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Diabetic nephropathy (DN) is the leading cause of end-stage renal disease

(ESRD). However, its pathogenesis remains unclear, and effective prevention

and treatment strategies are lacking. Recently, organ-to-organ

communication has become a new focus of studies on pathogenesis.

Various organs or tissues (the liver, muscle and adipose tissue) secrete a

series of proteins or peptides to regulate the homeostasis of distal organs in

an endocrine manner. Bone, an important part of the body, can also secrete

bone-derived proteins or peptides that act on distal organs. As an organ with

high metabolism, the kidney is responsible for signal and material exchange

with other organs at any time through circulation. In this review, we briefly

discussed bone composition and changes in bone structure and function in DN

and summarized the current status of bone-derived proteins and their role in

the progression of DN. We speculated that the “bone-kidney axis” is a potential

target for early diagnosis and treatment of DN.
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Introduction

Diabetic nephropathy (DN) is characterized by serious renal microangiopathy caused

by diabetes (1–3). With the increasing incidence of diabetes worldwide, the number of

patients with DN is also gradually increasing. Moreover, DN is the leading causes of end-

stage renal disease (ESRD) and imposes a heavy economic burden on society (4). At

present, the treatment of DN lacks of specific drugs, especially symptomatic treatment.

Therefore, it is necessary to understand the pathogenesis of DN and develop effective

strategies for early diagnosis and prevention.
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To date, studies focused on the kidney as an independent

organ to explore the molecular mechanisms underlying renal

pathological changes in diabetes mellitus (5). However, the

human body is an organic whole, and signal and material

exchange between the kidney and other organs occurs through

blood circulation. As an important part of the human body, bone

plays a locomotive, supportive and protective role. Recent

studies have revealed that bone can secrete various bone-

derived polypeptides and proteins to regulate of other organs

in an endocrine manner (6–8). In the advanced stage of kidney

disease, owing to the disorder of calcium and phosphorus

metabolism and abnormal hormones, bones undergo

corresponding secondary pathological changes, known as

chronic kidney disease mineral bone disease (CKD-MBD) (9–

11). However, the role of bone as an endocrine organ in DN,

especially in the early stage, remains elusive. In this review, we

summarized some important bone-derived proteins and

discussed their role in DN, thus providing new therapeutic

targets for the treatment of DN.
Brief description of bone tissue

Bones are the strong organs of vertebrates and play an

important role in the locomotion, support and protection of

the body. Bone consists of two main parts as follows: the

extracellular matrix composed of organic and inorganic

components and cellular components (12–14). Collagen I

fibers, non-collagen glycoproteins and proteoglycan constitute

the organic portion of bone, whereas calcium and phosphate (Pi)

carbonates constitute the inorganic portion (15). In addition,

bone is composed of three types of cells, namely, osteoclasts,

osteoblasts and osteocytes (16–18). In the body, bone structure is

not static but in a dynamic process of decomposition and

reconstruction. If this balance is disrupted, such as when the

rate of bone resorption is higher than the rate of bone formation,

bone mass decreases and bone fragility increases, which may

lead to osteoporosis and fractures (19, 20). Bone cells are

involved in the formation and maintenance of bone structure.

Osteoclasts are polarized multinucleated giant cells that are

primarily involved in the absorption of the bone matrix (21,

22). Bone resorption mainly involves the adhesion of osteoclasts

to the bone matrix, acidification of bone resorption lacunae and

depredation of organic components (15). In addition to their

role in bone resorption, osteoclasts are involved in regulating the

differentiation of osteoblasts and mobilization of haematopoietic

progenitors (23, 24). Osteoblasts are the main functional cells for

bone formation and are responsible for the synthesis, secretion

and mineralization of the bone matrix. They are derived from

pluripotent mesenchymal stem cells (MSCs). Differentiation of

osteoblasts is regulated by multiple signaling pathways, and their

content does not exceed 6% of the total number of bone cells (15,

25). After the resorption of osteoclasts to form bone lacunae,
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osteoblasts migrate to the resorption site and secrete bone

matrix, which mineralizes to form new bones (26, 27).

Osteocytes are the most abundant cells in bone, accounting for

approximately 90% of bone cells (28, 29). They have a unique

protuberant structure, which helps them to form interconnected

tubule networks and communicate with each other through

intercellular interstitial junctions (30). Osteocytes act as

receptors that convert external mechanical stimuli to

biochemical signals that are transmitted to other effectors

through a network of tubules (31, 32). In fact, they can

regulate bone formation and resorption by influencing the

function of osteoclasts and osteoblasts (25).

Bone mainly plays a role in supporting and protecting the

viscera and regulating calcium and phosphorus metabolism (33,

34). However, recent studies have shown that bone not only acts

as the target organ of several endocrine glands or tissues through

hormone regulation, but also produces and secretes a large

number of bioactive substances, such as bone regulatory

proteins, active peptides, growth factors and hormones (35).

These substances can regulate bone homeostasis in both

autocrine and paracrine manners and act on the distal target

organs in an endocrine manner, thus playing a role in regulating

their biological activity (36). Cellular active substances secreted

by bone as an endocrine organ and their relationship with

kidney diseases are described below (Figure 1).
DN and bone metabolism

As a systemic metabolic disease, diabetes mellitus has

adverse effects on bone metabolism and remodeling. Patients

with diabetes have an increased risk of fractures, reduced

osteoblast recruitment and increased osteoclast production

(22213724). In addition, drugs used in the treatment of

diabetes can affect the bone; in particular, thiazolidinediones

(TZDs) can enhance the differentiation of mesenchymal cells

into adipocytes instead of osteoblasts, thus increasing the risk of

osteoporosis (37, 38). The kidney is an important organ

regulating bone homeostasis, and abnormal bone metabolism

owing to kidney diseases results in “renal osteodystrophy”. Renal

osteodystrophy is defined as a series of skeletal disorders caused

or aggravated by CKD, resulting in bone fragility and fractures,

abnormal mineral metabolism, and exoskeletal manifestations

(39, 40). Mechanistically, a decline in renal function leads to

phosphate retention in patients with CKD, and the production

of 1, 25 dihydroxy vitamin D3 (calcitriol) is directly inhibited

owing to high phosphorus levels and renal insufficiency. These

adverse changes lead to a decrease in calcium levels and

secondary hyperparathyroidism, eventually leading to

abnormal bone metabolism (41). Therefore, the structure

and function of bone tissue are also altered in the diabetic

kidney, which may lead to abnormal secretion of bone-

derived hormones.
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Bone-derived hormones and DN

Osteoprotegerin

Osteoprotegerin (OPG) is a cytokine of the tumor necrosis

factor (TNF) receptor superfamily, which is also known as

osteoclastogenesis inhibitory factor (OCIF) (42, 43) or TNF

receptor superfamily member 11b (TNFRS11B) (44, 45).

Structurally, OPG is a 60-kDa secreted glycoprotein composed

of 401 amino acids and can be assembled on the cys-400 residue

of the heparin-binding domain to form a 120-kDd disulfide

linked dimer for secretion (46). Before it is secreted, the 21-Aa

signal peptide at the N-terminal is cleaved to form a 380-Aa

mature OPG protein (47, 48). Therefore, three forms of OPG are

involved in the cycle: 60-kDa monomer, 120-kDa disulfide

bound to a homodimer and OPG bound to receptor activator

of nuclear factor-kB ligand (RANKL) and TRAIL (ligands of

OPG) (49, 50). Functionally, OPG can inhibit the activation of

osteoclasts, thereby inhibiting the formation and differentiation

of osteoclast and bone resorption (51). In addition, it is involved

in the development of cardiovascular diseases (52, 53). The

biological function of OPG is mediated mainly through the

OPG/RANKL/RANK signaling pathway. RANKL is a type II

homologous trimer transmembrane protein, which is mainly

expressed as a membrane binding and secretory protein (54).

RANK is a type I homologous trimer transmembrane protein

that is highly expressed on mature osteoclasts (55). Under

normal conditions, RANKL binds to RANK on the surface of
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osteoclasts and subsequently recruits TRAF6 (the connector

protein), resulting in the activation and translocation of NF-

kB to the nucleus, which eventually triggers the transcription of

osteoclast-related genes (56). OPG can competitively bind to

RANK, thus blocking the effects of RANKL (57).

In addition to inhibiting osteoclasts, OPG is closely related

to the occurrence and progression of kidney diseases. Chang

et al. reported that serum OPG levels were significantly higher in

DN patients with microalbuminuria and macroalbuminuria

than in those with normal albuminuria (58). In addition, a

clinical study revealed that the all-cause mortality rate was

significantly higher among DN patients with high OPG levels

than among those with low OPG levels, and GFR was higher in

patients with high levels of plasma OPG (59). Similar results

were observed in a study in which immunohistochemical (IHC)

staining of renal biopsy tissue of DN patients revealed that OPG

was mainly expressed in renal tubules instead of the glomerulus,

and the expression of OPG was higher in patients with

albuminuria than in those with microalbuminuria (60).

Therefore, OPG may play an adverse role in the progression of

DN. Furthermore, studies employing oligonucleotide arrays

have showed that OPG expression is significantly different

between patients with DN and control group (61). In an in

vivo study, the expression of pro-inflammatory (IL-6) and pro-

fibrotic mediators (TGF-b) in the kidney was higher in OPG-

treated mice than in control mice, which suggests a relationship

between OPG and the progression of DN. However, a few

studies have investigated the molecular mechanisms of OPG
FIGURE 1

Crosstalk between the bone and kidney. Under physiological conditions, bones can secrete bone-derived peptides or proteins (OCN, OPG,
FGF23 and LCN2) into the kidney through circulation. In ESRD, renal insufficiency results in low calcitriol and high phosphorus levels, thereby
disrupting the balance between bone synthesis and resorption.
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underlying the progression of DN. Therefore, the following

question should be addressed in future studies: How does the

high expression of OPG in the kidney activate the downstream

pathway to promote or inhibit the progression of DN?
Osteocalcin

Osteocalcin (OCN), also known as bone gamma-

carboxyglutamic acid (Gla), is a circulating protein secreted by

osteoblasts (62, 63). It is initially synthesized with 95 amino acids

and is subsequently cleaved to form a 46-amino acid mature

peptide containing three gamma-carboxyl glutamate residues at

sites 13, 17 and 20 (64, 65). In humans, mature OCN peptides

have 49 amino acids and can be gamma-carboxylated at sites 17,

21 and 24 (66). The degree of gamma-carboxylation increases

the binding ability of OCN to the mineral components of the

extracellular matrix, resulting in the accumulation of gamma-

carboxylated OCN in bones (67). An acidic microenvironment is

created during osteoclast-driven bone resorption. Under this

condition, OCN is decarboxylated, and its affinity for mineral

components of the extracellular matrix is reduced. As a result,

OCN is released into circulation as an endocrine hormone that

regulates the function of distal target organs (68, 69). OCN was

initially thought to play a role in mineralisation of the

extracellular matrix and was considered a serum marker of

osteoblast-driven bone formation (70). Ducy et al .

demonstrated that the rate of bone formation increased in

osteocalcin-deficient mice without compromising bone

absorption (71). However, recent studies have shown that

OCN acts as a hormone through an endocrine pathway.

The role of OCN as an endocrine hormone was first

demonstrated by Lee et al., who reported increased blood

glucose levels, fat mass, glucose intolerance and insulin

resistance in osteocalcin-deficient mice compared with control

mice. However, the loss of the protein tyrosine phosphatase

(OST-PTP) in Esp-/- mice resulted in the opposite phenotype

characterized by: decreased blood glucose levels, reduced fat

mass and improved islet beta cell function, thereby reducing the

effects of obesity and glucose intolerance (72). The reason for

this contradictory reverse phenotype is that the encoded

phosphatase is a negative regulator of OCN activation (72).

Therefore, OCN is critical for maintaining insulin secretion and

glucose homeostasis. Consistently, exogenous OCN can also

maintain metabolic homeostasis. Wei et al. reported that

exogenous OCN treatment increased the expression of the

insulin 2 (Ins2) gene and insulin secretion in islet cells, these

OCN-induced changes were blocked in Gprc6a-deficient islets.

Mechanistically, OCN can regulate b-cell replication in a cyclin

D1-dependent manner through the Gprc6a receptor in islet cells

(73). Similar results were observed in a study in which long-term

treatment of OCN significantly alleviated the harmful effects of

high-glucose and high-fat diets on body weight and glucose
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metabolism in mice (74). In addition to its effects on glucose

metabolism, abnormal expression of OCN is associated with

reproductive function. Oury et al. reported that the size of litters

and the number of pups per litter were smaller when male

OCN−/−129Sv mice were bred with wild-type female mice. In

addition, the testes were smaller, the sperm count was lower and

the expression of testosterone biosynthesis genes was

significantly lower in male OCN−/− mice than in male of wild-

type mice (72). Muscle mass was reduced in OCN−/− mice

compared with wild-type mice, with a decrease in the average

area of muscle fibers (75).

Because DN is a metabolic disorder, changes in plasma OCN

concentration are also closely related to its progression. Inukai

et al. reported that OCN levels were elevated in patients with

early-stage DN without serum creatinine elevation (76). Another

study demonstrated that eGFR is negatively correlated with

OCN concentration in patients with diabetes (77). Therefore,

given that serum OCN levels are increased in DN, OCN may

serve as a biomarker for predicting the progression of DN. On

the other hand, OCN concentration may increase owing to an

increase in compensatory OCN secretion caused by high blood

glucose levels; On the other hand, OCN excretion is reduced and

it is retained in the body owing to a decline of renal function

during the progression of DN. Although a few studies have

investigated the molecular mechanisms of OCN in DN, it plays

an important role in the kidney, especially in DN, as an

endocrine factor of bone origin.
Fibroblast growth factor 23

Fibroblast growth factors (FGFs) play diverse roles in a wide

range of biological processes by activating FGF receptor tyrosine

kinases (FGFRs) (78). FGF23, a member of the FGF family, is

mainly produced by osteocytes and osteoblasts in bone and

participates in the regulation of phosphate homeostasis (79). In

humans, the FGF23 gene consists of three exons and a 10-kb

genome sequence encoding a precursor protein of 251 amino

acids that is secreted from bone into circulation (80). FGF23 is a

32-kDa glycoprotein that contains a proteolytic site and the

proteolytic cleavage of FGF23 is regulated by O-glycosylation

and phosphorylation (78). The cleavage of FGF23 is inhibited by

O-glycosylation induced by N-acetylgalactosaminyltransferase 3

(GALNT3), which eventually increases the levels of full-length

FGF23 protein in circulation (81). In vivo studies have shown that

FGF23 can be cleaved to produce a C-terminal and an N-terminal

fragment. The full-length FGF23 protein is biologically active,

whereas the cleaved fragment is inactive; however, the C-terminal

fragment retains its ability to bind to FGF23 receptors (82). The

kidney is the main target organ of FGF23. Circulating FGF23

binds to the FGFR1/Klotho complex in renal cells to regulate

phosphorus homeostasis. The binding of FGF23 to the FGFR1/

Klotho complex activates various kinases, such as serum
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glucocorticoid-regulated kinase-1 (SGK1), and down-regulates

the type II sodium-dependent phosphate (NaPi) cotransporters

NaPi 2a and NaPi 2c in proximal tubules, thereby inhibiting the

reabsorption of phosphate (Pi) (83, 84). In addition to increasing

Pi excretion through urine, FGF23 can inhibit 1a-hydroxylase,
thereby reducing the production of 1,25(OH)2D and indirectly

inhibiting Pi absorption in the intestines (84). Furthermore,

FGF23 can reduce the secretion and synthesis of parathyroid

hormone (PTH), which in turn directly increases FGF23 levels by

acting on osteoblasts/osteocytes. Therefore, the three hormones in

the body that control calcium and phosphorus metabolism (PTH;

1,25(OH)2D and FGF23) interact to form a feedback loop among

the kidney, bone, gut, and parathyroid glands (85–87). FGF23

levels ranging from 50 to 200 pg/mL are required to maintain

normal mineral homeostasis. Elevated FGF23 levels can cause

hypophosphatemia and rickets and decrease the levels of 1,25

(OH)2D, whereas excessively low levels of FGF23 can

hyperphosphatemia and soft tissue calcification and increase the

levels of 1,25(OH)2D (88).

The serum concentration of FGF23 is altered in DN patients

with kidney injury. Inci et al. reported that serum FGF23 levels

were significantly higher in patients with type 2 diabetes compared

with controls and were associated with urinary albumin levels (89).

In addition, FGF23 concentrations is also associated with an

increased risk of cardiovascular diseases and death in patients

with DN (90). Tsai et al. reported that high FGF23 levels were

associated with low hemoglobin levels in patients with stage 3 and

4 CKD (91). The mechanism underlying the increase in FGF23

levels has been partially revealed. Disorder of phosphorous

metabolism can result in a secondary increase in FGF23 levels.

Mace et al. showed that plasma FGF23 levels increased 2.5 times

within 15 minutes of removal of both kidneys. In addition, the

removal of one kidney led to an increase in blood FGF23 levels

compared with control rats (92). These studies suggest that normal

renal function is critical for maintaining FGF23 concentration. In

a similar study reporting on the relationship between renal

insufficiency and increased FGF23 concentration, nephritic rats

were injected with recombinant FGF23, a prolonged

disappearance curve was observed and the half-life of FGF23

increased from 4 minutes to 12 minutes (92). These results

indicate that impaired renal function reduces the excretion rate

of FGF23 through the kidney and hence increases the serum

concentration of FGF23. In addition to the decreased rate of renal

excretion, other factors can influence FGF23 concentration.

Sørensen et al. reported that circulating FGF-23 levels were

elevated in patients with type 2 diabetes with normal or mildly

impaired renal function, which is associated with impaired

diastolic function and decreased myocardial blood flow (93).

Moreover, in earl-stage DN, increased serum FGF23 levels,

instead of urinary albumin, may serve as more accurate

biomarker for predicting the progression of the disease (94).

In addition to regulating mineral metabolism, FGF23 is

involved in various of cellular processes. In a study, renal
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damage and fibrosis were alleviated and the levels of

inflammatory cytokines in serum and renal tissue were

significantly lower in DB/DB mice (a mouse model of DN)

injected with exogenous C-terminus of FGF23 (compared with

control mice) (95). As mentioned earlier, because the C-

terminus of FGF23 has no biological activity, it competes with

intact FGF23 for binding to FGF23 receptors, which suggests

that increased FGF23 levels in DNmay aggravate kidney damage

by promoting the activation of inflammation. Recent studies

have highlighted the important role of FGF23 as a bone-derived

factor in the progression of DN; however, its molecular

mechanism in addition to regulating calcium and phosphorus

metabolism warrants further investigation.
Lipocalin 2

In addition to regulating mineral metabolism, bone plays a

key role in maintaining energy and glucose metabolism by

secreting of bone-derived hormones. Lipocalin 2 (LCN2) is a

hormone that is mainly expressed on osteoblasts, and its level is >

10 times higher in osteoblasts than in other tissues in the basal

state. Osteoblast-specific knockout of LCN2 in mice can increase

food intake, fat mass and body weight, which is accompanied by

glucose intolerance, insulin resistance and pancreatic b cell

dysfunction, eventually resulting in decreased insulin secretion

after glucose stimulation (96, 97). LCN2, also known as

siderocalin, neutrophil gelatinase-associated lipoprotein

(NGAL) or uterine calcitonin, is a glycoprotein composed of

198 amino acids. It is encoded by a gene located at chromosome 9

locus 9q34.11, which produces numerous functional transcripts

(98). LCN2 exists in many molecular forms, including mono-

dimer, dimer or heterodimer, which can bind to neutrophil

gelatinase B to form disulfide bonds (99). In the kidney, LCN2

is considered an important biomarker for predicting the

progression of DN. Najafi et al. reported that serum NGAL

levels were significantly higher in the DN patients with

macroalbuminuria than in those with normoalbuminuria and

microalbuminuria (100). In addition, urinary NGAL (LCN2)

levels were higher in patients with type 2 diabetes than in those

without diabetes and higher in patients with urinary albumin

than in those without urinary albumin (101). However, the

molecular mechanism and role of elevated NGAL levels in DN

warrant further investigation. Studies have shown that damaged

kidney cells in kidney diseases may secrete high amounts of

LCN2 (102, 103), and neutrophils and macrophages may also be

the source of lCN2 elevation (104). However, the role of bone-

derived LCN2 (the major producer of resting LCN2) in renal

diseases remains unclear. Moreover, the increase in LCN2 levels

in DN may be a compensatory protective effect. Liu et al.

demonstrated that in high-concentration glucose stimulation in

NGAL-knockout HK-2 cells significantly increased oxidative

stress and the secretion of interleukin-6 (IL-6), fibronectin (FN)
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and type IV collagen (105). In addition, compared with wild-type

mice with diabetes, diabetic NGAL-/- mice had deteriorated renal

function, more severe glomerulosclerosis and tubular vascular

degeneration (105). These results suggest that LCN2 plays an

indispensable role in the progression of DN. However, the role of

bone-derived LCN2 in kidney diseases warrants further

investigation (Table 1).
Conclusion

In recent years, the crosstalk between organs has gradually

become a new focus of research into the pathogenesis of diseases.

In addition to the traditional endocrine organs, other organs

such as bone and muscle can secrete relevant peptides or

proteins in an endocrine manner to participate in the

maintenance of homeostasis in the human body. In addition

to locomotion and support, bone can secrete bone-derived

factors to regulate the metabolism of the body. Bone

metabolism is abnormal and the endocrine function of bones

is impaired in DN, especially in ESRD. However, only a few

studies have examined the role of bone-derived factors in the

progression of kidney diseases. Although the role of several

bone-derived factors in regulating renal communication has

been preliminarily revealed, most studies have only described

the phenotypic relationship between the liver and kidney and

have not revealed the mechanisms underlying the direct

communication between them. In this review, we summarized

some important bone-derived proteins and discussed their role

in DN and discussed the relationship between bone and kidney

diseases. However, several concerns remain unaddressed; for

example, how many types of osteogenic factors are there? More
Frontiers in Endocrinology 06
precise biological techniques are required to answer such

questions. Although it has been reported that the serum

concentration of some bone-derived factors is altered in DN,

their role in the progression of DN and the underlying molecular

mechanisms remain unknown. In conclusion, bone-derived

factors offer novel strategies for the diagnosis and treatment of

DN, and the “bone-kidney axis” may be used as a therapeutic

target for DN in the future.
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