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Vascular and hormonal
interactions in the adrenal gland

Alaa B. Abdellatif 1, Fabio L. Fernandes-Rosa1,
Sheerazed Boulkroun1*† and Maria-Christina Zennaro1,2*†
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Primary aldosteronism is the most common form of secondary arterial

hypertension, due to excessive aldosterone production from the adrenal

gland. Although somatic mutations have been identified in aldosterone

producing adenoma, the exact mechanisms leading to increased cell

proliferation and nodule formation remain to be established. One hypothesis

is that changes in vascular supply to the adrenal cortex, due to phenomena of

atherosclerosis or high blood pressure, may influence the morphology of the

adrenal cortex, resulting in a compensatory growth and nodule formation in

response to local hypoxia. In this review, we will summarize our knowledge on

the mechanisms regulating adrenal cortex development and function, describe

adrenal vascularization in normal and pathological conditions and address the

mechanisms allowing the cross-talk between the hormonal and vascular

components to allow the extreme tissue plasticity of the adrenal cortex in

response to endogenous and exogenous stimuli. We will then address recent

evidence suggesting a role for alterations in the vascular compartment that

could eventually be involved in nodule formation and the development of

primary aldosteronism.

KEYWORDS

adrenal gland, aldosterone, vascularization, primary aldosteronism (PA), aldosterone
producing adenoma
Introduction

The adrenal gland is an endocrine tissue composed of two distinct zones with

different functions: the cortex, responsible for steroid biosynthesis, and the medulla,

where catecholamine biosynthesis occurs. In human, the adrenal cortex is subdivided

into three distinct functional zones: the outer part of the adrenal cortex is formed by the

zona glomerulosa (ZG) responsible for mineralocorticoid biosynthesis, the intermediate

and thickest part is formed by the zona fasciculata (ZF), responsible for glucocorticoids

biosynthesis, and the inner part is formed by the zona reticularis (ZR) responsible for the

biosynthesis of adrenal androgens (1). Both adrenal glands receive arterial blood supply
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from the ventral aorta and the renal artery; the left adrenal is also

supplied by the caudal branch of the aorta and the right adrenal

by the phrenic artery (2)

Interestingly, the adrenal gland is one of the most vascularized

organs. It has been shown that this organized vascular network

played an important role during embryogenesis to ensure adrenal

growth and differentiation, but also during whole life to provide

precursors necessary for the biosynthesis of steroid hormones and

to allow their secretion in blood flow (3). The specific ramification

of adrenal cortex vasculature suggests strong interactions between

endothelial and adrenal cells (4), allowing their coordinated

development. Moreover, the proximity between endothelial and

endocrine cells allows a rapid release of steroids into the blood flow.

Primary aldosteronism (PA) is the most common form

of secondary arterial hypertension due to autonomous

aldosterone production from the adrenal cortex. The two

major causes are unilateral aldosterone producing adenoma

(APA) or bilateral adrenal hyperplasia (BAH, also called

idiopathic hyperaldosteronism). Patients show increased blood

pressure, often associated with hypokalemia. Diagnosis is made

in the presence of suppressed renin levels and increased

aldosterone to renin ratio and is confirmed by one of different

suppression tests. Adrenal imaging and adrenal vein sampling

allow to distinguish between unilateral and bilateral forms and to

introduce optimal treatment, either adrenalectomy for APA or

treatment with mineralocorticoid receptor antagonists for

bilateral forms (5). PA is found in up to 10% of patients with

hypertension (6, 7) and its prevalence increases with the severity

of hypertension (8). Over the past ten years, major progress

has been made in elucidating genetic defects underlying familial

and sporadic forms of PA. In particular, somatic mutations

have been identified in genes coding for ion channels (KCNJ5,

CACNA1D, CACNA1H, CLCN2) and ATPases (ATP1A1,

ATP2B3) in up to 96% of APA (9–13). These mutations

lead to cell membrane depolarization (KCNJ5, ATP1A1,

CLCN2) or increase intracellular calcium (ATP2B3 ,

CACNA1D, CACNA1H), leading to activation of calcium

signaling that is the main trigger for aldosterone biosynthesis.

In addition, mutations in CTNNB1 coding for b-catenin, à key

regulator of adrenal cortex development and function, have been

identified in a subset of patients with PA, either alone or in

association with mutations of GNAQ/GNA11 in patients

presenting with PA at puberty, pregnancy or menopause (14).

However, it is still unclear, whether those mutations, in addition

to promoting aldosterone biosynthesis, also increase cell

proliferation and nodule formation and different hypotheses

have emerged in recent years. Among them it has been

postulated that changes in vascular supply to the adrenal

cortex, due to phenomena of atherosclerosis or high blood

pressure, may influence the morphology of the adrenal cortex,

resulting in a compensatory growth and nodule formation in

response to local hypoxia (15). This could eventually lead to the

development of APA in extreme cases.
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In this review we will briefly summarize the mechanisms

regulating aldosterone biosynthesis in the adrenal gland,

describe adrenal vascularization in normal conditions and how

the cross-talk between the hormonal (epithelial) and vascular

(endothelial) components ensures adrenal cortex growth and

function under physiological conditions. We will then address

recent evidence suggesting a role for alterations in the vascular

compartment that could eventually be involved in nodule

formation and the development of PA.
Regulation of aldosterone
biosynthesis in the adrenal cortex

Aldosterone is synthesized in the ZG of the adrenal cortex

from the precursor cholesterol through a series of enzymatic steps

involving in particular the enzyme aldosterone synthase, encoded

by CYP11B2, which is specifically expressed in this zone.

Regulation of aldosterone biosynthesis is aimed at maintaining

its essential functions as one of the principal regulators of

extracellular fluid and electrolyte homeostasis as well as blood

pressure, due to its effects on sodium reabsorption and potassium

secretion in the kidney. Thus, aldosterone biosynthesis is regulated

by the renin-angiotensin system (RAS), potassium concentrations

and, to a lesser extent, by the adrenocorticotropic hormone

(ACTH) (1). Following dehydration or salt loss, activation of the

RAS regulates aldosterone biosynthesis via angiotensin II (AngII)

binding to its type 1 receptor (AT1R) in ZG cells. This activates the

inositol triphosphate pathway that stimulates Ca2+ release from

the endoplasmic reticulum; alternatively, AngII inhibits potassium

channels and the Na+,K+-ATPase, inducing cell membrane

depolarization, followed by opening of voltage-gated calcium

channels. Both pathways increase intracellular calcium

concentrations and activate calcium signaling, which regulates

different steps involved in aldosterone biosynthesis, including

expression of CYP11B2 via calcium/calmodulin-dependent

protein kinases (16). Similarly, increased extracellular potassium

concentrations induce cell membrane depolarization followed by

activation of voltage-gated calcium channels and activation of

calcium signaling (17).

ACTH binds to its receptor (melanocortin type 2 receptor,

MC2R) and activates adenylate cyclase (AC), with subsequent

activation of downstream signaling pathways, in particular the

cAMP-dependent protein kinase (PKA) pathway (Figure 1).

PKA activates StAR (steroidogenic acute regulatory protein)

either directly, or by increasing its expression via CREB

(cAMP response element binding protein) phosphorylation,

thus increasing the amount of cholesterol delivered to the

inner mitochondrial membrane. The conversion of cholesterol

to pregnenolone in the mitochondria is one of the principal

limiting steps in steroid biosynthesis (18) catalyzed by the P450

side chain cleavage enzyme (P450scc or CYP11A1) which is

located at the inner mitochondrial membrane. The P450scc
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catalyzes the 20a-hydroxylation, the 22-hydroxylation and the

cleavage of the bond between C-20 and the C-22 of cholesterol to

obtain pregnenolone (19). In addition, ACTH also increases the

expression of other enzymes of the steroidogenic cascade, such

as CYP11A1, increasing the amount of precursors for

aldosterone biosynthesis (20, 21).

In addition to these endocrine regulatory loops, autocrine and

paracrine regulation of aldosterone production has been
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described (Table 1). Different factors produced by steroidogenic

cells, such as renin and AngII (22–24), epoxyeicosatrienoic acid

(EET) or prostaglandin E2 (PGE2), may modulate aldosterone

secretion though an autocrine mechanism (25–27). Components

of the RAS have been detected in the adrenal, however, their role

in adrenal function is still unclear (36). It has been proposed that

the adrenal RAS could play a role in the control of aldosterone

production under potassium stimulation (23). Interestingly, in
TABLE 1 Endocrine, paracrine and autocrine regulators of aldosterone biosynthesis.

Secretagogue Localization Effect References

Local Renin Angiotensin System Steroidogenic cells Stimulation (22–24)

Epoxyeicosatrienoic acid (EET) Steroidogenic cells Stimulation (25)

Prostaglandin E2 (PGE2) Steroidogenic cells Stimulation (26, 27)

Epinephrine, Norepinephrine Chromaffin cells Stimulation (28)

Dopamine Chromaffin cells Inhibition (28)

Endothelin 1 (ET-1) Endothelial cells Stimulation (29)

Cytokine C1q/TNF related protein Adipocytes Stimulation (30)

Leptin Adipocytes Stimulation (31, 32)

Substance P Nerve fibers Stimulation (33)

Serotonin (5-HT) Immune cells Stimulation (34, 35)
fr
FIGURE 1

Interaction between vascular and steroidogenic cells in adrenal. ACTH, produced by the pituitary gland, controls the interactions between
steroidogenic cells and vessels. Binding of ACTH to MC2R leads to the activation of PKA signaling pathway, stimulating CYP11B2 expression and
aldosterone biosynthesis. ACTH stimulates also the expression of VEGF-A and specific growth factors by adrenal cells leading to vessel growth.
By binding to VEGFR2, VEGF-A stimulates on one hand endothelial cell growth and on the other hand expression of growth factors involved in
the maintenance and function of the adrenal cortex. Aldosterone biosynthesis is also induced by ET-1 through binding to the endothelin
receptor ETA and ETB, expressed in the ZG of the adrenal cortex.
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wild-type mice, adrenal production of renin is observed during

embryonic development while kidneys are immature (37), but

down-regulated after birth. However, in specific mouse models,

expression of renin is observed even in adult mice to compensate

deficiency in proteins involved in the control of aldosterone

biosynthesis. This is the case in Task3 potassium channel

knock-out mice (38) or aldosterone synthase deficient mice

(39), as well as in mast cell deficient mice under low salt diet

(40). Deletion of Task3 in mice leads to low-renin salt-sensitive

hypertension, with suppressed plasma renin and aldosterone

biosynthesis that is not-suppressible by increasing salt intake

(38). Furthermore, paracrine regulation of aldosterone

production is mediated by factors released by components of

the microenvironment both in normal human adrenals and

adrenals with APA, i.e. chromaffin cells, endothelial cells,

adipocytes, nerve fibers and immune cells (28, 33, 41, 42).

Interestingly, serotonin (5-HT) released by perivascular mast

cells is known to induce aldosterone production by activating

the 5-hydroxytryptamine receptor 4 (5-HT4) expressed in ZG

cells (34). Chromaffin cells and nerve fibers stimulate aldosterone

production by secreting neurotransmitters (NT), including

catecholamines and various neuropeptides (35). In particular, it

has been shown recently that the neuropeptide substance P

released by intraadrenal nerve fibres is able to regulate

aldosterone biosynthesis in the human adrenal cortex by

binding to neurokinin type 1 receptors (33). Cytokine C1q/TNF

related protein and the adipokine leptin are also able in vitro to

activate aldosterone production (30–32). ZG cells express leptin

receptors, thus leptin released by adrenal adipocytes may have a

direct effect on aldosterone production (43). Finally, endothelial

cells secrete endothelin 1 (ET-1) which by binding to endothelin

receptor type A and B (ET-A, ET-B) on adrenocortical cells can

stimulate aldosterone production (29, 44, 45).
Vascularization of the adrenal cortex

As an endocrine organ, the adrenal gland is highly

vascularized, allowing each endocrine cell to be in contact with

an endothelial cell (3). Part of the arterial flow to both adrenal

glands is provided by the ventral aorta. The remaining arterial

supply is provided bilaterally by the renal artery, completed by

the phrenic artery for the right adrenal and by a caudal branch

of the aorta for the left adrenal (3, 4). In the middle of the

medulla, the central vein is responsible for venous drainage. This

vein merges with the vena cava in the right adrenal or the renal

vein in the left adrenal. Three adrenal arteries are distinguished:

the superior adrenal artery; the middle adrenal artery and the

inferior adrenal artery.

From the capsule, two types of arteries emerge from the

arteriolar capsular plexus and enter the cortex and medulla:

1) The arteriae medullae, responsible for medulla arterial

supply after passing directly through the adrenal cortex; and
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2) The arteriae cortices, that arise directly from the capsule

plexus, form an anastomotic network in the ZG, then cross the

ZF as longitudinal capillary sinusoids between the columns of ZF

cells (3, 4). The vasculature of the adrenal gland is composed of

fenestrated sinusoids (46) that are highly permeable to fluids and

small molecules. This facilitates the supply in nutrients, oxygen

and cholesterol to the gland and the secretion of steroid

hormones into the blood flow.

The widely branched capillary bed of the adrenal cortex

strongly suggests an interaction between endothelial cells (ECs)

and adrenal epithelial cells (4, 47). Indeed, ACTH controls the

coordinated development of vessels and endocrine cells

(Figure 1). The interaction between adrenocortical cells and

endothelial cells enables a coordinated development of the

vascular network with the proliferation of adrenal cells and

organ growth. Endocrine glands are characterized by the high

expression of vascular endothelial growth factor (VEGF) even in

adults, regardless of the absence of active angiogenesis. In this

context, the role of VEGF-A, whose expression is controlled by

ACTH, is to maintain a high density of stable fenestrated

microvessels (48). The combined secretion of angiogenic

factors by endocrine cells and trophic factors by endothelial

cells makes it possible to maintain a “symbiosis” between these

cellular compartments. Regulation of adrenal vascularization

and growth must be coordinated to ensure that the cortical

mass has appropriate vascular support essential for both growth

of the adrenal cortex and its endocrine function (49).
Regulation of vascularization in the
adrenal cortex

Maintenance of the vascularization of the adrenal cortex and

the regulation of blood flow by vasoconstriction involves

different signaling pathways. AngII plays an important role in

the regulation of blood pressure through its direct action on

vasoconstriction (50). Interestingly, in the adrenal,

vasodilatation or vasoconstriction may occur depending on the

levels of AngII. Low concentration of AngII induces

vasodilatation, via AT2R activation, production and release of

nitric oxide (NO) by endothelial cells, whereas increased

concentration of AngII leads to vasoconstriction due to

activation of smooth muscle AT1R, resulting in decreased

adrenal blood flow (51). ACTH, on the other hand, plays a

role in the development and maintenance of this vascularization,

and regulates blood flow to the adrenal gland through the release

of vasorelaxant agents by adrenocortical cells such as metabolites

of arachidonic acid (EETs) (52), but also through the release of

histamine and serotonin by adrenal mast cells, factors

modulating the tonicity of adrenal arterioles (53), indirectly

influencing the production of steroids. Also, in response to

ACTH, adrenal cortex cells secrete Thrombospondin-2 (TSP2),

a large matricellular protein (54). It has been shown that TSP2
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may act as an inhibitor of angiogenesis. In vitro, TSP2 inhibits

the migration of capillary endothelial cells and, in vivo,

neovascularization (55). It has been also shown that NO

induces angiogenesis via the suppression of TSP2 expression,

confirming the anti-angiogenic role of TSP2 (56). In addition,

TSP2 may mediate ACTH-dependent centripetal adrenocortical

cell migration (57). However, in mice lacking TSP2 no

alterations in adrenal cortex morphology were observed (58, 59).

In the adrenal gland, ACTH also stimulates the release of

VEGF and stabilization of its mRNA by the HuR protein (60).

Conversely, the suppression of ACTH by dexamethasone in

mice induces a progressive decrease in the expression of VEGF

in the cells of the adrenal cortex and the regression of the

vascularization (3). Interestingly, studies have also shown the

role of mast cells in the development and maintenance of

vascularization and in vasoconstriction. Mast cells are

important cells in the immune system that originate from

hematopoietic stem cells, which secrete serotonin, chondroitin,

histamine and protease (61). Resident adrenal mast cells

modulate the blood flow by the release of histamine and

serotonin (5-hydroxytryptamine; 5-HT) (62). These cells are

also a source of angiogenic factors including VEGF, fibroblast

growth factor (FGF) 2, transforming growth factor b (TGF-b),
tumor necrosis factor-a (TNF-a) and interleukin 8 (IL8) (63).

They also induce the expression of VEGF by the release of

cytokines and growth factors (TNF-a, TGF-b, platelet-derived
growth factor (PDGF), FGF2 and IL-6) (62). Growth factors and

cytokines released by mast cells have the ability to modulate

endothelial cell function by increasing the expression of E-

selectin but also by stimulating other cells that facilitate

angiogenesis such as fibroblasts, epithelial cells and

macrophages (64). The activation of mast cells also allows an

increase in microvascular permeability, which has proangiogenic

effects following the release of histamine, prostaglandin D2,

Leukotriene B4, Leukotriene C4, VEGF and platelet-activating

factor (65). Finally, the adrenal gland is a richly innervated

organ, allowing innervation of chromaffin cells of the adrenal

medulla. This innervation is, therefore, under the control of the

sympathetic nervous system and allows the innervation of the

internal part of the adrenal cortex. The adrenal cortex is also

thought to be innervated by sympathetic fibers originating from

extra-adrenal neurons, which, together with the blood vessels

form the subcapsular plexus (66).

Adrenal cortex and medulla develop from two separate

embryological tissues: the medulla is derived from the neural

crest, while the cortex develops from the intermediate

mesoderm. During development, the human fetal adrenal (HFA)

cortex that develops from the adrenogonadal primordium, is

composed of two zones: the inner zone, referred to as the fetal

zone (FZ) with high expression of steroidogenic enzymes and a

smaller outer zone, called definitive zone (DZ) where expression of

steroidogenic enzymes is lower (67). The FZ of the adrenal cortex

is the principal site of VEGF synthesis and one of the most
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vascularized organs in the human fetus (68). This pattern of

VEGF localization is consistent with the fetal zone being the

most vascular compartment in the cortex and the primary site

of adrenal cortical growth. Thus, VEGFmay act as a local regulator

of fetal zone vascularization. The fetal zone vasculature comprises

an extensive sinusoidal plexus. In contrast, the vasculature of the

definitive zone is composed of distinct arterioles that arise from

terminal branches of the capsular arterial network and enter the

gland along connective tissue trabeculae. Therefore, as the cortex

grows, the bulk of neovascularization would be expected to occur

in the fetal zone (69). This vascular arrangement results in

centripetal blood flow from the capsule through the definitive

zone and into the sinusoidal network of the fetal zone to eventually

drain into the central vein. Angiogenesis is essential for the rapid

growth of the HFA. In addition, the HFA requires the

development of an extensive vascular system for the delivery of

steroid hormone precursors to the gland and the secretion of

hormone products into the peripheral circulation. Various factors

are involved in the regulation of angiogenesis. The evaluation of

the expression and regulation of angiogenic factors specific to

vascular endothelial cells, VEGF family members, angiopoietins

(Angs) 1 and 2 in HFA medium showed that these factors are

expressed in the HFA and that ACTH regulates them in isolated

HFA cortical cells, suggesting that these factors may be key local

regulators of HFA angiogenesis (70). Thus, they can mediate the

tropic action of ACTH, exerting parallel control over the vascular

system. In particular, ACTH induces an altered balance in which

Ang2 predominates over Ang1. In addition, the Ang2 protein is

mainly localized in the periphery of the HFA (i.e. the DZ and the

outer region of the FZ). Its expression has been restricted to

vascular remodeling sites, and Ang2 has been proposed to make

endothelial cells sensitive to angiogenic stimuli, such as VEGF-A

and FGF-2 (71). Furthermore, Steroidogenic factor-1 (SF-1) and

Ang2 were found to be coexpressed in early stages of HFA

development (72). It is demonstrated that despite the role of SF-

1 in adrenal development and function, it plays a crucial role also

in its angiogenesis by activating the Ang2 gene promoter in HFA

(73). By using chromatin immunoprecipitation (ChIP)

microarrays, it has been shown that vascular remodeling is a

mechanism regulated by SF-1 in adrenal development and

tumorigenesis (72).

Coordinated development of
steroidogenesis and angiogenesis in
the adrenal cortex by ACTH

The adrenal cortex is a highly plastic organ, in which

environmental stimuli are translated to hormonal responses

that can involve extreme tissue remodeling. Example of this is

the ZG expansion observed under a low salt diet, which

stimulates the renin-angiotensin system to promote

aldosterone biosynthesis (74). On the other hand, endogenous
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or exogenous glucocorticoid excess, such as treatment with

dexamethasone, leads to a major regression of the ZF and

suppression of glucocorticoid production (75). Both these

changes are reversible and may involve major modification of

adrenal vascularization.

ACTH is the main hormone regulating the function of the

zona fasciculata and zona reticularis and stimulating

glucocorticoid biosynthesis; it also stimulates, to a lesser extent,

aldosterone production by the ZG. In addition, ACTH when

binding to its receptor MC2R in the adrenals also induces the

adrenal production of factors affecting adrenal growth and its

blood flow. Indeed, ACTH controls angiogenesis and

vascularization in the adrenal gland by stimulating the intra-

adrenal production of VEGF and the vaso-relaxant EETs. On the

other hand, VEGF can act on adrenal cells by binding on VEGF

receptors present on adrenocortical cells and stimulates

aldosterone production. Vascularization and adrenal cortex

development must be coordinated to ensure that adrenocortical

cells have access to blood vessels as the adrenal growths.

The vasculature of the HFA is established by the eighth week

of gestation when the adrenal is supplied by arteries from the

descending aorta, and the capillary sinusoids within the gland

form a continuum with the systemic circulation. This

stimulation is mediated by specific angiogenic factors like

VEGF (76). Shifren et al. (69) showed that the HFA cortex is

highly vascularized, consistent with its function as an endocrine

organ, and that the HFA cortex expresses VEGF, which may

regulate cortical vascular development (76). ACTH increases the

steady state abundance of mRNA encoding VEGF. This may

suggest that VEGF expression and secretion by human fetal

adrenal cortical cells are up-regulated by ACTH and factors that

increase intracellular cAMP production. In the same study, the

authors also demonstrated that forskolin and ACTH are able to

stimulate VEGF expression and secretion by HFA adrenocortical

cells. This suggests that adenylate cyclase and cAMP pathways

are the main regulators of ACTH-dependent VEGF production.

Therefore, ACTH induces steroidogenic enzymes, cortisol and

aldosterone production and expression of different growth

factors via the same pathway, suggesting that ACTH may

coordinate vascularization, adrenocortical development and

steroidogenesis in the adrenal gland.
Cross-talk between aldosterone and
the vascular system

In addition to AngII, extracellular potassium and ACTH,

endothelin and VEGF have been shown to stimulate aldosterone

production in a paracrine manner (28, 77). In particular, VEGF

has been shown to stimulate aldosterone production indirectly

by maintaining endothelial integrity but also directly by

stimulating aldosterone synthase expression in ZG cells (77).
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The action of VEGF is either synergistic or independent of Ang

II. Interestingly, in contrast to Ang II, VEGF does not increase

the expression of StAR. The stimulatory role of VEGF is

restricted to enhance aldosterone production, but does not

modify cortisol biosynthesis in H295R adrenocortical cells

(77). In addition, the inhibition of VEGF by overexpression of

soluble fms-like tyrosine kinase-1 (sFlt-1) in rats is associated

with reduced adrenal cortex vascularization (reduction of CD31

endothelial cell marker) that is accompanied by a reduction of

aldosterone production (77). These results suggest that VEGF

may have a role in aldosterone production independently of the

RAS and may play a role in the autonomous overproduction of

aldosterone in PA.

It has also been demonstrated that endothelial cell-

conditioned medium stimulates aldosterone production in

human adrenocortical H295R cells (78, 79). The interaction

between endothelial and steroidogenic cells was demonstrated at

the molecular level. In vitro studies in cultured human

adrenocortical cells revealed that cytokines like IL-6 and ET-1,

as well as NO produced by endothelial cells, are the main actors

in this interaction (33, 42, 72). Adrenocortical cells express big

ET-1, the precursor of endothelin, and its specific proteolytic

enzyme endothelin converting enzyme, which generates the 21

amino acid peptide ET-1 (45, 80). Interestingly, ET-1 stimulates

aldosterone biosynthesis in human and in rats (81). This action

is mediated by the two endothelin receptor subtypes ETA and

ETB expressed in the ZG of the adrenal cortex (33, 42).

On the other hand, aldosterone can act not only on renal

epithelial cells to regulate blood pressure but also on vascular

endothelial and smooth muscle cells. Indeed, activation of its

receptor, the mineralocorticoid receptor (MR), has been shown

to induce endothelial dysfunction, inflammation, remodeling,

stiffening and atherosclerosis (82–88). In addition, it has been

demonstrated in mice that aldosterone increases vessel density in

response to ischemia, a phenomenon mediated by MR

activation, AngII signaling and VEGF (89). Aldosterone also

increases placental growth factor (PGF, a member of the VEGF

family) expression in human atherosclerotic vessels, leading to

inflammation and proliferation of vascular cells (90).

Aldosterone may also up-regulates VEGF-A production in

human neutrophils by activating PI3 kinases, ERK1/2, and to a

lesser extent p38 MAPK pathways, suggesting that aldosterone

has an active role on neovascularization (91).
Interplay between vascular and
hormonal components in
primary aldosteronism

Adrenals with APA show increased nodulation and reduced

vascularization in the peritumoral adrenal cortex, as well as ZG

hyperplasia (92). In addition, different studies indicate that the
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structure and function of the adrenal cortex changes with age

and it has been suggested that this may be a consequence of

vascular dysfunction (93). Ageing is associated with an increase

in adrenal nodulation in the general population, which may

represent compensatory growth in response to ischemic changes

due to localized atherosclerosis or hypertension (15). In

addition, the adrenal cortex contains special structures, called

aldosterone producing cell clusters (APCCs), in which somatic

mutations have been identified in genes responsible for APA in

normal subjects (94) and in adrenals with APA (12). It has been

postulated that APCCs represent structures of autonomous

aldosterone production. Interestingly, the number of APCCs

increases with age (95), in parallel with a dysregulation of

aldosterone production (93).

Mutations in different genes increase aldosterone production

in PA, but additional mechanisms may contribute to increased cell

proliferation and APA development. We have recently shown that

retinoic acid receptor a (RARa) contributes to the maintenance of

normal adrenal cortex structure and cell proliferation in mice, by

modulating non-canonical Wnt signaling, extracellular matrix

composition and angiogenesis. Dysregulation of this interaction

may contribute to abnormal cell proliferation, creating a

propitious environment for the emergence of specific driver

mutations in PA (96). Indeed, RARa was identified as a central

molecular network involved in adrenal nodulation in a

transcriptome study comparing 48 APA and 11 control

adrenals. Inactivation of Rara in mice induced a major

structural disorganization of the adrenal cortex in both sexes,

with increased adrenal cortex size in female mice and increased

cell proliferation in males. These changes were associated with

abnormalities of vessel architecture and extracellular matrix. At

the molecular level, Rara inactivation led to decreased expression

of components of the non-canonical Wnt signalling pathway, with

decreased expression of Wnt4, Tcf3, Lef1, without affecting the

canonical Wnt pathway nor PKA signaling. Rara inactivation also

reduced the expression of VEGF-A, while other angiogenesis

factors such as VEGF-C and Hif1a were not affected. In

contrast, the expression of components of the extracellular

matrix like fibronectin 1, microfibrillar associated protein 2 and

5 (Mfap2 and Mfap5) and collagen 3a1 were increased.

Altogether, these data highlight the important role of the

interplay between the vascular and hormonal components in the

adrenal cortex and suggest that alterations affecting this interplay,

such as modifications of the extracellular matrix composition, may

contribute to the disorganization of the adrenal cortex by

modulating adrenocortical and vascular cell migration (96).

As observed in normal adrenals, it is expected that

endothelin secreted by adrenal vessels and its signaling

pathway in steroidogenic cells can stimulate aldosterone

production and may have a role in its autonomous

overproduction and by consequence contribute to the

development of PA (80). Rossi et al. showed that selective

endothelin receptors ETA and ETB antagonists lowered blood
Frontiers in Endocrinology 07
pressure in patients with PA and high to normal renin

hypertension. Interestingly, in PA patients, these selective

antagonists induced also a decrease in aldosterone biosynthesis

(97, 98). However, in peripheral blood samples, ET-1 levels were

similar in control subjects and in patients with APA; similar

expression of prepro-ET-1, the endothelin-converting enzyme

and the endothelin receptors ETA and ETB was found in APA

and in normal adrenal gland (99). Moreover, ET-1 was

demonstrated to have the same stimulatory effect as AngII on

aldosterone production in APA (97). However, ET-1 receptors

were found to be partially downregulated in APA in another

study (45). These observations suggest that the endothelin

signaling pathway in adrenocortical cells may play a role on

aldosterone biosynthesis in APA and normal adrenals, but that

this system is not crucial in the pathogenesis of this disease.

Recently, we have investigated the relationship between

different signaling pathways and components of the

microenvironment in adrenals with APA. We have applied

multiplex immunofluorescence and multispectral image analysis

to investigate the colocalization of proteins involved in

aldosterone (CYP11B2) and cortisol (CYP11B1/CYP17A1)

biosynthesis, markers of Wnt/b-catenin (b-catenin) and ACTH/

cAMP/PKA (MC2R, pCREB) signaling, as well as paracrine

pathways of the tumor microenvironment (Tryptase, S100) and

vascularization (CD34) (100). Our results show a dense

vascularization in APA, which is independent of the somatic

mutation status of the tumor. Although the vascular surface was

similar in areas expressing aldosterone synthase and areas not

expressing aldosterone synthase in APA, VEGF-A expression

analyzed by RT-qPCR in three APA was higher in areas

expressing aldosterone synthase. This difference may be

explained by the presence of perivascular mast cells, which was

higher in areas positive for aldosterone synthase expression, which

are involved in the maintenance of angiogenesis; alternatively,

activation of the ACTH/cAMP pathway via MC2R may be

involved, as MC2R was highly expressed in these same regions.

Vascularization and angiogenesis were also studied in other

types of benign adrenocortical adenomas as well as in malignant

adrenocortical tumors (ACC). Whether it was a benign or a

malignant tumor, carriers of adrenocortical tumors showed

higher circulating VEGF levels in comparison with healthy

subjects (101, 102). Interestingly, VEGF expression was shown

to be very high in patients with adrenocortical carcinomas and

higher in APA in comparison to non-functional adenomas

(103). Despite the high expression of VEGF, APA did not

present higher vascular density than normal adrenals, but

remarkably APA presented higher vascular density than non-

functional adenomas, cortisol producing adenomas and adrenal

cortical carcinomas (103). The same study also demonstrated

that in APA, vascular density is positively correlated to

aldosterone levels and negatively correlated to plasma renin

activity. These results suggest that angiogenesis and the

functional status of adrenocortical tumors are closely associated.
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Conclusions

In conclusion, the coordinated interaction between

steroidogenic and endothelial cells plays a crucial role in

adrenal development and function and allows adrenal cortex

remodeling in response to different physiological stimuli, such as

modifications of sodium diet or stress response. Key players in

this interaction appear to be ACTH and VEGF, which cross-talk

to regulate hormone biosynthesis and vessel growth (Figure 1).

Alterations in this interaction or factors affecting adrenal cortex

vascularization may modify adrenocortical cell growth and

promote cell proliferation and nodule formation, creating a

propitious environment for the occurrence of somatic

mutations in genes involved in the development of PA.

Further studies will allow deciphering how this interplay may

be altered in physiological or pathological conditions.
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