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Deep learning-based artificial
intelligence model for
classification of vertebral
compression fractures: A
multicenter diagnostic study

Fan Xu1†, Yuchao Xiong1†, Guoxi Ye1, Yingying Liang2, Wei Guo3,
Qiuping Deng4, Li Wu1, Wuyi Jia1, Dilang Wu1, Song Chen1,
Zhiping Liang1 and Xuwen Zeng1*

1Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan
University), Guangzhou, China, 2Department of Radiology, Guangzhou First People’s Hospital,
Guangzhou, Guangdong, China, 3Department of Radiology, Wuhan Third Hospital, Tongren Hospital
of Wuhan University, Wuhan, Hubei, China, 4Department of Radiology, Hubei 672 Integrated
Traditional Chinese and Western Medicine Orthopedic Hospital, Wuhan, Hebei, China
Objective: To develop and validate an artificial intelligence diagnostic system

based on X-ray imaging data for diagnosing vertebral compression

fractures (VCFs)

Methods: In total, 1904 patients who underwent X-ray at four independent

hospitals were retrospectively (n=1847) and prospectively (n=57) enrolled. The

participants were separated into a development cohort, a prospective test cohort

and three external test cohorts. The proposed model used a transfer learning

method based on the ResNet-18 architecture. The diagnostic performance of

the model was evaluated using receiver operating characteristic curve (ROC)

analysis and validated using a prospective validation set and three external sets.

The performance of the model was compared with three degrees of

musculoskeletal expertise: expert, competent, and trainee.

Results: The diagnostic accuracy for identifying compression fractures was

0.850 in the testing set, 0.829 in the prospective set, and ranged from 0.757 to

0.832 in the three external validation sets. In the human and deep learning (DL)

collaboration dataset, the area under the ROC curves(AUCs) in acute, chronic,

and pathological compression fractures were as follows: 0.780, 0.809, 0.734 for

the DL model; 0.573, 0.618, 0.541 for the trainee radiologist; 0.701, 0.782, 0.665

for the competent radiologist; 0.707,0.732, 0.667 for the expert radiologist;

0.722, 0.744, 0.610 for the DL and trainee; 0.767, 0.779, 0.729 for the DL and

competent; 0.801, 0.825, 0.751 for the DL and expert radiologist.

Conclusions: Our study offers a high-accuracy multi-class deep learning model

which could assist community-based hospitals in improving the diagnostic

accuracy of VCFs.
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Introduction

Vertebral compression fractures (VCFs) are common diseases

that seriously affect human life and pose a very large challenge to the

health care system (1). With the rising prevalence of population

aging, the occurrence of VCFs due to trauma and osteoporosis is

increasing year by year, which increases societal and familial

economic burdens. Moreover, pathologic fractures resulting from

neoplasms are another leading cause of VCFs worldwide. All types

of VCFs foreshadow a high risk of poor outcomes, so early,

personalized and effective medical intervention is strongly

advised. Therefore, it is desirable to find an accurate and effective

method to detect and identify acute, chronic and pathological VCFs.

In recent years, the incidence of back pain due to compression

fractures has increased in patients. Many imaging methods are

available for early screening and differentiation of compression

fractures, such as X-ray (XR) images, Computed tomography (CT)

and magnetic resonance imaging (MRI). Among these procedures,

CT is the modality of choice for the evaluation of bone structure and

fragments. MRI may be the most useful imaging technique based on

its excellent soft tissue contrast that shows the change in the signal

intensity andmorphological characteristics of the collapsed vertebrae.

Acute compression fractures show hyperintensity with bone marrow

edema, while chronic compression fractures show no bone marrow

edema and are isointense on T2WI fat-suppression sequences. The

pathologic VCFs shows low signal intensity on T1WI, isointensity or

high signal intensity on T2WI, and homogeneous or inhomogeneous

enhancement (Figure 1). However, the availability of CT and MRI is

limited for overall population diagnosis due to their complexity, high

time consuming and high-cost factor (2). In contrast, X-ray images

with effective cost and time may be an attractive and widespread

method in diagnosis of VCFs, although it could only provide limited

detail about 3D anatomy structure or pathology of VCFs.

Deep learning (DL), a branch of machine learning, has already

shown potential for assisting humans in various medical fields

(3–6). A convolutional neural network(CNN) is a deep learning

algorithm that is mainly designed to process image data and has

grown to be a fundamental aspect of the medical field (7). In recent

years, more and more radiomics model algorithms based on plain

X-ray films have been developed in the wrist, humerus, hip, femur,

shoulder, hand and foot (8–13). However, very few works are

carried out using X-ray -based radiomics to predict VCFs.

Recently, Chen et al have developed a DL–based model that

distinguish fresh VCFs from digital radiography (DR) with

sensitivity, specificity and AUC of 80%, 68% and 0.80
Abbreviations: VCFs, Vertebral compression fractures; XR, X-ray; CT,

Computed tomography; MRI, magnetic resonance imaging; DL, Deep learning;

CNN, convolutional neural network; DR, digital radiography; GZFPH,

Guangzhou First People's Hospital, School of Medicine, South China

University of Technology, Guangzhou; WHTH, Wuhan Third Hospital,

Tongren Hospital of Wuhan University, Wuhan; HB672H, Hubei 672

Integrated Traditional Chinese and Western Medicine Orthopedic Hospital,

Wuhan; PET, positron emission tomography; ROIs, Lesion regions of interest;

ROC, receiver operating characteristic; AUC, area under the ROC curve; PACS,

picture archiving and communication systems; CI, confidence interval.
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respectively. However, the clinical feasibility and benefit of DL–

based model remain to be confirmed because no external and

multicenter validation was performed in their study (14).

Thus, the aims of this study were to develop an X-ray-based

deep learning model using a four-center dataset and determine

whether the model could distinguish the type of VCFs and validate

these findings in an independent external cohort.
Materials and methods

Datasets

This multicohort diagnostic study was performed with data from

four hospitals in China. This study was approved by the institutional

review board and ethics committee of the hospital (IRB 2022-108-01).

Our retrospective study was approved by the institutional review

board of the hospitals with a waiver for written informed consent.

Patients in the prospective validation set of compression fractures

provided written informed consent prior to participation.

For the development dataset, we evaluated the medical

radiology reports of lumbar spine MRI in Site 1 from 1 January

2014 to 31 October 2021 to determine acute, chronic, and

pathological compression fractures. The inclusion criteria were as

follows: (1) less than 2 weeks between Digital radiography (DR) and

MRI examinations; and (2) the height of the vertebral body was

reduced by at least 20% or 4 mm from the baseline height on the

lateral radiography of the lumbar spine (15). The exclusion criteria

were as follows: (1) surgical treatment for compression vertebral

bodies such as internal fixation or bone cement filling; (2) lumbar

spine presenting serious scoliosis or deformity; and (3) images with

a low signal-to-noise ratio or foreign matter present.

To verify the applicability of the classified diagnosis deep

learning model in clinical practice, from October 1, 2019, to

September 31, 2021, lumbar spine lateral X-ray images were also

obtained from three hospitals across China: Site 2; Site 3 and Site 4.

In total, 2609 vertebrae from 1904 participants who underwent X-

ray were enrolled at four independent hospitals (Figure 2).

From Nov 1, 2021, an independent dataset of consecutive

participants undergoing lumbar spine X-ray in Site 1 was

prospectively enrolled. These participants were defined as the

prospective validation set. In total, 74 vertebrae from 57 participants

were enrolled at Site 1 (Figure 2).
Image reading and annotation

Delineated images of acute and chronic compression fractures

are based onMRI diagnosis, and pathological compression fractures

are diagnosed using MRI, positron emission tomography (PET) or

histopathological results. When only MR images are available for a

patient, at least two senior diagnosing physicians complete

the diagnosis.

Lesion regions of interest (ROIs) were manually represented

with bounding boxes on lateral radiographs of the lumbar spine by
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an experienced radiologist using the LabelImg software (https://

pypi.org/project/labelImg/) and annotated (224×224) (Figure 3).
Model training

The images from the development dataset were randomly

assigned with a ratio of 8:2 for the training datasets (the deep
Frontiers in Endocrinology 03
learning model for compression fracture classification) and the

testing datasets (for evaluating the performance of the deep

learning model). The image of the training set was enhanced,

using horizontal flips, vertical flips, and rotations at random angles.

ResNet is a type of CNN where the input from the previous

layer is added to the output of the current layer. This skip

connection makes it easier for the network to learn and brings

better performance. The ResNet architecture has been successful in
A B

D E F

C

FIGURE 1

Images of vertebral compression fractures types. (A, D) Acute compression fracture of the L1 vertebral; (B, E) Chronic compression fracture of the L1
vertebral; (C, F) Pathologic compression fracture of the L2 vertebral.
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many tasks, including image classification, objection detection, and

semantic segmentation. In addition, because ResNet is composed of

layers, these networks can obtain any level of spatial representation

at any depth. Each ResNet block has 2 convolutional layers

(excluding the 1×1 onvolutional layer), and we connect these two

residual blocks as a module. We use 4 such modules, so there are a

total of 16 convolutional layers (Figure 4). Together with the first
Frontiers in Endocrinology 04
7×7 onvolutional layer and the final fully connected layer, there are

18 convolutional layers in total, which is ResNet-18 (16).

In this study, we used the ResNet-18 architecture model,

and the input image was resized to 224 × 224 pixels and was

normalized with mean= [0.485,0.456,0 .406] and std=

[0.229,0.224,0.225]. We then fine-tuned the model using a dataset

of lateral lumbar spine radiographs of acute, chronic, and
FIGURE 3

Deep learning architecture overview. First (step 1), compression fractures were reliably delineated and annotated on radiographs using labelImg software.
For the step, the radiograph was converted to PNG format. Then (step 2), the cropped lateral X-ray of the lumbar spine was resized to 224×224 pixels
and used as the input for a deep learning model. The third step (step 3) is to build a compression fracture classification model based on the Resnet-18
algorithm. Model performance was evaluated using external and prospective data and further validated using a radiologist-deep learning combination
(step 4). As a result, we can provide adjunctive evaluation of lumbar compression fractures (acute, chronic, and pathological) (step 5).
FIGURE 2

Workflow diagram for the development and evaluation of the deep learning model for compression fracture classification.
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pathological compression fractures. Codes are available at https://

github.com/Xiongyuchao/VCFNet.
Validation of the model

We first validated the performance of the model in classifying

VCFs using the testing dataset. We then evaluated the robustness of

this model using an external validation dataset from three

participating hospitals. Finally, the model was evaluated using

prospective data including 74 vertebrae of 57 patients from Site 1.
Validation of the radiologists’ visual
diagnoses combined with DL-model based
on collaboration dataset

In addition to the classification research of independent

observers, the collaborative research of human and deep learning

was also carried out to simulate a real clinical setting. We randomly

selected 30% of the images from all external validation sets as the

“collaboration dataset”. Three radiologists with different levels of

expertise (trainee, competent, and expert) were asked to

independently complete the same test images and compare their

results with those of the model. Then the three radiologists

reevaluated all the same test images independently after knowing

the DL-model diagnosis. These radiologists were not involved in the

selection and labeling of images, and the images were obfuscated

and unidentified prior to evaluation. The expert radiologist was a

professor with more than 20 years of experience in musculoskeletal

diagnosis. The competent radiologist was a radiologist with 7 years

of experience and completed standardized training for practicing

physicians. The trainee is a radiologist with 2 years of experience

and obtained the qualification certificate of a licensed doctor.
Frontiers in Endocrinology 05
Statistical analysis

All computer codes used for data analysis are stored in GitHub

(https://github.com/Xiongyuchao/VCFNet). We used receiver

operating characteristic (ROC) curves to demonstrate the ability

of deep learning algorithms to classify VCFs. An ROC curve is

generated by plotting the ratio of true positive cases (sensitivity) to

false positive cases (1-specificity) by varying the predicted

probability threshold. A larger area under the ROC curve (AUC)

indicates better diagnostic performance.
Results

VCF and clinical datasets

Table 1 provides an overview of the participant characteristics

and the VCF classification data. 1003 vertebrae of acute

compression fractures, 861 vertebrae of chronic compression

fractures, and 167 vertebrae of pathologic vertebrae were included

in the development dataset. In addition, 504 vertebrae from 387

participants were used to test the deep learning classification model

at three external participating hospitals, and 74 vertebrae from 57

participants were prospectively collected at Site 1 for the prospective

validation dataset (Figure 2).
Establishment of deep learning model

After 25 epochs, the training procedure was ended, with no

further improvement in accuracy and cross-entropy loss on

training, and testing. An accuracy of up to 95.9% was observed in

the training set and 77.7% in the testing set (Appendix).
FIGURE 4

ResNet block with and without 1×1 onvolution, which transforms the input into the desired shape for the addition operation.
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Deep learning model performance on the
VCF test set

Table 2 shows the performance of the deep learning model in

the classification of compression fractures in all five testing sets

(Figure 5). Classification accuracies were 0.850 for the testing

dataset and 0.829 for the prospective validation dataset.

Classification accuracies for the external validation were 0.832 for

Site 2, 0.757 for Site 3, and 0.792 for Site 4. Using the proposed

model to assess the ability of each compression classification, the

AUCs in acute, chronic, and pathological compression fractures

were as follows: 0.874 (95% CI: 0.873, 0.875), 0.899 (95% CI: 0.898,

0.900) and 0.935 (95% CI: 0.935, 0.937) in the testing dataset,

respectively; 0.803 (95% CI: 0.801, 0.806), 0.906 (95% CI: 0.905,

0.909) and 0.769 (95% CI: 0.771, 0.780) in the GZFPH dataset,

respectively; 0.779 (95% CI: 0.777, 0.781), 0.798 (95% CI: 0.796,

0.800) and 0.903 (95% CI: 0.900, 0.907) in theWHTH dataset; 0.807

(95% CI: 0.805, 0.809), 0.836 (95% CI: 0.834, 0.838) and 0.796 (95%

CI: 0.793, 0.800) in the HB672H dataset, respectively.
Human and deep learning collaboration

In the human and deep learning collaboration dataset, 80

vertebrae with acute compression fractures, 57 vertebrae with

chronic compression fractures, and 13 vertebrae with pathologic

compression fractures were included. The classification results of

images from human and deep learning collaboration dataset by the

deep learning and radiologists are shown in Table 3. The AUCs in

acute, chronic, and pathological compression fractures were as

follows: 0.780, 0.809, 0.734 for the deep learning model; 0.573,

0.618, 0.541 for the trainee radiologist; 0.701, 0.782, 0.665 for the

competent radiologist; 0.707,0.732, 0.667 for the expert radiologist;

0.722, 0.744, 0.610 for the DL and trainee; 0.767, 0.779, 0.729 for the
Frontiers in Endocrinology 06
DL and competent; 0.801, 0.825, 0.751 for the DL and expert

radiologist. The overall accuracy of the deep learning model was

0.764, which was significantly higher than that of the trainee

radiologist (0.707), similar to the competent radiologist (0.769),

and slightly lower than the expert radiologist (0.782). When

combined with the deep learning model, the expert, competent,

and trainee radiologists’ accuracy all increased significantly (0.853,

0.816, and 0.778, respectively). For sensitivity, combined with the

deep learning model, the trainee, competent, and expert radiologists

also significantly improved (0.560 vs. 0.667, 0.653 vs. 0.727, and

0.673 vs. 0.776, respectively). For the classification of pathological

compression fractures, the sensitivity of expert radiologists was up

to 0.385 and the deep learning model was only 0.308. However,

when combined with the deep learning model, the expert

radiologist, competent radiologist, and trainee radiologist all had

increased sensitivity to pathological compression fracture (0.385 vs.

0.538, 0.462 vs. 0.538, and 0.154 vs. 0.308, respectively) (Figure 6).

In addition, for pathological compression fractures, 6 out of 13

vertebrae were misjudged by all radiologists and the deep

learning model.
Discussion

In this multicenter study, we successfully developed a

classification model for acute, chronic and pathological

compression fractures by using deep learning neural networks.

The model demonstrated high accuracy and specificity in

classifying compression fractures in retrospectively stored images

as well as in a prospective observational setting. Furthermore, the

diagnostic efficiency of deep learning model is higher than that of

the trainee radiologists, similar to the competent radiologist, and

slightly lower than the expert radiologist. The deep learning model

combined with all three expertise levels of radiologists
TABLE 1 Patient characteristics.

Development Dataset External validation
Prospective
dataset

P
valueTraining

dataset
Testing
dataset

GZFPH
dataset

WHTH
dataset

HB672H
dataset

No. of vertebral
readings

1623 408 111 217 176 74

No. of Patients 1168 292 97 147 143 57

Age (years) 72.93±13.56 74.10±12.82 71.86±12.29 71.41±15.31 71.98±13.87 73.84±15.87 P<0.05

Sex P<0.05

Male 365 92 32 65 61 13

Female 803 200 65 82 83 44

Compression fracture classification

Acute 802 201 62 113 94 38

Chronic 688 173 40 95 57 31

Pathologic 133 34 9 9 25 5
front
GZFPH, Guangzhou First People’s Hospital; WHTH, Wuhan Third Hospital; HB672H, Hubei 672 Integrated Traditional Chinese and Western Medicine Orthopaedic Hospital.
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significantly improved the accuracy, specificity, and sensitivity

of evaluating compression fractures. To the best of our

knowledge, this is the first multicenter study to apply deep

learning with CNNs to the classification of acute, chronic, and

pathological compression fractures.

Previous studies have used information from radiographs to

classify compression fractures. Usually, plain radiographs are

initially performed to diagnose acute compression fractures by

observing small changes such as endplate rupture and anterior

wall protrusion (17) and diagnosis of pathological compression by

cortical penetration, trabecular bone destruction, vertebral bone

density, and special compression morphology. Although studies of

these conventional features have provided guidance for the

classification of compression fractures, the information provided

by lumbar spine X-rays is limited, and compression fractures can

only be simply assessed from morphological and partial imaging

signs. The diagnosis of compression fractures, which is subjective

and largely depends on the skills and experience of the diagnosing

physician, needs to be based on professional knowledge and the

accumulation of diagnostic experience to improve the accuracy of

diagnosis. CT (18, 19), MRI (19–22), and PET (23) have shown

great advantages in the classification of compression fractures, but

their clinical applicability has been limited because of patient

noncooperation, high costs, and the need for specialized training
Frontiers in Endocrinology 07
in tomographic image interpretation. The proposed deep learning

CNN has instead been found to provide auxiliary diagnosis to non-

professional radiologists to improve performance (competent from

0.756 to 0.816 and trainee from 0.707 to 0.796) on compression

fracture classification, both exceeded the expert level (0.764). The

deep learning model demonstrated high accuracy and specificity in

classifying compression fractures in retrospectively stored images as

well as in a prospective observational setting. Furthermore, the

diagnostic efficiency of deep learning model is higher than that of

the trainee radiologists, similar to the competent radiologist, and

slightly lower than the expert radiologist (Figure 6). The deep

learning model combined with all three expertise levels of

radiologists significantly improved the accuracy, specificity, and

sensitivity of evaluating compression fractures. Thus, for developing

countries such as China or countries with scarce medical resources,

where there is an unequal distribution of urban and rural medical

resources, this deep learning CNN can help bridge the classification

of compression fractures between national and primary hospitals.

In addition, with deep learning model assistance, the classification

accuracy of three radiologists with different levels of experience was

also improved significantly.

The classification sensitivity of pathological compression

fractures was found to be low for all three radiologists and the

deep learning model. Even the combination of all three radiologists
TABLE 2 Performance of the deep learning in different validation sets.

Dataset AUC Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%) PPV (%) NPV (%)

Testing dataset 85.0 77.5 88.7 77.4 77.4 77.5 88.7

Acute 0.874 79.9 78.1 81.6 80.5 79.3 80.5 79.3

Chronic 0.899 82.4 81.5 83.0 77.9 79.7 77.9 86.0

Pathologic 0.935 92.6 52.9 96.3 56.3 54.5 56.3 95.7

GZFPH dataset 83.2 74.8 87.4 75.7 75.2 74.8 87.4

Acute 0.803 75.7 75.8 75.5 79.7 77.7 79.7 71.2

Chronic 0.906 86.5 82.5 88.7 80.5 81.5 80.5 90.0

Pathologic 0.769 87.4 33.3 92.2 27.3 30.0 27.3 94.0

WHTH dataset 75.7 63.6 81.8 66.8 65.2 63.6 81.8

Acute 0.779 64.5 47.8 82.7 75.0 58.4 75.0 59.3

Chronic 0.798 67.7 83.2 55.7 59.4 69.3 59.4 81.0

Pathologic 0.903 94.9 55.6 96.6 41.7 47.6 41.7 98.0

HB672H dataset 79.2 68.8 84.4 68.6 68.7 68.9 84.4

Acute 0.807 73.9 75.5 72.0 75.5 75.5 75.5 72.0

Chronic 0.836 76.1 70.2 79.0 61.5 65.6 61.5 84.7

Pathologic 0.796 87.5 40.0 95.4 58.8 47.6 58.8 90.6

Prospective
dataset

82.9 74.3 87.2 76.9 75.6 74.3 87.2

Acute 0.833 77.0 65.8 88.9 86.2 74.6 86.2 71.1

Chronic 0.857 79.7 87.1 74.4 71.1 78.3 71.1 88.9

Pathologic 0.757 91.9 60.0 94.2 42.9 50.0 42.9 97.0
fr
GZFPH, Guangzhou First People’s Hospital; WHTH, Wuhan Third Hospital; HB672H, Hubei 672 Integrated Traditional Chinese and Western Medicine Orthopaedic Hospital.
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FIGURE 5

Performance of the deep learning model in the classification of acute, chronic, and pathologic compression fracture in X-ray images, in the internal
and external validation datasets. ROC (A) and normalized confusion matrices (B) of the classification mode in the testing dataset. ROC (C) and
normalized confusion matrices (D) of the classification mode in the GZFPH dataset. ROC (E) and normalized confusion matrices (F) of the
classification mode in WHTH dataset. ROC (G) and normalized confusion matrices (H) of the classification mode in HB672H dataset. ROC (I) and
normalized confusion matrices (J) of the prospective dateset.
TABLE 3 Performance of the deep learning versus radiologists in classifying compression fractures in the human and deep learning collaboration
dataset.

Dataset AUC Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

F1 Score
(%) PPV (%) NPV (%)

Deep learning model 76.4 64.7 82.3 65.0 64.8 64.7 82.3

Acute 0.780 69.3 67.5 71.4 73.0 70.1 73.0 65.8

Chronic 0.809 71.3 68.4 73.1 60.9 64.5 60.9 79.1

Pathologic 0.734 88.7 30.8 94.2 33.3 32.0 33.3 93.5

(Continued)
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and the deep learning model was still low. In addition, 6 vertebrae

with pathological compression fractures were misdiagnosed by all

three radiologists and the deep learning model. We speculate that

the main reasons for these false negatives are the low contrast of X-

ray images, the fact that there were no obvious signs of bone damage

on the vertebral body, intestinal gas interference and bilateral

shadows of the vertebral body, which may be an insurmountable

limitation caused by the principle of X-ray imaging. However, deep

learning model-assisted diagnosis can improve the sensitivity of

pathological compression fracture classification, albeit still at a low

level. Furthermore, given the high accuracy of classification of acute

and chronic compression fractures, deep learning could be

considered cost-effective.

There are few studies on compression fractures using deep

learning methods, especially based on conventional X-ray images.

Only one study used deep learning to evaluate acute and chronic

compression fractures on radiographs, which included 1099
Frontiers in Endocrinology 09
patients and used image data from anteroposterior and lateral

lumbar spine radiographs as input to a neural network. This

study achieved a sensitivity, specificity and AUC of 0.80, 0.68,

and 0.80, respectively (14). The clinical applicability of CNNmodels

may be limited as a result of dichotomous disease surveys and

retrospective and single-institution studies in homogeneous

hospitals. By comparison, the deep learning model of this study

demonstrated an overall high accuracy in classifying compression

fractures in three retrospective validation sets, suggesting that the

model may be generalizable across a variety of scenarios.

Despite these remarkable results, our study has some

limitations. First, the subjects who received internal fixation or

cementation or who presented with severe scoliosis/deformity were

excluded in the development dataset, which may lead to bias.

Second, from the nature of CNNs, since a neural network only

provides a classification of an image and associated compression

fractures, there is no explicit feature definition. Third, the ROIs of
TABLE 3 Continued

Dataset AUC Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

F1 Score
(%) PPV (%) NPV (%)

Trainee radiologist 70.7 56.0 78.0 55.7 55.8 56.0 78.0

Acute 0.573 62.0 65.0 58.6 64.2 64.6 64.2 59.4

Chronic 0.618 64.0 52.6 71.0 52.6 52.6 52.6 71.0

Pathologic 0.541 86.0 15.4 92.7 16.7 16.0 16.7 92.0

Competent radiologist 76.9 65.3 82.7 69.9 67.5 65.3 82.7

Acute 0.701 69.3 58.8 81.4 78.3 67.1 78.3 63.3

Chronic 0.782 78.0 78.9 77.4 68.2 73.2 68.2 85.7

Pathologic 0.665 83.3 46.2 86.9 25.0 32.4 25.0 94.4

Expert radiologist 78.2 67.3 83.7 67.4 67.4 67.3 83.7

Acute 0.707 70.7 70.0 71.4 73.7 71.8 73.7 67.6

Chronic 0.732 74.0 70.2 76.3 64.5 67.2 64.5 80.7

Pathologic 0.667 90.0 38.5 94.9 41.7 40.0 41.7 94.2

Deep learning and trainee 77.8 66.7 83.3 67.9 67.3 66.7 83.3

Acute 0.722 72.0 70.0 74.3 75.7 72.7 75.7 68.4

Chronic 0.744 75.3 70.2 78.5 66.7 68.4 66.7 81.1

Pathologic 0.610 86.0 30.8 91.2 25.0 27.6 25.0 93.3

Deep learning and competent
radiologist

81.6 72.7 86.0 73.4 73.1 72.2 86.3

Acute 0.767 76.7 76.3 77.1 79.2 77.7 79.2 74.0

Chronic 0.779 79.3 71.9 83.9 73.2 72.6 73.2 83.0

Pathologic 0.729 88.7 53.8 92.0 38.9 45.2 38.9 95.5

Deep learning and expert
radiologist

85.3 77.6 89.1 77.4 77.5 77.6 89.1

Acute 0.801 80.0 80.5 79.5 80.5 80.5 80.5 79.5

Chronic 0.825 83.3 78.9 86.0 77.6 78.3 77.6 87.0

Pathologic 0.751 92.7 53.8 96.4 58.3 56.0 58.3 95.7
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the compression fracture were delineated by a manual rectangle.

The training of the model relies on the accurate identification of

compressed vertebral bodies by radiologists, which requires manual

delineation by radiologists. Although there are some differences in

the ROIs drawn by different doctors, they will be uniformly

processed and then classified after the images are imported into

the model. Currently ROI delineation could be finished using

automatic, semi-automatic and hand-crafted methods. However,

automatic and semi-automatic methods may have a certain

deviation which need to be further adjusted manually. Fourth,

due to the small numbers of pathological compression fractures

in this study with low sensitivity, it is likely the features of

pathological fracture might be different from the osteoporotic/

traumatic compression fracture and will require a large and

specific pathological database to clarify the utilization of deep

learning model assistance. Therefore, more studies with larger

numbers of patients are required to provide stronger evidence for

the accuracy of deep learning models in the prediction of

pathological compression fractures. Finally, deep learning model

alone was not adequate to detect pathological compression fracture

due to the absence of clinical information. Thus, the general

applicability of our results in clinical practice could be affected.

Clinical information is required in future study to validate the

performance of deep learning models.

In conclusion, a multiclass deep learning model for

compression fractures on radiographs was developed and

validated. The classification performance of the model surpassed

that of trainee radiologists and was comparable to that of

experienced radiologists. When the skills of the radiologists were

combined with a deep learning model, better diagnostic

performance was observed, which could improve the accuracy of

diagnostic classification, thereby improving the diagnostic workflow

for patients with compression fractures. We expect to establish an

artificial intelligence-assisted diagnosis platform for compression

fracture based on X-ray images to provide patients and clinicians
Frontiers in Endocrinology 10
with free access to telemedicine assistance, aiming to eliminate the

diagnosis and treatment gap between national hospitals and

grassroots hospitals.
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