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Diagnosis of childhood
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transcriptomic data
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Background: Gene expression (GE) data have shown promise as a novel tool to aid

in the diagnosis of childhood growth hormone deficiency (GHD) when comparing

GHD children to normal children. The aim of this study was to assess the utility of

GE data in the diagnosis of GHD in childhood and adolescence using non-GHD

short stature children as a control group.

Methods: GE data was obtained from patients undergoing growth hormone

stimulation testing. Data were taken for the 271 genes whose expression was

utilized in our previous study. The synthetic minority oversampling technique was

used to balance the dataset and a random forest algorithm applied to predict GHD

status.

Results: 24 patients were recruited to the study and eight subsequently diagnosed

with GHD. There were no significant differences in gender, age, auxology (height

SDS, weight SDS, BMI SDS) or biochemistry (IGF-I SDS, IGFBP-3 SDS) between the

GHD and non-GHD subjects. A random forest algorithm gave an AUC of 0.97 (95%

CI 0.93 – 1.0) for the diagnosis of GHD.

Conclusion: This study demonstrates highly accurate diagnosis of childhood GHD

using a combination of GE data and random forest analysis.

KEYWORDS

growth hormone deficiency, transcriptome (RNA-seq), machine learning, growth
hormone, random forest - ensemble classifier
Introduction

Growth hormone deficiency (GHD) is a rare but important cause of short stature with a

prevalence of approximately 1 in 4000 (1). Consensus guidelines recommend an approach

integrating auxological, biochemical and radiological data for the diagnosis of GHD in

childhood and adolescence (2). Pharmacological stimulation tests, in which a cut-off level is
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selected for peak growth hormone (GH) levels below which the child

is diagnosed with GHD, remain key to the diagnosis of GHD despite

many known problems with these tests. These problems include poor

reproducibility (3) and that the peak GH level achieved is affected by

the pharmacological stimulus used (4), the GH assay (5) and body

composition (6, 7). In one survey the peak GH level utilized for

diagnosis varied between 6 and 10 mg/L in nine European and US

national guidelines (8).

In addition to these problems most of the pharmacological

stimulation tests require fasting and all require multiple blood

samples. Both of these requirements can be challenging for small

children, particularly those with significant medical problems e.g.

history of extreme prematurity where venous access may be very

challenging, in children with needle phobia or autistic spectrum

disorders. Adverse effects such as vomiting and nausea are common

and rarely serious adverse events such as cerebral edema have been

associated with these tests (9). We have therefore sought to develop a

gene expression-based test as a potential replacement for

pharmacological stimulation tests. This would require only a single

blood sample and, as no pharmacological stimulant would be needed,

would avoid any significant adverse effects.

Gene expression based analysis has been utilized in the diagnosis of

interstitial lung disease (10), kidney disease (11), atrial fibrillation (12),

autism (13) and in the prognosis and classification of tumors (14–16).

For both autism and atrial fibrillation peripheral blood gene expression

was used for diagnosis (12, 13). We therefore hypothesized that gene

expression signatures in peripheral blood could be a diagnostic tool for

GHDwith the potential to replace pharmacological stimulation tests. In

an initial study (17) we compared gene expression profiles between 98

children with GHD enrolled in the PREDICT study (18) and 26 healthy

control children whose gene expression data were obtained from online

datasets. After selecting the 271 probesets whose expression correlated

with peak GH levels a Random Forest classifier gave an Area under the

Receiver Operating Characteristic Curve (AUC-ROC) of 0.95

(sensitivity 96%, specificity 100%) for predicting the diagnosis of GH

indicating this had the potential to be an excellent diagnostic test (17).

There were, however, several limitations to that initial study: 1) the

control subjects used were healthy rather than short stature controls 2)

the patient and control children were assembled from different studies

and 3) GH stimulation test and assay were not standardized in the

PREDICT study.

The aim of this study was to assess the utility of gene expression

data for the diagnosis of GHD in a prospectively recruited cohort of

children and adolescents undergoing pharmacological stimulation

tests at a single tertiary pediatric endocrinology center.
Methods

Ethics and patients

This study was approved by the Bradford Leeds Research Ethics

Committee (Reference 18/YH/0226 IRAS ID 231325) and conducted

in accordance with Good Clinical Practice and the Declaration of

Helsinki. Informed consent was obtained either from parents or from

the young person themselves where they were over 16 and had

capacity to give consent.
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Patients were recruited from clinics of the Paediatric

Endocrinology Department at the Royal Manchester Children’s

Hospital. Every patient attending the outpatient medical

investigation unit for either an arginine or glucagon stimulation test

was invited to take part in the study between 1st November 2018 and

31st January 2019. 44 patients were invited to take part and 27 (59%)

both attended for their appointment and agreed to take part in the

study. For three patients a result for the pharmacological stimulation

test was not available due to difficulties with obtaining venous blood

leaving 24 patients in the study. Auxological, biochemical and

radiological data were obtained from the patients records. SDS

scores for auxological data were calculated with Auxology 1.0

(Pfizer, New York, USA) using UK 1990 Cole Reference data.
Stimulation test protocols, sex steroid
priming and biochemical assays

Arginine and glucagon tests were the only GH stimulation tests

used in our institution during the study period. Protocols for the

arginine and glucagon stimulation tests used in our institution are

available at https://mft.nhs.uk/app/uploads/2022/03/Paediatric-DFT-

Protocols-V7_Feb-2022.pdf (accessed 22nd August 2022). Sex steroid

priming is given in our unit for pre-pubertal girls >8 years or boys >9

years undergoing stimulation tests. Ethinylestradiol 10-20

micrograms is given once daily for 3 days prior to the test for both

boys and girls. A normal test result in our institution is indicated by a

peak GH level ≥ 7 mg/L. GH, IGF-I and IGFBP-3 were measured on

the IDS iSYS assay (Immunodiagnostic systems, Tyne and Wear,

UK). The GH assay used is standardized to the recombinant GH

calibration standard World Health Organization 98/574 and complies

with recommendations on assay standardization (19).
Statistics, regression and random
forest analysis

Differences in demographic characteristics were assessed via a

Mann Whitney U test or Fisher’s Exact test. A Random Forest

algorithm (20) was used to predict GHD status. The data were

unbalanced (8 GHD subjects and 16 controls) and with an

unbalanced dataset Random Forest poorly predicts the minority

class (in this case GHD subjects). To overcome this problem a

synthetic minority over-sampling technique (21) was used to

rebalance the dataset prior to Random Forest prediction using age,

gender and transcriptomic data. The predictions were assessed based

on the AUC-ROC and the out-of-box ROC curve (OOB-ROC) as a

validation set. Identifying those probesets most likely to contain

predictive capacity was achieved with the use of Boruta (22). All

statistical analyses were performed using R 4.0.0.

Random Forest analysis does not require separate test and

validation data sets as the OOB-ROC functions as a validation data

set. In developing the random forest algorithm hundreds or

thousands of decision trees (in our case 1000 trees) are created.

Each tree is generated using a random selection of input variables and

randomly selected two thirds of the subjects. Each tree produced a

classification vote and the majority vote across all trees determined
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final classification. For each tree there was a random one third of

subjects whose data was not used in generating that tree – these data

were then used to generate the OOB-ROC which essentially functions

as a validation data set.

Boruta is used to define which of the input variables for the

Random Forest are contributing to the predictive power. It does this

by permuting the data (randomly shuffling the variables – in this case

gene expression levels) to break any link between the input variables

and outcome measured. These permuted variables are referred to as

“shadow” variables and Boruta then runs a Random Forest algorithm

using the shadow variables (with the same outcome measure as the

original dataset) to define the range of predictive power of these

shadow variables. The predictive power of the variables in the original

data are then compared to the range of predictive power shown by the

shadow variables. On the basis of that comparison the original

variables (in this case individual gene expression levels) are

classified as confirmed, tentative or rejected.
Gene expression analysis

Peripheral blood samples (2.5 ml) were taken into PAXgene tubes

(Qiagen, Manchester, UK) and stored at -80°C for the separation of

total RNA as a single batch. Total RNA was submitted to the Genomic

Technologies Core Facility. Quality and integrity of the RNA samples

were assessed using a 4200 TapeStation (Agilent Technologies) and

then libraries generated using the TruSeq® Stranded mRNA assay

(Illumina, Inc.) according to the manufacturer’s protocol. Briefly,

total RNA (1ug) was used as input material from which

polyadenylated mRNA was purified using poly-T, oligo-attached,

magnetic beads. The mRNA was then fragmented using divalent

cations under elevated temperature and then reverse transcribed into

first strand cDNA using random primers. Second strand cDNA was

then synthesized using DNA Polymerase I and RNase H. Following a

single ‘A’ base addition, adapters were ligated to the cDNA fragments,

and the products then purified and enriched by PCR to create the final

cDNA library. Adapter indices were used to multiplex libraries, which

were pooled prior to cluster generation using a cBot instrument. The

loaded flow-cell was then paired-end sequenced (76 + 76 cycles, plus

indices) on an Illumina HiSeq4000 instrument. Finally, the output

data was demultiplexed (allowing one mismatch) and BCL-to-Fastq

conversion performed using Illumina’s bcl2fastq software, version

2.17.1.14. BAM files were used to generate raw counts were mapped to

the human reference genome (GCA_000001405.15 GRCh38

from NCBI).

The EdgeR package for R 4.0.0 (23, 24) was used to assess gene

expression. Genes were filtered to remove low expression features.

Across all cells, genes with fewer than 15 total counts were removed;

the minimum count per cell for a feature to be considered expressed is

10. The large group size was set at 10 samples and genes had to be

expressed in 70% of cells of smaller groups to pass filtering. Gene level

normalization was performed using TMM (trimmed mean of M

values). A block design in EdgeR was used to control for the impact of

confounding factors (age and gender).

Gene ontology was performed using biological process data in the

WebGestalt online toolkit (25). Clusters of related ontologies were
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defined and primary pathways identified using weighted set

cover (26).

Sequence data is available viaNCBI Gene Expression Omnibus as

GSE190502. Individual patient data (age, gender, type of GH

simulation test, peak GH level and use of sex steroid priming) is

included in GSE190502 and as Supplementary Table 1.
Results

Patients

Of the 24 patients who were enrolled in the study and completed

the diagnostic test eight were diagnosed with GHD and 16 did not

have GHD. Of the eight patients with GHD five were diagnosed with

GHD with a single test due to the presence of MRI abnormalities of

the hypothalamo-pituitary axis. Two patients had isolated anterior

pituitary hypoplasia, one anterior pituitary hypoplasia with an

arachnoid cyst, one anterior pituitary hypoplasia combined with a

thin stalk and multiple sclerosis and one patient had a small anterior

pituitary with bulky optic nerves (this patient has a diagnosis of

neurofibromatosis type 1). Two patients had a normal pituitary exam

and were diagnosed with GHD on the basis of two independent GH

stimulation tests. One patient was born small for gestational age, had

a normal MRI pituitary and a CHARGE syndrome phenotype and

was started on GH after a single test. Three patients in the non-GHD

group had genetic disorders – one with Prader-Willi syndrome, one

with Wiedemann-Steiner syndrome, one with a chromosome 21q

deletion and one patient had a peroxisomal disorder. In the GHD

group one patient had a genetic condition – neurofibromatosis type 1.

Six patients had glucagon stimulation tests and 18 arginine

stimulation tests. All patients undergoing glucagon stimulation

testing had a previous failed arginine stimulation test. The test was

primed with sex steroids in seven cases. There were 13 male and 11

female patients. 18 patients were prepubertal, 2 patients had just

started puberty (one girl at breast stage 2 and one boy with testicular

volumes of 5 mL bilaterally) and 4 patients had either completed

puberty or were near the end of puberty. Baseline clinical data

(auxology and biochemistry) are given in Table 1. There was no

significant difference between the GHD and non-GHD group for age,

gender, birth weight SDS, height SDS, parental height adjusted height

SDS, growth velocity SDS, weight SDS, BMI SDS, bone age delay,

IGF-I SDS or IGFBP-3 SDS.

Our study included 3 patients who were evaluated as part of an

end of growth assessment (having previously been treated with

recombinant human GH for GHD). These subjects were not GHD

with peak GH levels of 9.1 mg/L, 9.5 mg/L and 31 mg/L to arginine

stimulation testing. End of growth patients previously treated with

recombinant human GH were not included in the analysis of growth

velocity SDS and or height SDS. The three patients evaluated as part

of an end of growth assessment had stopped treatment with

recombinant human growth hormone a minimum of six weeks

before the end of the test, all had a low likelihood of continuing

GHD and were thus retested as per recommendations in international

guidelines (27). All other patients had not received recombinant

human growth hormone treatment at the time of the study.
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Gene expression data

Of the 271 genes previously identified as predictive of GHD in

relation to normal controls (17) 208 could be annotated to an

ensemble external gene name and 160/208 passed through low

expression filtering in the dataset of GHD patients (n=8) and short

stature controls (n=16). A strict threshold to define expression was

used in our new dataset hence the reduction in number of genes

expressed in both datasets. Transcriptomic data was Log2 normalized

(TMM) and age and gender were treated as confounding factors in

the data. Seven out of the 160 genes in the predictive group had
Frontiers in Endocrinology 04
significant differential expression (0.02<p<0.05 - NOTCH3, LAYN,

SHF, GRB10, SH3GLB2, CYB5A and SGSM2).

A random forest algorithm after adjusting for imbalanced

numbers using SMOTE (final data used 44 subjects: 20 short

stature controls and 24 GHD patients) in this cohort gave an AUC

of 0.95 (95% CI 0.89 – 1.00) for the diagnosis of GHD. Boruta (using

99 iterations) was able to identify 100/160 genes with predictive

capacity greater than permuted data within the dataset (60 confirmed

and 40 tentative, see Figure 1 and Supplementary Table 2).

Gene ontology of the genes with predictive ability identified a

range of associated biological processes. The top fifty biological

processes clustered by weighted set cover to 10 clusters of

ontologies (see Figure 2) 0.0037<p<0.018. Pathways identified

included regulation of TORC1 signaling and inositol phosphate

metabolic processes.

We had previously identified the 10 genes with greatest predictive

value in classification of GHD in relation to normal controls when

combined with genetic data (17). Of these two were validated as being

of predictive value in classification of GHD in comparison to short

stature controls (NRXN1 & PTGDS).
Discussion

Our previous study (17) highlighted the potential for GE data to

be used for the diagnosis of childhood GHD with a very promising

AUC for predicting GHD status of 0.95 (95% CI 0.91 – 0.99) and our

current study confirms that potential with an AUC of 0.97 (95% CI

0.93 – 1.0). We have changed from using Affymetrix HU 133 plus 2.0

arrays to an RNA sequencing based approach to measure GE thus

moving from measurement of relative to absolute concentrations of

RNA. This change in technique did mean that we could not use

exactly the same random forest algorithm in this study as was

generated in our original study, however, we did utilize the same
FIGURE 1

Analysis of predictive power for the diagnosis of GHD using Boruta. All 160 genes utilized in this study are shown and predictive power compared to
shadow variables (blue bars) generated from permuted data. Genes are classified as confirmed, tentative or rejected based on a comparison with the
shadow variables. 60 genes were confirmed (green), 40 tentative (yellow) and 60 rejected (red). A median importance score ≥ 2.359 resulted in a
confirmed status, a score ≥1.785 and < 2.359 resulted in tentative status and a score <1.785 rejected status.
TABLE 1 Baseline characteristics of study participants.

GHD
(n=8)

GH sufficient patients
(n=16)

P-
value

Age (years) 8.6 (9.0) 9.0 (5.8) 0.52

Male Gender (n, %) 6 (75) 7 (43) 0.21

Birth Weight SDS -0.7 (0.7) -1.1 (1.7) 0.51

Height SDS -3.0 (1.0) -2.5 (0.7) 0.48

Weight SDS -2.5 (2.4) -2.1 (1.5) 0.98

Body Mass Index SDS 0.3 (1.7) -0.1 (1.4) 0.32

Parental Adjusted
Height SDS

-2.1 (0.3) -2.5 (1.7) 0.70

Growth Velocity SDS -1.5 (1.7) -1 (3.3) 0.52

Prepubertal (N, %) 7 (87) 11 (68) 0.62

Bone Age Delay (years) 1.5 (1) 1.7 (1.4) 1.0

IGF-I SDS -2.2 (1.7) -1.5 (1.5) 0.20

IGFBP-3 SDS -1.4 (1.6) -0.8 (1.9) 0.33
Data is given as median (interquartile range) unless otherwise stated. Patients who had reached
end of growth are not included in the analysis of growth velocity or analysis of height SDS.
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set of 271 genes whose expression was related to peak GH levels in the

original study. Of the 271 genes utilized in our original study 160 were

present in the RNAseq data. The reduction in number is likely to

reflect the strict cut-off used for filtering low expression genes in this

study. We believe an RNA sequencing based approach is likely to

achieve more widespread uptake in the future as many labs already

use next generation sequencing approaches for DNA studies. The

AUC for the gene expression based test is better than the current

baseline tests used in the diagnosis of GHD namely IGF-I with an

AUC of 0.73 and IGFBP-3 with an AUC of 0.8 (28).

The major limitation of our previous study was that we

compared GE data from children with GHD to healthy controls

(likely to be of normal stature) accumulated from several different

datasets. In this study the control cohort was short non-GHD

children who had undergone GH stimulation testing. One

significant strength of the study is that we recruited an unselected

real-world sample of patients undergoing GH stimulation tests who

are likely to be generally representative of the patients that pediatric

endocrinologists select for testing. There were no significant

differences between the short non-GHD and GHD children for

age, gender, height SDS, parental adjusted height SDS, growth

velocity SDS or BMI SDS. The absence of any significant

difference in height or parental adjusted height SDS between the

GHD and non-GHD short stature children may be due to the low

numbers of GHD subjects. IGF-I and IGFBP-3 SDS concentrations

were lower in the GHD group but this was not significant. In

children with GHD IGF-I and IGFBP-3 concentrations can be in

the low or low normal range with suggested cut-offs for the

diagnosis of childhood GHD of -1.6 SD for IGF-I and -1.8 for

IGFBP-3 (29) whilst in children with idiopathic short stature low

IGF-I concentrations occur in around half of children (30) thus a

degree of overlap is not unexpected. In addition, children with IGF-I

concentrations in the upper half of the normal range may not have

been selected for GH stimulation tests by their clinician. Other

limitations of the previous study included the fact that GH assay and

stimulation test were not standardized. GH assay has been

standardized in our current study and while we did use two

different pharmacological stimulation tests (glucagon and

arginine) they are known to achieve similar peak GH levels (4).

Our study is still limited by the small number of GHD subjects and
Frontiers in Endocrinology 05
further studies with larger cohorts are required to validate the

Random Forest algorithm we have generated.

A wide range of genetic mutations are now known to cause GHD

either alone or as part of a wider spectrum of hypopituitarism (31).

An approach to identify DNA mutations known to be causative of

GHD in these patients may allow such a diagnosis without a GH

stimulation test or RNA based test such as the one described in this

paper. As such it is likely that analysis of targeted gene panels will

become part of the diagnostic pathway in the future but, given that a

genetic etiology is not identified in the majority of GHD patients,

DNA based analysis is unlikely to replace pharmacological

stimulation tests in the near future. There are also a smaller

number of patients with acquired childhood GHD where GHD is

caused by tumors, radiotherapy, head injury etc. While a whole

exome/genome approach may aid in diagnosing congenital GHD it

will not be helpful in children with acquired GHD. These children will

still require pharmacological stimulation tests or a replacement such

as our gene expression-based test for the diagnosis of GHD.

Gene ontology analysis of the genes identified as having predictive

power from Boruta highlighted mTOR signaling which is a known

component of the insulin and IGF-I signal transduction pathways (32,

33) and is involved in cell growth, differentiation and metabolism.

Inositol phosphate metabolic processes were also identified with

inositol known to be involved in glucose metabolism and

carcinogenesis (34) and myoinositol having been previously linked

to poor intra-uterine growth (35). The two genes identified within the

confirmed Boruta gene set from this study and also from the top 10

genes of highest predictive power in our previous study were NRXN1

and PTGDS. Neurexin 1 (encoded by NRXN1) is a neuronal

presynaptic cell adhesion molecule involved in synaptogenesis and

vesicular neurotransmitter release (36). Deletions and loss of function

mutations in NRXN1 are associated with neurodevelopmental and

psychiatric phenotypes (36). NRXN1 has been linked to circadian

rhythm in a genome-wide association study (37) with pathogenic

copy number variants in NRXN1 also linked to increased body mass

index (38). PTGDS encodes an enzyme which catalyses the conversion

of prostaglandin H2 to prostaglandin D2. The Ptgds-/- mouse displays

unilateral cryptorchidism (39) while low expression is linked to poor

prognosis in endometrial cancer (40) and elevated levels linked to

poor hair growth and androgenic alopecia in men (41).
FIGURE 2

Gene ontology analysis of the genes with predictive capacity with clustering of the top 50 biological pathways via weighted set cover. 10 clusters of
gene ontology were identified (0.0037 < p < 0.018).
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In conclusion we have demonstrated a high degree of accuracy for

diagnosis of childhood GHD utilizing a GE based test derived from a

single blood sample expanding from our previous study to include

short stature control subjects and the use of an RNA sequencing based

approach. Further studies with greater numbers of patients are

required to validate the random forest algorithm developed.
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