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Thyroid disruptors are found in food, atmosphere, soil, and water. These

contaminants interfere with the thyroid function through the impairment of

thyroid hormone synthesis, plasma transport, peripheral metabolism, transport

into the target cells, and thyroid hormone action. It is well known that iodide

uptake mediated by the sodium-iodide symporter (NIS) is the first limiting step

involved in thyroid hormones production. Therefore, it has been described that

several thyroid disruptors interfere with the thyroid function through the

regulation of NIS expression and/or activity. Perchlorate, nitrate, and

thiocyanate competitively inhibit the NIS-mediated iodide uptake. These

contaminants are mainly found in food, water and in the smoke of cigarettes.

Although the impact of the human exposure to these anions is highly

controversial, some studies indicated their deleterious effects in the thyroid

function, especially in individuals living in iodine deficient areas. Considering

the critical role of thyroid function and the production of thyroid hormones for

growth, metabolism, and development, this review summarizes the impact of

the exposure to these NIS-inhibitors on thyroid function and their

consequences for human health.
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Introduction

Several chemicals widely present in the environment affect

important biological functions through the disruption of the

endocrine system. One classical example of these disruptive

phenomena was the discovery of intersex fish in English rivers,

which was shown to be related to contaminants that interfere with

estrogens action (1). Since then, the knowledge in this field has

significantly progressed, and many studies have been published

about the endocrine disruptors and their impact to human and

other animals’ health (2). These important studies are now

influencing worldwide regulation and public health policies to

mitigate the potential deleterious impacts of the endocrine

disruptors in the health and survival of different species.

Although there is a massive progress in the description of

new molecules with endocrine disrupting properties, one great

challenge in this area is to evaluate the consequences of

endocrine disruptors mixtures (3) In fact, the exposure of

humans and other animals to complex mixtures of endocrine

disruptors complicates the determination of safe levels of

exposure (4). In addition, many studies demonstrated that

the continuous exposure to low doses of the endocrine

disruptors affect several physiological functions (5) Thus,

there are several aspects that need to be considered to define

the real impact of the exposure to these contaminants on the

human health.

It is well known that thyroid hormones play crucial roles in

the control of metabolism, normal development, growth, and

differentiation processes (6). Therefore, great attention has been

given to the thyroid disruptors. Indeed, it has been reported that

these disruptors affect several steps of thyroid physiology, like

thyroid hormones synthesis, transport, action, and peripheral

metabolism (7).

This mini review is centered on anions classified as

environmental contaminants that affect thyroid hormone

synthesis, particularly those that interfere with the activity of

sodium iodide symporter (NIS), which mediates the iodide

uptake, the first and limiting step for the thyroid hormone

synthesis (8)NIS is expressed at the basolateral membrane of

the thyroid follicular cells, as well as in non-thyroidal tissues, like

mammary, salivary, and lacrimal glands, stomach, and small

intestine (9)In summary, the data about the impact of

perchlorate, nitrate and thiocyanate exposure on thyroid

function and human health will be addressed herein.
Perchlorate

Perchlorate (ClO4-) is a strong oxidizing anion used in

rockets fuels, explosives, fireworks, and missile fuels.

Perchlorate is also naturally formed in the atmosphere and is
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accumulated in arid climate regions (10). In fact, human

manufacturing of perchlorate-containing products and the

naturally formed perchlorate result in a large occurrence of

this compound in the environment, as demonstrated by its

presence in irrigation water and soil. Perchlorate is also

present in some fertilizers, increasing its accumulation in fruits

and vegetables (11) Therefore, human exposure to perchlorate

mainly occurs from contaminated food and drinking water.

Perchlorate is a potent inhibitor of iodide uptake mediated

by NIS in the thyrocytes, impairing the first step of thyroid

hormone synthesis (12). This inhibitory effect has been

recognized since the 50’s, when perchlorate was commonly

used as a therapeutic drug for treating hyperthyroidism (13).

Moreover, since this anion displaces iodide from the thyroid, it

was used in the “perchlorate challenge” test, for the detection of

thyroid iodine organification defects (14).

Several studies contributed to characterize the disruptive

effects of perchlorate on thyroid function and to reinforce the

importance of the regulation of perchlorate levels in the

environment. Perchlorate and iodide are anions with similar

charge and size. However, it is worth noting that NIS has a

higher selectivity for perchlorate than for iodide. In agreement,

in vitro studies have shown that iodide transport is essentially

abolished in thyrocytes exposed to 10 µM of perchlorate, without

alterations in the expression of NIS (12) for many years, it was

suggested that perchlorate was a potent inhibitor of NIS-

mediated iodide uptake without being transported into the

thyrocytes (15). However, elegant studies demonstrated that

this anion is actively transported by NIS in an electroneutral

stoichiometry (16, 17). Besides the potent inhibition of NIS

activity, it has been described that perchlorate also suppresses

the thyroglobulin and thyroperoxidase gene expression, which

was associated with the impairment of the thyroid hormone

synthesis induced by this contaminant (18).

The deleterious effect of perchlorate exposure were

previously demonstrated in species that depend on thyroid

hormone action to drive their metamorphosis processes, as

amphibians and fishes. In accordance, several abnormalities in

the development, reproduction, and survival were described in

perchlorate-exposed animals (19, 20). In contrast, the exposure

to perchlorate has not altered the metamorphosis or the thyroid

histopathology of common frogs (21).

In humans, the effects of perchlorate on thyroid function are

still controversial. Several studies reported that perchlorate

exposure was not associated with alterations in TSH or T4

serum levels in humans (22–24). However, other studies have

shown significant alterations in the function of the pituitary-

thyroid axis in humans co-exposed to perchlorate and other

NIS-inhibitory anions, such as nitrate and/or thiocyanate,

especially, but not exclusively, in iodine deficient areas (25,

26). A recent study has also indicated that humans co-exposed

to perchlorate, nitrate and thiocyanate presented an increased
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central thyroid hormone sensitivity, which seem to be more

precise than the single parameters, as TSH or T4 serum levels, to

evaluate the homeostasis of the pituitary-thyroid axis (27).

It has been suggested that the disruptive actions of

perchlorate on thyroid function are more critical during

specific windows of susceptibility, as the pregnancy. Even so,

the consequences of maternal exposure to perchlorate in the

thyroid function are still controversial (28–31). In fact, the

different conclusions about the deleterious effects of

perchlorate exposure during this critical developmental period

are related to the different ranges of exposure in different human

populations as well as to the period of the evaluation in each

study. Therefore, more studies are needed to further clarify this

issue. Conversely, a study focused on pregnant women with

borderline thyroid function living in iodine deficient areas

demonstrated that perchlorate exposure impaired the offspring

cognitive development. This impairment was not reversed by

maternal levothyroxine therapy, suggesting that the fetal thyroid

function is more susceptible to the perchlorate-induced

disruption (32). In agreement, the offspring rats of pregnant

rats exposed to perchlorate presented several alterations in the

synaptic function during adulthood (33).

An elegant study from the group of Dr. Nancy Carrasco

demonstrated that perchlorate is transported to maternal milk

through the activity of NIS that is expressed in the mammary

glands (17). Consequently, besides the reduction of iodide

transferred to the milk, the newborns could be exposed to

high levels of this potent NIS inhibitor, which could

potentially impair the central nervous system development,

since it is highly dependent on thyroid hormone action (34, 35).

Furthermore, studies have suggested a positive association

between perchlorate exposure and the risk to develop papillary

thyroid cancer (36, 37). As the incidence of thyroid cancer is

increasing worldwide, the contribution of the thyroid disruptors,

such as the perchlorate, which has a potent disruptive action on

NIS activity and on thyroid function should be addressed.

Finally, in rodents, the chronic exposure to ammonium

perchlorate through drinking water altered the serum levels of

thyroid hormones and TSH serum levels and the morphology of

the thyroid gland (38) Our studies reinforced these data and

described some of perchlorate-induced molecular mechanisms

involved in the disruption of the hypothalamus-pituitary-

thyroid axis. Indeed, the animals exposed to perchlorate

presented primary hypothyroidism, as shown by the decreased

serum T4 and T3 levels, and increased serum TSH

concentration. Additionally, the exposure to perchlorate

induced alterations in the expression of genes/proteins

involved in the thyroid hormone synthesis and increased

several markers of inflammation in the exposed animals (39).

Interestingly, it has been shown that TSH increases the NIS-

mediated perchlorate transport into the thyroid cells (16).

Furthermore, it has been previously described that perchlorate
Frontiers in Endocrinology 03
per se induces a unique pattern of gene expression alterations in

the thyroid gland, that is completely different from the one

induced by iodine deficiency (40) Even though, the molecular

mechanisms involved in the regulation of thyroid gene

expression need to be further clarified.

Thus, although some studies indicate the potential deleterious

effects of perchlorate exposure on thyroid function, there are

many controversial results, especially in epidemiologic studies.

This reinforces the necessity of more studies to clarify the period

as well as the doses of exposure to perchlorate that are potentially

more harmful to the health of humans and other animals.
Nitrate

Nitrate (NO3-) is a naturally occurring anion in the

environment since it is part of the nitrogen cycle. The plants

obtain nitrogen, an essential component for the synthesis of

plant proteins, through the absorption of nitrate from the soil

and the groundwater (41). Therefore, humans are mainly

exposed to nitrate through the consumption of green leafy

vegetables, roots, oilseeds, grains, tubers, and nuts. Moreover,

nitrate is commonly found in agricultural fertilizers and in

preservative additives for cured meats. Accordingly, the

presence of nitrate in the environment is greater than the one

observed for thiocyanate or perchlorate.

The nitrate levels in the drinking water sources and food

have significantly increased in recent decades due to the

exacerbated use of nitrogen fertilizers. Alarmingly, the effective

nitrate removal from water sources depends on complex and

highly costly processes, which are rarely performed (42). In

agreement, studies suggest that nitrate concentration in food and

water sources will highly increase in the future, due to the

increased use of nitrogen fertilizers and the intensification of

agricultural activities to support human population growth (43).

It is worth noting that the maximum contaminant level of nitrate

in the drinking water was defined by the U.S. Environmental

Protection Agency (EPA) and the World Health Organization

(WHO) as 10 mg/L for nitrate-nitrogen, which is equivalent to

45 mg/L as nitrate (44). Nevertheless, it has been demonstrated

that some regions of the world present higher concentrations of

nitrate in the water, which greatly exceeds the levels considered

safe for human exposure (45).

Interestingly, some types of cancer, as gastric and colorectal

cancers, were previously associated with the exposure to nitrate

at levels that are considered safe by the regulatory agencies (46,

47). The deleterious effects of nitrate have been related to its

conversion into other nitrogen-containing compounds in the

body (48). Thus, it is well known that nitrate is converted to

nitrite, which can subsequently react with amines and amides in

the gastrointestinal tract to form N-nitroso compounds (NOCs),

a class of known carcinogenic and cytotoxic substances (49).
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Additionally, high levels of nitrate consumption were

associated with an increased risk for reproductive problems.

Both nitrate and nitrites are precursors of nitric oxide (NO), a

lipophilic molecule with several physiological roles. However,

excessive production of NO was associated with several

pathophysiological events, as reproductive system dysfunctions

and impaired production of sexual steroids (50, 51). Other

studies indicated that the exposure to high levels of nitrate

during pregnancy is a risk factor for spontaneous abortion,

fetal death, prematurity, intrauterine growth restriction, low

birth weight, congenital malformations, and neonatal death

(52). Therefore, besides its carcinogenic potential, the

deleterious effects of nitrate on the endocrine system have

received increasing attention in the recent years (53). In

addition to the nitrate-induced damage to other endocrine

glands, some studies suggest that nitrate exposure impairs the

thyroid function in humans and other animals.

Nitrate competitively inhibits NIS-mediated iodide uptake

with a much lower potency than the one induced by perchlorate

(12). Nevertheless, the concentration of nitrate detected in

human and environmental samples were much higher than

those described for perchlorate. This fact could potentially

contribute to the harmful effects induced by nitrate in the body.

Although the in vitro assays clearly demonstrated the

inhibitory effects of nitrate on NIS function, suggesting an

impairment of the thyroid function, the effects of nitrate

exposure on pituitary-thyroid axis in humans are still

controversial. Indeed, nitrate exposure was associated with

increased risk of developing thyroid disorders, especially in

susceptible individuals as pregnant women, newborns, and

children, as well as in women with urinary iodine levels ≥ 100

µg/L (25, 54–56). Furthermore, chronic exposure to high levels

of nitrate through public water supplies was associated with

increased risk of developing thyroid cancer (57, 58). However,

other studies have not detected any alteration in TSH and/or T4

serum levels in nitrate-exposed humans (31, 59).

Although the inhibition of thyroid function by nitrate is

reported in the literature, the molecular mechanisms involved in

this phenomenon are not completely elucidated. Indeed, the

chronic exposure of male rats to high levels of nitrate increased

thyroid weight, induced morphological alterations in the thyroid

follicles and altered thyroid hormone production (60, 61). In

accordance, a goitrogenic effect was also observed in female rats

chronically exposed to nitrate through drinking water. However,

no alterations in thyroid hormone or TSH serum levels were

observed, which were associated with increased expression of

genes involved in the synthesis of thyroid hormones (62).

As discussed before, nitrate exposure increases the

production of NO in different tissues, which promotes post-

translational modifications, such as nitrosylation of cysteine

residues and nitration of tyrosine residues that change the
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stability, location, and activity of several proteins (63, 64). In

this sense, in thyrocytes, it has been shown that the excessive

production of NO decreases the expression of transcriptional

factors, such as Foxe1, inhibits NIS-mediated iodide uptake, and

interferes with the signaling pathway triggered by TSH, which

potentially inhibits the expression of different genes involved in

the biosynthesis of thyroid hormones (65–68). Therefore,

although some aspects related to the nitrate-induced

impairment of the thyroid function have been described,

future studies are needed to unravel the molecular

mechanisms involved in the direct effects of this anion on the

thyroid, as well as the potential deleterious effects of nitrate on

the development of the thyroid gland.
Thiocyanate

Thiocyanate (SCN-) is vastly found in food that contain

thioglycosides – such as cassava, bamboo shoots, sweet potatoes,

brussels sprouts, cauliflower, corn broccoli, apricots, and

almonds. The inhalation of cigarette smoke in another

importance source of human thiocyanate contamination since

it contains cyanide, which is converted into thiocyanate in the

body. Thiocyanate is highly soluble in water and previous data

demonstrated a relevant contamination of the groundwater with

this anion (69). It is worth noting that the half-life of thiocyanate

is approximately 6 days, much longer than the few hours half-

lives presented by perchlorate and nitrate.

Thiocyanate has a goitrogenic action since it inhibits NIS-

mediated iodide uptake (12). Electrophysiological studies

indicated that thiocyanate is transported by NIS into the

thyrocytes with a similar stoichiometry of I- (15, 70). Similar

to nitrate, the potency of the thiocyanate-mediated inhibition of

NIS activity is lower than the one exerted by perchlorate (12).

Nevertheless, epidemiologic studies reported higher levels of

thiocyanate in comparison to perchlorate in the serum of the US

population (25) In addition, studies demonstrated that besides

the inhibitory effect on NIS activity, thiocyanate impairs the

iodine organification catalyzed by the thyroperoxide (71, 72).

Thiocyanate is also transported to the milk of breastfeeding

mothers who smoke cigarettes. Alarmingly, increased levels of

thiocyanate in the maternal milk were correlated with decreased

iodide content in the milk. As expected, this condition was

associated with higher risk of developing thyroid dysfunctions in

the newborns, due to the direct exposure of these individuals to a

potent NIS-inhibitor and to decreased levels of the main

substrate for the thyroid hormones synthesis (73).

Furthermore, epidemiological studies indicated that

thiocyanate exposure was associated with the inhibition of

thyroid hormone production and the development of thyroid
frontiersin.org

https://doi.org/10.3389/fendo.2022.995503
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Serrano-Nascimento and Nunes 10.3389/fendo.2022.995503
autoimmunity (74, 75). However, although previous studies

indicated that the co-exposure to perchlorate and thiocyanate

is potentially deleterious to the thyroid function in adults and in

susceptible individuals, as pregnant women, fetus, and

newborns, the effects of thiocyanate per se in the thyroid are

still controversial in humans (27, 30, 31, 76)

Finally, the molecular mechanisms involved in the

thiocyanate regulation of thyroid function are not
Frontiers in Endocrinology 05
completely understood. Studies using primary thyroid cells

cultures exposed to plant extracts rich in thiocyanate

demonstrated an increased production of reactive oxygen

species, induced cell injury and DNA damage, decreased

gene expression and activity of proteins involved in the

synthesis of thyroid hormones (77, 78). However, the direct

effects of thiocyanate per se in the thyrocytes have never

been reported.
B

A

FIGURE 1

Thyroid dysfunction induced by perchlorate, nitrate and/or thiocyanate exposure. (A) In a normal condition, the sodium-iodide symporter (NIS)
mediates the iodide uptake, the first limiting step for thyroid hormone synthesis. Then, iodide is transported across the apical membrane, and it
is oxidized and organified into tyrosyl residues of thyroglobulin (TG) through the activity of thyroid peroxidase (TPO). Under the TSH stimulus,
thyroid hormones (TH) are secreted and exert their effects in several tissues/organs, controlling the metabolism, growth, and development (79).
(B) In the presence of perchlorate, nitrate and/or thiocyanate, NIS-mediated iodide uptake is impaired, and these molecules are actively
transported into the thyroid cells (12). The consequences of increased levels of these anions in the intracellular thyrocytes medium are still
unclear. It has been reported that besides the inhibition of NIS activity, the SCN- also impairs the organification of iodine catalyzed by TPO
activity. The impairment of the activity of these two key proteins involved in the thyroid hormone synthesis could contribute to the reduced
production and secretion of thyroid hormones to the blood circulation. The negative consequences of the reduction of the thyroid hormone
serum levels are widely described in the literature, but are especially alarming during critical periods of the development, as during the
pregnancy and lactation periods.
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Current gaps and
future perspectives

Several studies have been carried out in recent years and their

results have clarified many aspects of the deleterious effects

promoted by the exposure of animals to perchlorate, nitrate,

and thiocyanate (Figure 1). Nevertheless, there are several

aspects and molecular mechanisms that need to be clarified.

Indeed, especially the epidemiological data are still controversial,

and the impact of the exposure to these NIS-inhibitors on human

health are not conclusive. The controversial results may be related

to the different methodologies that were used to determine these

contaminants in each study, as well as the period of the exposure

that was evaluated. Moreover, these anions have a short biological

half-life, which could impair these associative analyzes.

Additionally, there are no data about the long-term and

programming-induced effects of these contaminants, especially

during the windows of susceptibility, such as pregnancy and

lactation. In general, the harmful effects of these contaminants

were observed in iodine-deficient populations and were related to

the induction of iodine deficiency. This concern is irrefutable,

however there are scarce data about the direct effects of these

contaminants on the thyroid gland. It is important to highlight

that NIS is expressed in several other tissues as mammary glands,

placenta, intestine, kidney, gonads. Therefore, future studies are

needed to clarify the effects of these anions in other systems/

organs besides the hypothalamus-pituitary-thyroid axis. Finally, it

is important to reinforce that the disruption of thyroid function

goes beyond the impairment of the synthesis of thyroid hormones,

since these hormones affect virtually all organs/systems of

the body.
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