathy animals, and

circRNAs associated with EndMT-related processes were uniquely

increased in animals with diabetic retinopathy (95).
2.2 Diabetic nephropathy and endothelial-
to-mesenchymal transition

Diabetic neuropathy is the leading cause of end-stage kidney

disease and kidney failure and has a strong association with

cardiovascular morbidity and mortality (10, 96). Diabetic neuropathy

is characterized by failure of the renal filtration system and progressive

proteinuria (10, 96). The severity of diabetic neuropathy is correlated

with the concentration of albumin in the urine (10, 96). Glomerular

basement membrane (GBM) thickening is one of the earliest signs of

diabetic neuropathy; despite becoming thicker, the GBM becomes
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disorganized and non-uniform, leading to passage of proteins from

circulation into the filtrate (97). The passage of plasma proteins into the

renal tubules, along with other high glucose-mediated events, such as

mesangial expansion and generation of AGEs triggering inflammation

and fibrotic changes within the glomeruli and renal tubules, resulting in

glomerulosclerosis and tubulointerstitial fibrosis respectively (98–102).

Inflammatory and fibrotic changes within the kidney impede kidney

function, characterized by reduction of the glomerular filtration rate

(GFR) (10, 97). The progressive decline in kidney function and GFR

ultimately results in renal failure (10, 96, 97).

ECs of the kidney, somewhat similarly to those of the retina, have

a role of maintaining a selective barrier—the glomerular filtration

barrier (GFB) (103). EndMT negatively impacts the functional

capabilities of the GFB by reducing endothelial junctional protein

expression and increasing ECM protein deposition (85, 103, 104).

Furthermore, EndMT in the glomerular ECs influences epithelial-to-

mesenchymal transition (EMT) in adjacent epithelial cells, otherwise

known as podocytes, which are also important supporters of the GFB

(105). Thus, glomerular EndMT is closely related with podocyte

EMT, which contributes to podocyte loss and further breakdown of

the GFB (106). Inhibition of EndMT in glomerular ECs has been

shown to reduce hyperpermeability, and inhibition of EndMT in

diabetic mice has been shown to reduce albuminuria (85, 104).

Additionally, EndMT in the kidney, as is the case in other organs,

is a significant source of myofibroblasts and a contributor to sclerosis

and fibrosis (28, 107, 108). One study has found that up to 30% of

myofibroblasts found in the renal interstitium were of endothelial

origin (8).

EndMT in diabetic neuropathy, as it is in most cases, has been shown

to involve TGF-b-mediated responses. Rho-associated kinase (ROCK) is

an effector of TGF-b that is upregulated under hyperglycemic conditions

and promotes EndMT in diabetic neuropathy (85, 104). Suppression of

ROCK via upregulation of miR-497 was able to attenuate EndMT in

glomerular ECs (104). Canonical TGF-b signaling is also involved;

different researchers have found that inhibition of Smad3 prevented

EndMT in diabetic neuropathy (109, 110). One group showed direct

blockade of Smad3 using a Smad3 inhibitor prevented AGE-induced

EndMT, while another group showed that induction of miR-29 using the

drug linagliptin prevented EndMT by inhibiting Smad3 phosphorylation.

Non-TGF-b pathways have also been reported to occur in diabetic

neuropathy. The pattern recognition receptor NOD2 has been shown

to promote EndMT in response to high glucose by bypassing TGF-b
receptors and directly activating MAPK (111). The serine protease

inhibitor a2-antiplasmin similarly bypasses TGF-b and induces

Smad2/3 activation via AGE-induced responses (112).The SET

domain-containing protein 8 (SETD8) regulates EndMT in diabetic

neuropathy by directly regulating SNAI1; upregulation of SETD8

suppressed SNAI1, and prevented EndMT (86). And signal transducer

and activator of transcription 5A (STAT5A) has been reported to

modulate latrophilin and seven transmembrane domain containing 1

(ELTD1) in order to regulate EndMT via a not well-characterized

mechanism (113, 114). Lastly, on the chromatin level, methylation of

histone 4 lysine 20 (H4K20me1) by lysine methyltransferase 5A has been

found to inhibit EndMT, while trimethylation of histone 3 lysine 4

(H3K4me3) by Set1 has been found to induce EndMT (115–117).
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2.3 Diabetic neuropathy and endothelial-to-
mesenchymal transition

Patients with diabetes are 15-30 times more likely to require a

lower limb amputation than non-diabetics (118, 119). The associated

loss of sensation in diabetic distal somatosensory neuropathy renders

patients especially susceptible to foot ulcers and infected wounds

which may result in amputations (120, 121). Approximately one half

of people with diabetes will develop neuropathy throughout their life

(122). Diabetic neuropathy manifests as both numbness and pain,

first beginning in the distal extremities. One common occurrence is

paradoxical numbness and elevated pain sensitivity (123). This

numbness and pain lead to reduced mobility and results in patients

being more susceptible to falls, further exacerbating the risks of

disabling injury (124). Currently, diabetic neuropathy is only

treated through glucose control and pain management, as there is

no effective cure for most diabetic complications.

The pathogenesis of diabetic neuropathy was initially understood

as having a neurological basis, however, recent understandings of

diabetic neuropathy now better characterize its pathogenesis as being

primarily vascular in nature (125–128). Vascular dysfunction is the

initial and underlying cause of all diabetic complications, and this

remains consistent in diabetic neuropathy. The vascular supply to

peripheral nerves is limited and blood flow can be easily

compromised, any damage to the vasculature surrounding

peripheral nerves rendering peripheral nerves vulnerable to

ischemia (129). While no research has yet been done on the

prevalence of EndMT in diabetic neuropathy, microvessels of the

neural vasculature show both thickened basement membranes and

disrupted ECs, indicating the possibility for EndMT to have occurred

(130). There is still much to be discovered in diabetic neuropathy and

elucidating the potential role of EndMT in the peripheral neuronal

vasculature are needed to fill the gaps in understanding.
2.4 Diabetic cardiomyopathy and
endothelial-to-mesenchymal transition

Cardiovascular disease is the leading cause of death among people

with diabetes as diabetes is commonly comorbid with various other

cardiovascular diseases such as atherosclerosis, coronary artery

disease and hypertension. However, independent of these comorbid

risk factors, diabetic cardiomyopathy is defined as abnormal form and

function of the heart driven solely by diabetes and high blood glucose,

which exists independently of other cardiac risk factors (131–133).

Although other mechanistic changes may also play specific roles,

microvascular pathology remains the major contributor (131, 134,

135). Patients with type 1 diabetes who do not have hypertension or

coronary artery disease suffer higher rates of cardiac dysfunction than

non-diabetic cohorts (136). Studies have found that left ventricular

dysfunction is associated with diabetes when controlled for coronary

artery disease and other heart diseases (137, 138). Additionally, the

development of and risk for heart failure is directly correlated with

blood glucose levels, with each 1% increase in glycated hemoglobin

being linked to increased risk of heart failure in T1DM and T2DM

patients (139). The pathogenesis of diabetic cardiomyopathy is not

clearly defined as the heart is affected in numerous ways in diabetes,
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however diabetic cardiomyopathy is generally characterized by left

ventricular hypertrophy and a reduction in cardiac contractility

and function.

Fibrosis is one characteristic of diabetic cardiomyopathy, it results

in imbalanced extracellular matrix protein production, leading to

cardiac remodeling and impaired cardiac function, as the adult heart

lacks regenerative abilities, cardiac fibrosis is difficult to reverse (140).

In cardiac fibrosis as with other fibrotic diseases, abhorrent

stimulation of fibroblasts to activate produces an overabundance of

extracellular matrix proteins, leading to interstitial fibrosis and a

thickened basement membrane. EndMT contributes to the pool of

activated cardiac myofibroblasts, lineage tracing has found that 20-

35% of cardiac fibroblasts had an endothelial origin (141, 142).

Hyperglycemia is a potent cause of EndMT as high levels of glucose

damage ECs and result in signaling derangement, resulting in ECs

differentiating into a mesenchymal phenotype (143). Oxidative stress

triggered by hyperglycemia drives the differentiation of ECs through

the TGF-b1 and TGF-b2 pathways (144). Oxidative stress induces

TGF-b1 and TGF-b2 signaling, which results in a reduction of

endothelial markers and an increase in fibrotic markers and ECM

proteins (145, 146). In addition, TGF-b further contributes to the

development of fibrosis through the promotion of if ALK5/Smad3/

NF-kB pathway as well as through aberrant activation of the Ras-

GTPase pathway (141, 145–147). Receptor for advanced glycation

end products (RAGE) is the receptor of advanced glycation end

products (AGEs), both of which are increased in diabetes (148, 149).

Knocking out RAGE is able to reduce the degree of EndMT and

alleviated cardiac fibrosis in mice (149). As the transcriptional and

post-transcriptional level, epigenetic alterations may play a major role

in the mediation of EndMT.

EndMT in the heart was first discovered to be involved in the

development of heart valves at an embryonic stage (150). Control of

EndMT in the heart is epigenetically regulated and the persistent and

heritable nature of epigenetic changes contributes to diabetic

metabolic memory. Epigenetic modifications take the form of

histone modifications, DNA methylation and through ncRNA

mediation. During development, EndMT is terminated through the

actions of HDAC3 (histone deacetylase 3), which results in the

recruitment of EZH2 (enhancer of zeste homolog 2) to silence

TGF-b1 (151). Though no mechanistic link has been made between

histone modifications and EndMT in the context of diabetes, HDAC3

has been found to be significantly increased in T2DM patients and

HDAC3 mRNA levels were positively correlated to poor glycemic

control (152). HDAC3 being both associated with the termination of

EndMT while being upregulated in diabetes is an interesting avenue

of future studies. DNA methylation is the presence of methyl groups

on cytosine bases in CpG islands in DNA (50). Addition of methyl

groups via DNA methyltransferases results in stable gene silencing

(50). In various models of cardiac fibrosis, the gene RASAL1 (Ras

protein activator like 1, a Ras-signaling inhibitor) has been shown to

be hypermethylated (147, 153). Methylation of RASAL1 promoter

results in increased Ras-GTP activity, resulting in EndMT (153).

Noncoding RNA are a class of epigenetic molecules with novel

importance. So far, various microRNA have been discovered to be

important in the context of cardiac fibrosis. miR-126-3p was found to

be downregulated in HUVECs undergoing EndMT and over-

expression of miR-126-3p was about to maintain ECs in an
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endothelial phenotype (142). Through regulation of the Wnt/b-
catenin pathway, miR-222 is able to inhibit EndMT in mouse

cardiac endothelial cells, and overexpression of miR-222 in diabetic

mice reduces cardiac fibrosis (45). Transgenic mice that

overexpressed miR-200b were found to have better cardiac function

and reduced EndMT in cardiac tissue (41). miR-21, in contrast, was

found to be upregulated in relation to EndMT, and inhibition of miR-

21 improved cardiac function (46). Long noncoding RNA (lncRNA)

have also been investigated as epigenetic regulators of EndMT.

ANRIL regulates diabetic cardiomyopathy in concert with p300 and

EZH2 of the PRC2 (polycomb repressive complex 2) complex and the

hearts of diabetic ANRIL-knockout mice had reduced levels of ECM

(154). LncRNA also interact with microRNA, for example, miR-9-5p

interacts with the lncRNA ZFAS1 to mediate cardiac fibrosis in

diabetic cardiomyopathy (155). Various other epigenetic

modifications, including up- and down-regulated circRNAs have

been observed in the diabetic heart which result in increased

fibrosis, cardiac remodeling, and heart failure (95). Further

investigations into the extent to which epigenetic modifications

occur in EndMT in diabetic cardiomyopathy could lead to better

and longer-lasting therapies for diabetic complications.
2.5 Endothelial-to-mesenchymal
transition and macrovascular
complications of diabetes

Atherosclerosis is the premier macrovascular complication of

diabetes. It is thought to arise from chronic inflammation and

injury to arterial walls, leading to accumulation of plaque which

causes arteries to narrow and restricting blood flow (156). It is the

cause of coronary artery disease, the most common heart disease in

the US and Canada (157). Endothelial dysfunction lies at the heart of

atherosclerosis. Hyperglycemic damage to the macrovasculature, as in

the microvasculature, results in signaling derangement that leads to

EndMT through the generation of reactive oxygen species and

inflammatory cytokines (156, 158). Reactive oxygen species induce

NF-kB signaling, triggering inflammation, promoting the

accumulation of lipids and the formation of a fatty streak—the

genesis of plaque (159). The mesenchymal cells derived from

EndMT are critical in the progression of atherosclerosis. They

secrete proinflammatory signaling molecules and produce and

deposit ECM proteins that serve as scaffolding for the forming

plaque (160). Recent search has delineated a substantial endothelial

origin for mesenchymal cells of the arterial intima, with up to 30% in

mice (156). Several pathways activated as a result of hyperglycemia all

enhance TGF-b signaling, which directly induces the progression of

EndMT (161). Signaling of TGF-b through ALK5 causes the

activation of SMAD2/3 which results in the transcription of Snail,

Slug and Twist, which contribute to the induction of EndMT and

atherosclerosis development (87, 162–166). Various macrovascular

complications are comorbid with diabetes. Individuals with T2DM

are often also obese and suffer from hypertension. Hypertension, a

common comorbidity of T2DM, further activates TGF-b signaling

through Smad, exacerbating atherosclerosis.

Epigenetic modifications are also associated with atherosclerosis.

PRC2 which is responsible for the repressive H3K27me3 histone
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modification has been found to be upregulated in the endothelium of

blood vessels which are susceptible to atherosclerosis (167, 168). ECs

isolated from human plaque show upregulated H3k27me3 when

compared to ECs in regions without plaque (169). High levels of

the histone modification H2K4me3 (histone 3 lysine 4 tri-

methylation) has been detected in the ECs of rat aortas exposed to

hyperglycemia, which resulted in enriched expression of Notch and

development of a mesenchymal-like phenotype (117). EZH2 has been

found to be upregulated in atherosclerosis as well as in ECs treated

with high glucose (168–170). miR-10a is regulated by NF-kB
signaling pathway and has been found to be downregulated in ECs

in athero-susceptible regions compared to elsewhere, and low levels of

miR-10a in the serum is associated with human atherosclerosis (171).

Although current studies have yet to concretely establish an

epigenetic basis in EndMT in atherosclerosis, various epigenetic

modifications that have been found in atherosclerosis are suggestive

of EndMT pathways. For example, the previously mentioned miR-126

which is has been previously mentioned to be regulated in EndMT in

cardiac fibrosis has also been found to be a regulator of the

development of atherosclerosis in the coronary and aortic

endothelium. MiR-126 inhibits VCAM-1 (vascular cell adhesion

molecule 1), which in atherosclerosis interacts with inflammatory

molecules to drive the formation of lesions (172). Atherosclerosis is a

disease that exists outside of diabetes, and further research done on

the potential role of EndMT may provide novel avenues for treatment

of an incredibly prevalent disorder.
3 Molecules targeting EndMT in
diabetic complications

A wide variety of pathways have been implicated in the

pathogenesis of hyperglycemia-induced EndMT, but contributions

of each pathway and the interplay between pathways in the regulation

of EndMT is not fully understood. For example, inhibition of one of

Notch, canonical TGF-b, or non-canonical TGF-b signaling alone can
prevent EndMT in diabetic retinopathy, raising the question of if and

how these pathways overlap and are co-regulated. Despite these gaps

in understanding, there has been a wealth of research into the

influences of various molecules on diabetes-induced EndMT,

ranging from pharmaceutical agents which directly target EndMT-

inducing pathways to miRNAs which act in an epigenetic manner.

Most of these molecules have been identified in organ-specific

research, however, as the molecules target common pathways, the

findings may be applicable to diabetic complications in other organs

as well.

In a case of having the cart before the horse, anti-diabetic drugs

dapagliflozin, liraglutide, and linagliptin, which have long been used to

aid in the regulation of blood glucose levels, have been shown to inhibit

EndMT in of diabetic animals (110, 173, 174). The anti-EndMT effects

of these drugs do not appear to be due to direct reduction of serum

glucose levels, rather, dapagliflozin and liraglutide act by activating the

AMP-activated protein kinase (AMPK), which attenuates intracellular

TGF-b signaling (173–175), and linagliptin induces miR-29 to suppress

Smad3 phosphorylation in TGF-b signaling. Further up the regulatory

chain of hyperglycemia-induced EndMT, dietary supplements
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resveratrol and eicosapentaenoic acid have been shown to prevent

EndMT in retinal and glomerular ECs respectively, by inhibiting PKC,

thereby preventing the induction TGF-b and ET-1 (12, 24, 82, 176,

177). Short interfering RNAs (siRNAs) targeting pro-EndMT genes

and lncRNAs, or those that mimic anti-EndMT miRNAs highlighted

throughout the previous sections may also be viable approaches to

preventing EndMT (178). Experimental silencing of lncRNAs ZFAS1

and MALAT1, and experimental induction of miRNAs 9, 29, 126, 145,

200b, 222, and 497 have proven to be potent suppressors of

hyperglycemia-induced EndMT through various pathways (41, 44,

45, 104, 142, 155, 179, 180). Alternatively, synthetic lncRNAs might

also be an option to suppress glucose-induced EndMT (181).

Experimental upregulation of lncRNAs inhibited by glucose, H19 and

MEG3, have been shown to prevent EndMT in diabetic retinopathy

(42, 83).
4 Conclusion

For the millions of people living with diabetes, diabetic

complications are almost an inevitable cause of morbidity and

mortality. Vascular dysfunction lies at the nexus of diabetic

complications. The manifestations of diabetic complications vary

throughout the body and their regulatory components are different

as well. In this review, we have summarized many of the myriad

pathways which converge to mediate endothelial-to-mesenchymal

transition as well as the epigenetic regulations which maintain

EndMT. Though the connection between diabetes and EndMT has

been established in diabetic nephropathy, cardiomyopathy and

retinopathy, the causational relationship has yet to be

experimentally observed in peripheral neuropathy. However, much

has yet to be discovered and novel mechanisms have yet to be

explored for their therapeutic potential. Considering that diabetic

complications have no current treatment aside from symptom

management and glycemic control, the discovery of therapies that
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may reverse or stop the progression of diabetic complications would

make a huge impact on the lives of those suffering from the life-

altering morbidities resulting from diabetic complications.
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