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Background: The incidence of complications of non-alcoholic fatty liver disease

(NAFLD) and type 2 diabetes (T2D) has been increasing.

Method: In order to identify the shared genetic architecture of the two disease

phenotypes of NAFLD and T2D, a European population-based GWAS summary

and a cross-trait meta-analysis was used to identify significant shared genes for

NAFLD and T2D. The enrichment of shared genes was then determined through

the use of functional enrichment analysis to investigate the relationship between

genes and phenotypes. Additionally, differential gene expression analysis was

performed, significant differentially expressed genes in NAFLD and T2D were

identified, genes that overlapped between those that were differentially

expressed and cross-trait results were reported, and enrichment analysis was

performed on the core genes that had been obtained in this way. Finally, the

application of a bidirectional Mendelian randomization (MR) approach

determined the causal link between NAFLD and T2D.

Result: A total of 115 genes were discovered to be shared between NAFLD and

T2D in the GWAS analysis. The enrichment analysis of these genes showed that

somewere involved in the processes such as the decomposition andmetabolism

of lipids, phospholipids, and glycerophospholipids. Additionally, through the use

of differential gene expression analysis, 15 core genes were confirmed to be

linked to both T2D and NAFLD. They were correlated with carcinoma cells and

inflammation. Furthermore, the bidirectional MR identified a positive causal

relationship between NAFLD and T2D.

Conclusion:Our study determined the genetic structure shared between NAFLD

and T2D, offering a new reference for the genetic pathogenesis and mechanism

of NAFLD and T2D comorbidities.

KEYWORDS
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological

syndrome that is characterized by hepatic parenchymal steatosis and

fat storage in the absence of a history of binge drinking. In simple

terms, NAFLD is usually benign, but if linked with an unhealthy

lifestyle, obesity, and other metabolic syndromes, it may develop

from simple fat accumulation to non-alcoholic steatohepatitis

(NASH), liver fibrosis and cirrhosis, and, in rare cases, liver cancer

(1). It is a complex disease that results from the interaction of

environmental and genetic factors, so it has multiple pathogenic

factors such as insulin resistance (IR), lipid metabolism disorders,

oxidative stress, and cytokine effects (2). In addition to being

considered a manifestation of IR in the liver, NAFLD often

coexists with metabolic syndromes such as obesity, type 2 diabetes

(T2D), and hyperlipidemia (3). Among them, T2D is a typical

endocrine and metabolic disease that is affected by multiple

pathogenic factors, and its incidence is increasing rapidly

worldwide. T2D, the most prevalent type of diabetes, is

characterized by hyperglycemia, IR, and lipid metabolism disorder

as the pathological basis (4). In recent years, it has been found that

NAFLD and T2D show similar pathological characteristics and often

coexist as commondiseases that seriously endanger public health. On

one hand, T2D can lead to dysfunction of glycolipid metabolism in

the body through the development of factors such as IR, chronic

inflammation and oxidative stress, which results in NAFLD and

further liver damage and worsens the prognosis of NAFLD (5)? On

the other hand, through fat deposition, inflammation, endoplasmic

reticulum stress, and oxidative stress, NAFLD can also exacerbate

hepatic IR and promote metabolic abnormalities including

hyperglycemia, creating the ideal environment for the development

of T2D (6).

Related studies have shown that NAFLD and T2D interact with

each other, and that there is a complex two-way relationship

between the two that can accelerate deterioration. Targher et al.

(7) found that NAFLD was ubiquitous in patients with T2D (7).

Similarly, Jarvis et al. (8), in a meta-analysis of population-based

cohort studies, found that the occurrence of T2D was associated

with a more than two-fold increase in the risk of severe liver disease

events among those at risk of or diagnosed with NAFLD (8). This

finding was the same as that found by Mantovani et al. (9) in a study

of the impact of NAFLD on the risk of development of T2D (9).

Also, Pinero et al. (10) reported that the global incidence of NASH

had reached 3% to 5%. NASH occurs in 20% to 30% of patients with

T2D and obesity, and NAFLD occurs in 69% to 87% of those

patients (10). Hence, the incidence of NAFLD combined with T2D

is higher than that of NAFLD alone or T2D alone (5). Thus, the

identification of the shared genetic architecture of NAFLD and T2D

has important implications for the prevention and treatment of

these diseases.

In recent years, the development of next-generation sequencing

and high-throughput genotyping arrays has led to the GWAS and

exome-wide association studies (EWAS), which are methods for the

identification of genetic factors for many complex diseases (11). The
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use of GWAS, which is larger-scale than EWAS, has led to the

identification of many polymorphisms and genetic variants that are

associated with NAFLD and T2D and the investigation of new

therapeutic targets. In addition, differentially expressed genes

(DEGs) are key to learn about gene activity. They have now

become one of the most important tools for the discovery of

biomarkers (12). This method can be used to find genes that

exhibit notable variations in expression, to analyze statistically the

findings to pinpoint particular genes that are associated with those

conditions, and then to analyze the biological importance of those

particular genes. More importantly, DEGs can complement the

knowledge of important target tissues and cell types that the GWAS

approach lacks in disease pathogenesis, thus realizing the

transformation of relevant gene loci into mechanisms. Hence it

can be seen that the integration of GWAS summary statistics and

gene expression data can identify disease-related tissues and cell

types without bias, increase the credibility of the analysis results,

and provide a sufficient basis to explain the pathogenesis.

Current genetic studies that target NAFLD and T2D require the

discovery of more significant genetic association signals to support

and translate the research through various novel analytical methods

into biological and potentially therapeutic knowledge. Therefore,

this study first conducted a comprehensive genetic analysis through

the use of GWAS to identify susceptibility genes for NAFLD

combined with T2D. The core shared genes were further screened

as this information was combined with the results of DEG analysis.

Subsequently, functional annotation analysis was performed to

identify the underlying biological pathways of these core, shared

genes. At the same time, a two-sample MR analysis was conducted

to explore the causal relationship between NAFLD and T2D. The

above analysis provided a robust theoretical basis for the study of

NAFLD and T2D complications and new ideas and opportunities

for the further development of prevention and treatment strategies.
2 Methods

2.1 Data summary

To identify genetic variants in NAFLD combined with T2D, the

GWAS summary statistics for this study were obtained from the US

National Human Genome Research Institute GWAS catalog

(https://www.ebi.ac.uk/gwas/), including NAFLD (1,483 cases and

17,781 controls) and T2D (4,040 cases and 113,735 controls). (13,

14). For the DEG analysis, the organism was Homo sapiens, and the

experiment type was expression profiling by array, which set the

screening conditions of the dataset. The related gene expression

datasets GSE48452, GSE25724, GSE17470, and GSE20966 were

downloaded from the Gene Expression Omnibus database

(https://www.ncbi.nlm.nih.gov/geo/), which included human liver

biopsy (18 NASH, 14 NAF, 27 obese, 14 controls), human islets, and

NASH liver biopsy (6 case and 4 controls) and beta-cells from

pancreatic tissue (n=10) (15–18). All data sources can be found

in Table 1.
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https://www.ebi.ac.uk/gwas/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fendo.2023.1050049
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tan et al. 10.3389/fendo.2023.1050049
2.2 Study-level quality control

The “GWASInspector” R package was used to conduct

harmonized quality control (QC) on the GWAS statistics of

NAFLD and T2D phenotypes to ensure that false positive signals

were eliminated and that low-quality data did not obscure actual

signals (19, 20). NAFLD and T2D GWAS summary data were

performed separately in the QC. The reference dataset was the 1000

genomes project reference panel (21), the specific genome build

version was GRCh37, and we included the relevant information

from the European population. The QC involved: the deletion of

variants that contained missing fundamental values or were

duplicated; the deletion of monomorphic variants; the checking of

the consistency of allele frequencies with reference datasets; the

alignment of alleles with reference datasets, and the comparison of

those alleles to ensure that the resulting allele frequencies were

correct; the removal of unverifiable mismatches and multi-allelic

variants, and; the setting of a threshold plot_cut-off_p = 0.01 to

exclude low-significance SNPs.
2.3 Cross-trait meta-analysis

Cross-trait meta-analysis was performed using the CPASSOC

software package. CPASSOC is a method for studying cross-

phenotypic (CP) associations by using summary statistics from

GWAS of multiple phenotypes. It combines effect estimates and

standard errors of GWAS summary statistics to test the hypothesis of

an association between SNPs and traits (22). Cross-phenotype

associations increase statistical power when the traits analyzed

share common variants or common genetic pathways, which are

often associated with pleiotropy (23). CPASSOC includes two tests,

SHom and SHet. In this study, R v.4.1.3 was used to perform the SHet

test considering the effect of trait heterogeneity, which can increase
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the power when the genetic effect size of different traits is different

(24). At this time, the gamma distribution parameters are estimated

by setting N = 1E4 and calling the EstimateGamma function. Due to

the many hypothesis tests that may be applied in GWAS studies, the

threshold is strictly controlled to minimize the number of false

positives reported. Currently, the most significant threshold is

generally recognized as p<5×l0-8, and this threshold also applies to

CPASSOC (24, 25). Then, hg19 was used as the reference genome,

and the refGene database was used to annotate the SNPs that reached

the threshold of significance level using the ANNOVAR software

(http://www.openbioinformatics.org/annovar/). Finally, the shared

genes of NAFLD combined with T2D were obtained.
2.4 Enrichment analysis

In this study, SNPs that showed significant variation in meta-

analysis and the genes from which they came were used for

functional enrichment analysis to explore the potential biological

function of shared susceptibility genes between NAFLD and T2D.

The online tool Metaspace (https://metascape.org/gp/index.html#/

main/step1) was used to analyze comprehensively these

susceptibility genes. Metaspace integrates more than 40 gene

function annotation databases such as Gene Ontology (GO) and

DisGeNET, providing multiple functional and diversified

visualization methods such as gene enrichment analysis and

protein interaction network analysis, which can be used for easy

exploration and analysis of gene function (26). The GO enrichment

analysis of candidate genes was focused on the use of the

“clusterProfiler” package of R v.4.1.3 (https://www.r-project.org/).

In addition, the online platform TissueEnrich (https://

tissueenrich.gdcb.iastate.edu/) was used as a calculating input-

gene centralized organization-specific enrichment tool to

complete the tissue-specific expression analysis (27).
TABLE 1 Data source information summary.

Phenotype Data Source Population Cases’
size

Controls’
size

Total’
size

Number
(SNPs)

PubMed
ID

Download Link

NAFLD GWAS Catalog European 1,483 17,781 19,264 6,797,908 32298765 https://www.ebi.ac.uk/gwas/
studies/GCST90011885

T2D GWAS Catalog European 4,040 113,735 117,775 8,404,432 26961502 https://www.ebi.ac.uk/gwas/
studies/GCST006801

NAFLD
(Discovery set)

GEO database
(GSE48452, GPL11532)

Germany 32 41 73 – 23931760 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi

NAFLD
(Validation
set)

GEO database
(GSE17470, GPL2895)

USA 7 4 11 – 20221393 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi

T2D
(Discovery set)

GEO database
(GSE25724, GPL96)

Italy 6 7 13 – 21127054 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi

T2D
(Validation
set)

GEO database
(GSE20966, GPL1352)

USA 10 10 20 – 20644627 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi
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2.5 Differential gene expression analysis
and enrichment

To confirm which of the chosen genes were the core shared genes

in NAFLD and T2D, four GEO datasets were selected for DEG

analysis. The specific dataset information is shown in Table 1. Of

the four, GSE48452 and GSE25724 were used as discovery sets, while

GSE17470 and GSE20966 were used as validation sets to verify the

validity and disease association of the identified genes. In addition,

each dataset was divided into two groups of samples, with NAFLD

patients or T2D patients as the experimental group and healthy people

as the control group. GEO data were processed through the application

of the online analysis tool GEO2R (https://www.ncbi.nlm.nih.gov/geo/

geo2r/) to identify DEGs. The visualization of overlapping genes in

GEO datasets is realized through the online platform jvenn (http://

www.bioinformatics.com.cn/static/others/jvenn/example.html) (28).

After the discovery and validation sets were merged, the final DEGs

were screened through use of adjust.P.Value, which is applied to adjust

the p-value for multiple tests to control the false discovery rate (FDR).

The FDR is calculated as expected rate x (false positive/(false positive +

true positive)) (29). The value of adj.pwas set at <0.05 to screen out the

DEGs of NAFLD and T2D. Then, the genes that overlapped with those

found through the GWAS were identified as the shared core genes of

NAFLD and T2D. Differential gene expression analysis is to identify

shared genes through differential expression analysis between two

phenotypes and to find overlapping genes with cross-trait analysis

based on the GWAS summary statistics. Using multiple analytical

methods to explore the reproducibility of our results between the two

phenotypes can make the findings more reliable and robust. Next, the

enrichment analysis described in section 2.4 was carried out for the

genes that were found to overlap in the GWAS and DEG analyses.
2.6 Mendelian randomization analysis

The QC-processed GWAS data were used in the MR analysis.

The potential causal effect between T2D and NAFLD was explored

through the use of a bidirectional MR analysis, in which the two

traits were evaluated alternately as exposure and outcome, and

independent SNPs that were closely related to exposure and

outcome traits were used as instrumental variables. Among them,

the screening of exposure was essential. The parameters p=5×10-8

specified the p-value of the SNP in the exposure; that is, only SNPs

with p-values of <5×10-8 were extracted (30). The NbDistribution

simulation calculation was set to 1000 and the p-value threshold for

judging whether the SNP was an outlier was set to 0.05 before the

MR analysis was performed. Then, the calculation of MR pleiotropy

residual sum and outlier (MR-PRESSO) was performed to identify

the existence of the outliers (31). Once outliers were located, they

were eliminated, and subsequent MR analysis was performed. MR

and sensitivity analyses were performed through the use of the

inverse variance weighted (IVW) method (32) with multiplicative

random effects, supplemented by MR Egger (33, 34), weighted

median (33), simple mode, and weighted mode methods (35). It

is important to note that horizontal pleiotropy is a potential
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confounding factor in MR analysis; i.e., instrumental variable

SNPs influence the outcome through a non-causal pathway,

which may affect the measurement of the relationship between

traits. To examine the impact of pleiotropy on the results of the MR

analysis, MR-PRESSO was also used to test for horizontal

pleiotropy for multiple instrumental variables. In addition,

heterogeneity statistics and leave-one-out analyses were included

in the MR analysis. Heterogeneity statistics mainly test the

differences between individual SNPs, and leave-one-out analysis

mainly tests the stability of MR results. The “TwoSampleMR” and

“MRPRESSO” packages were used for MR analysis in R v.4.1.3.
3 Results

3.1 Study-level QC

QC was performed through the use of “GWASInspector”. 100%

of NAFLD GWAS summary data (6,797,908 SNPs) and 99.7% of

T2D GWAS summary data (8,380,746 SNPs) passed the QC

procedure (Table 2). SNPs that passed the QC were included in

the subsequent cross-trait meta-analysis and MR analysis.
3.2 Cross-trait meta-analysis

In total, CPASSOC identified 241 SNPs that were significantly

associated (p<5×10-8) between NAFLD and T2D (Supplementary

Table 1). In the results of the cross-trait meta-analysis, the SNP with

the most significant p-value is rs73233361 (p=6.78×10-11), which is

located on chromosome 12. Most of the remaining SNPs are located

on chromosome 6, chromosome 2, and chromosome 3. 115 genes

were obtained by ANNOVAR annotation (Supplementary Table 1).
3.3 Enrichment analysis

The DisGeNET enrichment analysis revealed that 115 shared

genes were enriched in physical activity measurement, substance-

related disorders, lean body mass, smoking behaviors, substance

abuse problem, etc. (Figure 1A). The relevant results that were

identified based on DisGeNET enrichment analysis are listed in

Supplementary Table 2. GO enrichment analysis (Supplementary

Table 3; Supplementary Figure 1) showed that the shared genes of

NAFLD and T2D were enriched in the biological processes of
TABLE 2 The number of SNPs after QC processing.

NAFLD T2D

Input variant count 6,797,908 8,404,432

Missing crucial variable 0 2

Duplicated variants 0 12,367

Monomorphic variants 0 0

Output variant count 6,797,908 8,380,746
fron
tiersin.org

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.bioinformatics.com.cn/static/others/jvenn/example.html
http://www.bioinformatics.com.cn/static/others/jvenn/example.html
https://doi.org/10.3389/fendo.2023.1050049
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tan et al. 10.3389/fendo.2023.1050049
processes of glycerophospholipids, phospholipids, lipid

decomposition, glycerolipid metabolism, and they also

participated in the enrichment in the molecular function of

activity of various enzymes. Among them, the most were

associated with sensory system development, a total of 7 genes

(FASLG, ISL1, TULP1, TBC1D32, ATP8A2, MAX , and

ADAMTS18). In addition, tissue enrichment analysis showed that

NAFLD and T2D shared genes were mainly enriched in 14 tissues:

the urinary bladder, prostate, cerebral cortex, stomach, rectum,

tonsil, heart muscle, skin, lymph node, small intestine, placenta,

liver, testis, and fallopian tube (Figure 1B). Among these tissues, the

liver is closely related to the pathogenesis of NAFLD and T2D.
3.4 Differential gene expression analysis
and enrichment

The DEG analysis results for each dataset are shown in

Supplementary Figures 2–5. The discovery sets GSE48452 and

GSE25724 contained 11,795 shared genes for NAFLD and T2D

(Supplementary Figures 6A, B), whereas the validation sets

GSE17470 and GSE20966 contained 15,557 shared genes for

NAFLD and T2D (Supplementary Figures 6C, D). A combination

of all discovery and validation sets yielded 9711 DEGs

(Supplementary Figure 6E). Subsequently, 5545 DEGs shared by

NAFLD and T2D were screened by adj.P (Supplementary Table 4).

Consideration of these genes with the candidate genes that had been

obtained through the GWAS produced fifteen core genes that were

shared by NAFLD and T2D, namely DNAJB9, VPS53, SCGN,

CMAS, RGS6, FASLG, ABHD10, ATRN, PLA2G2F, ITIH2,

ROBO1, SGCG, SH3GL2, CNR1, and FOXN3 (Table 3).
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DEG analysis of the above core genes (Supplementary Table 5)

showed that seven genes were upregulated (logFoldChange>0) and

eight genes were downregulated (logFoldChange<0) in disease.

These fifteen core genes were subjected to enrichment analysis,

and DisGeNET enrichment analysis revealed that they were

enriched in carcinoma cells and inflammation (Figure 2A).

Relevant findings from the DisGeNET enrichment analysis are

provided in Supplementary Table 6.

GO enrichment analysis showed significant enrichment of

several biological processes including regulation of endopeptidase

and peptidase activity, lipid catabolic process, fatty acid metabolic

process, response to lipopolysaccharide, and positive regulation of

proteolysis; cellular components of the distal axon, endoplasmic

reticulum lumen, and glutamatergic synapse; and molecular

functions such as carboxyl ic ester hydrolase activity

(Supplementary Table 7; Supplementary Figure 7). In addition,

tissue enrichment analysis showed that NAFLD and T2D core

shared genes were enriched in the urinary bladder, stomach,

rectum, tonsil, heart muscle, lymph node, skeletal muscle, liver,

skin, cerebral cortex, and testis (Figure 2B). The above enrichment

results supported the earlier finding that the fifteen core shared

genes, DNAJB9, VPS53, SCGN, CMAS, RGS6, FASLG, ABHD10,

ATRN, PLA2G2F, ITIH2, ROBO1, SGCG, SH3GL2, CNR1, and

FOXN3, were closely related to NAFLD and T2D.
3.5 Mendelian randomization analysis

No outliers were detected after processing with the

“MRPRESSO” R package. The results of MR analysis in T2D and

NAFLD are listed in Table 4. Among the results, regardless of
A

B

FIGURE 1

Enrichment analysis of shared genes in NAFLD and T2D. (A) DisGeNET enrichment analysis results. (B) Tissue enrichment results.
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whether NAFLD or T2D was used as exposure or outcome, the p-

value obtained by the IVW method was less than 0.05, indicating a

causal relationship between T2D and NAFLD; the related beta-

value was more than zero, which indicated that the causal

relationship between T2D and NAFLD was positive; this meant

that increasing exposure (T2D) increased the risk of the outcome

(NAFLD). From the scatter plot of the MR results (Figure 3), it can

be seen that the IVW method yielded the most significant results

among the five methods that were used for MR analysis. The plot
Frontiers in Endocrinology 06
also demonstrates the positive relationship between T2D and

NAFLD, as did the forest plot (Supplementary Figure 8).

The statistical results of heterogeneity show that there was no

heterogeneity between the instrumental variable SNPs (Q_pval was

>0.05), which can be confirmed from the funnel plot

(Supplementary Figure 9). The results of the pleiotropy test show

that there was no statistical difference (p>0.05), which indicates that

there was no horizontal pleiotropic effect. Through leave-one-out

analysis (Supplementary Table 8; Supplementary Figure 10), it can
A

B

FIGURE 2

Enrichment analysis results of DEGs shared by NAFLD and T2D. (A) DisGeNET enrichment analysis results. (B) Tissue enrichment results.
TABLE 3 Core genes after GWAS analysis and differential gene expression analysis combined.

Gene Cytogenetic region Description Remark

1 VPS53 17p13.3 VPS53 subunit of GARP complex Not novel gene

2 SCGN 6p22.2 secretagogin, EF-hand calcium binding protein Not novel gene

3 RGS6 14q24.2 regulator of G protein signaling 6 Not novel gene

4 SGCG 13q12.12 sarcoglycan gamma Not novel gene

5 FOXN3 14q32.11 forkhead box N3 Not novel gene

6 DNAJB9 7q31.1 DnaJ heat shock protein family (Hsp40) member B9 Novel gene

7 CMAS 12p12.1 cytidine monophosphate N-acetylneuraminic acid synthetase Novel gene

8 FASLG 1q24.3 Fas ligand Novel gene

9 ABHD10 3q13.2 abhydrolase domain containing 10, depalmitoylase Novel gene

10 ATRN 20p13 attractin Novel gene

11 PLA2G2F 1p36.12 phospholipase A2 group IIF Novel gene

12 ITIH2 10p14 inter-alpha-trypsin inhibitor heavy chain 2 Novel gene

13 ROBO1 3p12.3 roundabout guidance receptor 1 Novel gene

14 SH3GL2 9p22.2 SH3 domain containing GRB2 like 2, endophilin A1 Novel gene

15 CNR1 6q15 cannabinoid receptor 1 Novel gene
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be seen that no matter which SNP was removed, it would not have a

fundamental impact on the results. So the MR results are robust.
4 Discussion

This study used GWAS summary data for 6,797,908 NAFLD

and 8,404,432 T2D from European populations to determine the

shared genetic architecture of these two phenotypes. A cross-trait

meta-analysis identified 115 shared genes, and subsequent DEG

analysis identified fifteen core shared genes: DNAJB9, VPS53,

SCGN, CMAS, RGS6, FASLG, ABHD10, ATRN, PLA2G2F, ITIH2,

ROBO1, SGCG, SH3GL2, CNR1, and FOXN3.

The liver is a vital organ that regulates glucose and lipid

metabolism, and hepatic fat deposition is a critical factor in the

pathogenesis of NAFLD and T2D (36). The twin-cycle hypothesis

based on T2D explains that a gradual increase in the level of fat in
Frontiers in Endocrinology 07
the liver can lead to IR, which weakens the ability of insulin to

suppress hepatic glucose production. This leads to an aggravation of

hepatic gluconeogenesis and rises in blood sugar levels (37). The

excess glucose is used to synthesize triglycerides, which results in

increased levels of liver fat and reduced capacity to use glucose.

These processes create a vicious circle between the liver and

pancreas (38). At the same time, hepatic triglyceride synthesis is

increased in NAFLD patients. When the level of free fatty acids

(FFAs) produced by lipoprotein lipase exceeds the lipid storage

capacity of adipose tissue, b-cells will take up many fatty acids and

store them as triglycerides. This damages the b cells and causes IR

(39). This may eventually promote the progression of liver damage

to HCC.

Relevant studies to date have shown that the mechanism of

action of the mechanisms mentioned above has become a tool for

the conduct of research in clinical practice. Previous studies have

suggested some potential links between these mechanisms and the
A B

FIGURE 3

Scatter plots of the MR analysis. The light blue line shows the result of the IVW method, which has the most significant impact. The dark blue line
shows the result of the MR Egger method; the light green is the result of the simple model method; the dark green is the result of the weighted
median mode; and the red line represents the result of the weighted mode method. (A) Scatter plot of T2D as exposure and NAFLD as outcome.
(B) Scatter plot of NAFLD as exposure and T2D as outcome.
TABLE 4 Results of two-sample MR analysis of NAFLD and T2D.

Outcome Exposure Method nsnp b(exposure/outcome) se pval OR (95%CI)

NAFLD T2D

MR Egger 62 0.01109 0.00652 0.09406 1.01115 (0.99832-1.02415)

Weighted median 62 0.00278 0.00184 0.13017 1.00278 (0.99918-1.00639)

Inverse variance weighted 62 0.00343 0.00129 0.00801 1.00344 (1.00090-1.00599)

Simple mode 62 -0.00016 0.00461 0.97296 0.99984 (0.99084-1.00892)

Weighted mode 62 -0.00016 0.00359 0.96526 0.99984 (0.99283-1.00690)

T2D NAFLD

MR Egger 217 0.00344 0.00573 0.54896 1.00344 (0.99224 -1.01477)

Weighted median 217 0.01771 0.00389 5.36E-06 1.01787 (1.01013-1.02566)

Inverse variance weighted 217 0.02414 0.00302 1.24E-15 1.02443 (1.01839-1.03051)

Simple mode 217 0.02673 0.01887 0.15799 1.02709 (0.98980-1.06578)

Weighted mode 217 0.02673 0.01909 0.16297 1.02709 (0.98936 -1.06625)
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identified, core shared genes. Forkhead box N3 (FOXN3), an

important member of the FOX transcription factor family, is an

important tumor suppressor gene that plays a crucial role in several

cancers such as liver cancer, lung cancer, and colon cancer (40). The

FOXN3 gene locus is associated with fasting blood glucose levels.

Hepatic FOXN3 increases fasting blood glucose by inhibiting

hepatic glucose utilization while also regulating the expression of

amino acid transporters and catabolic enzymes (41, 42). Studies

have shown that FOXN3 suppresses the mRNA and protein

expression of E2F5 by inhibiting the promoter activity of

potential oncogene E2F5, thereby inhibiting the proliferation of

HCC cells in vitro and in vivo (43). Another tumor suppressor,

regulator of G protein signaling 6 (RGS6), is upregulated in the liver

of NAFLD patients, forms a complex with ATM in the liver,

promotes ATM phosphorylation, and drives hepatic steatosis (44,

45). A study confirmed that hepatic RGS6 increases oxidative stress

and inflammation, which drive lipid deposition, fibrosis, and

nonalcoholic fatty liver disease (46). In contrast, RGS6 deficiency

effectively ameliorated fat deposition, attenuated alcohol-dependent

liver injury, and enhanced liver regeneration (47).

Other genes that may play a role in NAFLD and T2D include

SGCG, a single-pass transmembrane glycoprotein implicated in the

pathogenesis of obesity and T2D in humans (48). It has beneficial

effects on glucose homeostasis, and elevated levels in diabetic

patients may be compensatory for IR (49). Furthermore, SCGN is

highly enriched in pancreatic b-cells and has pronounced effects on

lipolysis and lipogenesis (50). It also regulates insulin expression

and secretion, which is downregulated in type 2 diabetes (51, 52).

Studies have shown that the SCGN-insulin interaction can stabilize

insulin, enhance the hypoglycemic activity of insulin in vivo, and

reduce hepatic steatosis and cholesterol metabolism disorders (51).

In addition, the homologous gene HCCS1 of VPS53 also has a

strong anti-tumor effect on liver cancer cells (53, 54).

Through a combination of the results of this study with the

known mechanisms of action of NAFLD and T2D and related

research findings, it can be shown that essential pathways affecting

NAFLD and T2D include catabolism of lipids such as fatty acids,

glycerides, and phospholipids. These biological processes affect

lipid levels in tissues and hence affect hepatic fat accumulation

and IR. Further research on this aspect of our findings should

be considered.

In conclusion, the determination of triglyceride, FFA, and

cholesterol levels can assist in the clinical observation of the

dynamic changes in liver fat levels and IR and is of great

significance in the prediction of comorbidities. At the same time,

through the continuous deepening of genetic research, the

development of targeted drugs to regulate the level of liver fat and

the regulation of liver fat content is expected to become a key and

effective treatment method for comorbidities. In addition, once the

relevant mechanism of action is identified, specific gene therapy for

NAFLD and T2D is expected to be realized.

One limitation of this study was that the shared genes were all

screened from the results of GWAS studies in European

populations, so other populations were not considered. Few

replicated validation studies of the susceptibility loci associated

with NAFLD and T2D have been conducted in other populations.
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Genetic and environmental factors influence the genetic

backgrounds of populations and result in variations in allele

frequencies, which affect illness incidence rates and the findings

of GWAS analyses of susceptibility genes. Therefore it is uncertain

whether the susceptibility genes identified in this study exist in

other populations. However, the results of this study can provide a

reference for research on NAFLD combined with T2D in other

populations. GWAS research involves not only different

populations but also different genders and different ages, and this

richness of the data should be exploited for further exploration.

It is essential to note that this study cannot avoid the

shortcomings of GWAS itself, such as the fact that the study is

focused on the loci that achieve the significance threshold for

genome-wide association, even though these loci account only

partially for the complicated heredity of the disease (55). GWAS

studies often overlook signals of mild or moderate association and

ignore the effects of other variants such as gene deletions, copy

number variations, etc. These neglected factors may involve

underlying biological mechanisms that ultimately lead to the

occurrence of disease. While NAFLD and T2D are complex

diseases in which genetic and environmental factors interact, the

pathogenesis is often caused by mutations or abnormalities of

multiple genes, and each gene may play a part in a specific

pathway but its role cannot explain the whole mechanism.

Therefore, the study design can be effectively improved to make

up for these issues with GWAS and the complexity of the disease.

For example, the candidate gene method is used to find low-

frequency variants, or the data from multiple studies can be

combined in a meta-analysis to increase the sample size, and rare

variants with substantial genetic effects can be found in this way

(56, 57).

The strength of this study was that it involved the first

comprehensive use of GWAS and DEG analysis to identify shared

genes for NAFLD and T2D. During gene screening, strict thresholds

were used to ensure the accuracy of the results, and significant

shared genes were discovered efficiently. The study reconfirmed the

association of the unveiled core genes, VPS53, SCGN, RGS6, SGCG,

and FOXN3, with NAFLD and T2D, which had been reported in

previous studies. The core genes DNAJB9, CMAS, FASLG,

ABHD10, ATRN, PLA2G2F, ITIH2, ROBO1, SH3GL2, and CNR1

were found to be related to NAFLD and T2D for the first time, and

this provides a new research target for the precise treatment of

NAFLD and T2D comorbidities.
5 Conclusion

In summary, this study found a causal relationship between

NAFLD and T2D, which will be beneficial for the elucidation of the

pathogenesis of NAFLD and T2D comorbidities. Fifteen core genes,

DNAJB9, VPS53, SCGN, CMAS, RGS6, FASLG, ABHD10, ATRN,

PLA2G2F, ITIH2, ROBO1, SGCG, SH3GL2, CNR1, and FOXN3,

were identified as shared between NAFLD and T2D. This finding

provided new ideas for the genetic study of NAFLD combined with

T2D. Further gene expression verification and functional

mechanism research should be carried out on these candidate
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genes in the future to explore the specific biological mechanisms of

NAFLD and T2D comorbidities and to provide new drug-targeting

sites for the prevention and treatment of comorbidities.
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