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Endocrine tumors derive from endocrine cells with high heterogeneity in function,

structure and embryology, and are characteristic of a marked diversity and tissue

heterogeneity. There are still challenges in analyzing the molecular alternations

within the heterogeneous microenvironment for endocrine tumors. Recently,

several proteomic, lipidomic and metabolomic platforms have been applied to

the analysis of endocrine tumors to explore the cellular and molecular

mechanisms of tumor genesis, progression and metastasis. In this review, we

provide a comprehensive overviewof spatially resolved proteomics, lipidomics and

metabolomics guided by mass spectrometry imaging and spatially resolved

microproteomics directed by microextraction and tandem mass spectrometry.

In this regard, we will discuss different mass spectrometry imaging techniques,

including secondary ion mass spectrometry, matrix-assisted laser desorption/

ionization and desorption electrospray ionization. Additionally, we will highlight

microextraction approaches such as laser capture microdissection and liquid

microjunction extraction. With these methods, proteins can be extracted

precisely from specific regions of the endocrine tumor. Finally, we compare

applications of proteomic, lipidomic and metabolomic platforms in the field of

endocrine tumors and outline their potentials in elucidating cellular andmolecular

processes involved in endocrine tumors.

KEYWORDS

endocrine tumors, liquid chromatography-mass spectrometry, mass spectrometry
imaging, microextraction, multi-omics, spatially resolved microproteomics
1 Introduction

The endocrine system comprises thyroid gland, pituitary gland, parathyroid glands,

adrenal glands, pancreas, gonads, pineal gland and thymus. The endocrine glands secrete

hormones, which directly enter the bloodstream and come into effect until they reach

their target organs. These hormones trigger complicated biological processes, including

energy homeostasis, metabolism, reproduction, growth and motions (1).
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Endocrine tumors derive from endocrine cells with high

heterogeneity in function, structure and embryology, and are

characteristic of a marked diversity and tissue heterogeneity (2).

They occur in any of the major endocrine organs, including

thyroid gland, pituitary gland, parathyroid glands, adrenal

glands and the endocrine pancreas (3–6). According to the

latest WHO classification, endocrine tumors include pituitary

tumors, thyroid neoplasms, parathyroid tumors, paragangliomas

and pheochromocytomas, neuroendocrine neoplasms, adrenal

cortical tumors and familial endocrine tumor syndromes (7–13).

Though most endocrine tumors are benign or low-grade cancers

that grow and spread slowly, a few are malignant. For example,

thyroid carcinoma is the most common endocrine malignancy

(14–17). Based on the GLOBOCAN estimation on cancer

incidence and mortality, provided by the International Agency

for Research on Cancer, the global incidence of thyroid

carcinoma ranked 7th in both sexes and 4th for women in

2020. The mortality of thyroid carcinoma is relatively lower

compared to other cancers (0.5 per 100,000 in women and 0.3

per 100,000 in men) (18). The diagnosis of endocrine tumors can

be performed by blood/urine tests, ultrasound, computed

tomography, magnetic resonance imaging, biopsy and so on

(19–22). Fine needle aspiration (FNA) biopsy is frequently

recommended to diagnose thyroid neoplasms and parathyroid

tumors, where a needle is inserted into the nodules or lumps of

patients to collect cells. FNA is a simple diagnostic modality. But

it is limited in discriminating ambiguous carcinoma subtypes

and additional surgical procedures are required to obtain final

diagnosis (23, 24).

The occurrence of endocrine tumors often brings about

hyper- or hypo- hormone secretion and potentially causes a

succession of disorders, such as hypercalcemia, hypertension

and hyperthyroidism (25–28). The tumor tissues comprise of

various cell types (such as neoplastic cells, endothelial cells,

immune cells, etc.), subpopulations and substructures, which in

turn lead to the formation of heterogeneous tissue

microenvironment (29–31). Treatments should not only be

directed at tumor cells but also should take molecular and

cellular interactions within the tumor microenvironment into

consideration. High heterogeneity of endocrine tumors is one

chal lenge for the analyses at molecular leve l . To

comprehensively clarify the molecule alternations, both

chemical information and spatial distribution of molecules

within the tumor microenvironment need to be taken into

account. Spatial omics offers increasing insights into

pathobiological processes of tumor microenvironment, which

allows to understand the location of a cell within tissue, indicates

where proteins, lipids or metabolites are expressed in a spatial

context and facilitates the identification of unknown cellular

regulation processes (32). Mass spectrometry (MS) has shown its

advantages in analyzing biomolecules (proteins, peptides, lipids,

metabolites, etc.) of complex biological samples at the spatially

resolved level (33–35).
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Mass spectrometry is an incredibly sensitive analytical

technique (down to fmol) that measures the mass-to-charge

ratio (m/z) of molecules and atoms to determine their

molecular weight, enabling qualitative and quantitative analysis

for the samples (36, 37). The ion source, mass analyzer and

detector are essential components for a mass spectrometer. The

sample is first ionized by the ion source to generate a mixture of

ions. In the following, the mass analyzer takes the ions and

separates them based on m/z value. Finally, the ions reach the

detector and yield signals. Different ionization techniques include

electron ionization, chemical ionization, secondary ion mass

spectrometry (SIMS), desorption electrospray ionization (DESI),

field ionization, fast atom bombardment, laser desorption/

ionization (LDI), electrospray ionization (ESI), matrix-assisted

laser desorption/ionization (MALDI) and so on (38). There are

also multiple types of mass analyzers, such as time-of-flight

(TOF), magnetic sector, linear quadrupole, linear quadrupole

ion trap, quadrupole ion trap, Fourier transform-ion cyclotron

resonance (FT-ICR) and Orbitrap (39). TOF mass analyzers

separate ions according to their m/z values based on the length

of time it takes them to travel through a flight tube. One advantage

of TOF is that it can possess a wide range of m/z values. FT-ICR

mass analyzers separate ions based on a magnetic field while

Orbitrap mass analyzers use an electrostatic field. Both FT-ICR

and Orbitrap mass analyzers have high mass resolution and mass

accuracy (40, 41). Tandem mass spectrometer (MS/MS) is

involved with more than one mass analyzer in a single

instrument. In MS/MS, the precursor ions (generated by DESI,

ESI, MALDI, etc.) with a specific m/z value are selected and

fragmented in a collision cell or chamber to generate product ions

for detection (42). Fragmentation techniques include collision

induced dissociation, high-energy collision dissociation, electron-

capture dissociation, electron transfer dissociation, ultraviolet

photodissociation and so on (43–47). Mass spectrometry

imaging (MSI) is an imaging technique for in situ analysis of

tissues and cells by determining the relative abundance and

distribution of biomolecules (e.g., peptides, proteins, lipids, and

metabolites) based on MS (48). For MSI, the sample is ionized

pixel by pixel and a mass spectrum is generated for each pixel. The

mass spectra are collected at discrete x, y coordinates. For a given

m/z value, a heat map image can be created by plotting its

intensities in all pixels across the scanned area (49–51). MSI can

detect and image thousands of biomolecules in a single run,

serving as a promising technique in biological and clinical

analysis (52–55). Liquid chromatography-mass spectrometry

(LC-MS) and liquid chromatography with tandem mass

spectrometry (LC-MS/MS) involve the chromatographic

separation of analytes followed by the detection of their m/z

value. With the help of high-performance liquid chromatography

or ultra-performance liquid chromatography, the complexity of

analytes extracted from the biological samples is effectively

reduced and more analytes can be detected by MS (56). To

provide a broad coverage of molecules with different chemical
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and physical properties, different chromatographic platforms are

developed, including reversed-phase chromatography,

hydrophobic-interaction chromatography and ion exchange

chromatography (57–59). LC-MS and LC-MS/MS are widely

used in the biological and clinical research, including the field of

endocrine tumors (60–65). Spatially resolved LC-MS can be

achieved by coupling with laser microdissection (LMD) or

liquid microjunction (LMJ), which are two microextraction

methods used to extract analytes within the target area of the

heterogeneous tumors (66, 67). The combination of

microextraction and LC-MS allows the measurement of m/z

value and spatial location of analytes in the samples.

With the development of MS techniques, chromatographic

separation methods and microextraction methods, great

progress has been made in clarifying the cellular and

molecular mechanisms of endocrine tumorigenesis ,

progression and metagenesis (68–70). Many biomolecules,

such as proteins, lipids and metabolites that present

significantly different expression between the tumor tissue and

the normal tissue have the potential to act as diagnostic and

prognostic biomarkers and therapeutic targets for endocrine

tumors (71–73). For example, Coelho et al. reviewed the

capability of MS in the diagnosis of thyroid carcinoma from

metabolomics. Rossi et al. summarized the potential of steroid

profiling by MS in the management of adrenocortical carcinoma

(ACC), and Li et al. reviewed the use of MS in proteome-

centered multi-omics of human pituitary adenomas (74–76). In

this review, we will focus on the application of MS in the field of

spatial multi-omics (proteomics, lipidomics and metabolomics)

of endocrine tumors, highlighting MSI, LC-MS and

microextraction methods. In Supplementary Table 1, spatially

resolved proteomics, lipidomics, and metabolomics on

endocrine tumors are summarized.
2 Mass spectrometry imaging in
proteomics, lipidomics and
metabolomics of endocrine tumors

2.1 Mass spectrometry imaging

Mass spectrometry imaging is capable of mapping

thousands of biomolecules in situ without labelling. Different

ion sources and instrument configurations provide different

MSI approaches. Secondary ion mass spectrometry-mass

spectrometry imaging (SIMS-MSI), matrix-assisted laser

desorption/ionization-mass spectrometry imaging (MALDI-

MSI) and desorpt ion electrospray ionizat ion-mass

spectrometry imaging (DESI-MSI) are the most widely used

platforms. SIMS was the first technique employed for tissue

imaging (77, 78). The spot size of primary ion beam can be

focused to ~50 nm. SIMS is characteristic of high spatial
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resolution (79–81). In 1997, Caprioli et al. introduced

MALDI-MS for tissue imaging (82). With the broad

molecule detection coverage, MALDI-MSI is popularly used

in the imaging of proteins, lipids and metabolites within

biological tissues (83–85). DESI was presented in 2004 and

the potential for spatial analysis of plant or animal tissues was

demonstrated (86). In 2005, Wiseman et al. reported the first

application of DESI-MSI in imaging mouse pancreas, rat brain

and metastatic human liver adenocarcinoma tissues (87).

These three MSI techniques give full play to their individual

advantages in biological and clinical research involved with

endocrine tumors (88–93). Their respective advantages and

disadvantages are listed in Table 1.

2.1.1 Secondary ion mass spectrometry-mass
spectrometry imaging

SIMS-MSI can reach micron and submicron spatial

resolution, capable of imaging single cells or subcellular

organelles (94–96). The highest spatial resolution of SIMS-

MSI, down to tens of nanometers, outperforms the other two

MSI techniques (97–99). The principle of SIMS-MSI is shown in

Figure 1A. In SIMS-MSI, a high-energy primary ion beam strikes

the sample surface, causing the interaction of sputtering, ion

reflection and recoil sputtering between the ions and the surface.

The interaction processes result in the emission of secondary

ions (100).

There are various types of commercially available primary

ion beams, including monatomic (Au+, Cs+ and O-) and

polyatomic ion beams (C+
60), liquid metal ion guns (LMIGs)

(Bi+3 and Au+3 ) and gas cluster ion beams (GCIBs) (Ar+4000,

(CO2(CO2)
+
2000 and (H2O)

+
2000) (101–106). The sensitivity and

spatial resolution of SIMS-MSI are influenced by the type, the

energy and the focusing spot size of the primary ion beams. The

monatomic ion beams limit SIMS-MSI to the detection of

elements or very small (e.g., diatomic) fragments of molecules

(107). LMIGs produce increased sensitivity while still being

readily focused to tens to hundreds of nanometers. The use of

polyatomic ion beams and GCIBs further improves the

sensitivity to higher mass species (102). Lipids and metabolites

have been spatially resolved in different cell types of breast

cancer (105). A primary ion beam with high energy tends to

have high secondary ion yields. However, highly energetic

primary ion beams induce strong fragmentation of the

analytes and generate very small ion fragments (97). The

spatial resolution of SIMS-MSI can reach a few hundred

nanometers when the spot size of primary ion beam is focused

≤ 50 nm (108). For GCIBs, the typical optimal spot size is around

1-5 mm and the increased sensitivity is obtained at a loss of

spatial resolution (107). For SIMS-MSI, it is essential to select a

primary ion beam with appropriate energy (typically between 25

and 70 keV kinetic energy) and focusing spot size to obtain ideal

sensitivity and spatial resolution. The selection depends on the

types of target tissues and target analytes (109).
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2.1.2 Matrix-assisted laser desorption/
ionization-mass spectrometry imaging

MALDI-MSI can measure molecules with a wide mass

coverage, ranging from 100 Da to beyond 100kDa; and it can

measure molecules with different polarities, ranging polar lipids

to ionic metabolites (110–112). The majority of MSI studies are

performed by MALDI-MSI (113). In MALDI-MSI, the

desorption/ionization of the analytes is performed with the

assistance of matrices, as described in Figure 1B (114). The

matrix is applied to the sample surface and form co-crystals with

the analytes. The co-crystals can absorb energy upon laser

irradiation. The energy uptake then causes evaporation and

ionization of the analyte (82, 115).

The matrices do make a great difference to the ionization

process and the selection mainly depends on chemical properties

of the molecules of interest (116). The matrices are generally

crystalline solids of low vapor pressure. Including 2,5-

dihydroxybenzoic ac id (2 ,5-DHB), a lpha-cyano-4-

hydroxycinnamic acid (CHCA), sinapinic acid (SA), 9-

aminoacridine (9-AA) and 1,5-diaminonaphthalene, a diversity

of common organic matrices that fit the ionization of different

classes of molecular species are listed in Table 2 (129, 132–138).

SA is frequently used to assist the ionization of intact proteins

(139). 2,5-DHB can be used to image lipids, peptides, and amino

acids in the positive ion mode (140–142). 9-AA is preferred to be

performed under negative ion mode for the ionization of polar

metabolites (143). The application of matrices is required to

assist the ionization and subsequent detection of analytes.

However, matrices sometimes bring about ion suppression

effects and induce sensitivity loss for analytes (144). CHCA is

commonly used as a MALDI matrix in the ionization of

peptides. When the peptide sample is quite dilute and/or the

sample contains salts, the CHCA matrix can form clusters with

m/z value above 500 (145, 146). These intense CHCA clusters

may interfere with peptide signals and complicate the spectra.

To reduce the ion suppression effects of CHCA matrix, Ucal

et al. used ammonium phosphate monobasic as the addictive of

CHCA in the analysis of thyroid carcinoma tissue and found that

the addition of ammonium phosphate monobasic could decrease

CHCA cluster formation and improve the peptide signals (147).
Frontiers in Endocrinology 04
Schlosser et al. utilized different matrix components, additives

and a cationizing agent to analyze the effects of matrix

composition on signal suppression and found that the mixture

of 2,5-DHB and CHCA yielded highly improved ion signals in

peptide analysis, compared with using CHCA alone (148). Apart

from the matrix clusters, matrices (such as CHCA and 2,5-DHB)

could also form adducts with lipids, amines and amino acids.

The metabolite-matrix adducts decrease the intensities of the

metabolites and further complicate the MS spectra (149).

2.1.3 Desorption electrospray ionization-mass
spectrometry imaging

DESI-MSI is carried out by applying pneumatically-assisted

electrospray to produce charged solvent droplets directly at the

sample surface (150, 151). The charged droplets impact the

surface and produce gaseous ions, which are mainly multiply

charged as in the case with ESI (Figure 1C) (86, 152–154). DESI-

MSI is performed under ambient conditions and requires no

matrix application or other advanced sample preparation,

allowing biological tissues to be analyzed in their native state

(155, 156). DESI-MSI is one of the MSI methods that have the

least destructive effect on the biological tissues. The same tissue

section is able to be analyzed repeatedly (77, 157, 158). The

spatial resolution of DESI-MSI is typically 150-200 mm and the

maximum is better than 10 mm (159).

Before a DESI-MSI analysis, it is essential to optimize the

following parameters, including the spray solvent composition,

the velocity of the spray gas, the spray-to-surface and sampling

orifice-to-surface distance, sprayer-to-surface angle and surface-

to-desolvation capillary angle (160–165). Failure of optimization

of DESI-MSI parameters will lead to poor sensitivity and/or low

spatial resolution.
2.2 Sample preparation for mass
spectrometry imaging

Sample preparation protocols are of great importance for the

MSI analysis, mainly encompassing sample collection,

processing and post-sectioning treatments (166, 167).
TABLE 1 Advantages and disadvantages of SIMS-MSI, MALDI-MSI and DESI-MSI.

MSI methods SIMS-MSI MALDI-MSI DESI-MSI

Ionization method SIMS MALDI DESI

Ionization condition Vacuum Vacuum/Ambient Ambient

Spatial resolution Down to 50-100 nm Down to ~ 1 mm Down to ~ 10 mm

Advantages High spatial resolution High applicability to biomolecules
Fast acquisition with up to 40 pixel per second

Minimum sample preparation

Disadvantages Abundant fragmentation
Less reproducible
Expensive

Require matrix application Low spatial resolution
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Improper sample collection and storage may induce degradation

of the analytes or introduce interferences, such as blood and

chemical reagents (168–170). Non-standard operations may

cause variations in sensitivity, spatial resolution and mass

accuracy among technical replicates, leading to poor

reproducibility (171). And the obtained MSI results cannot

reflect the real nature of tissues under study (172). Therefore,

it is essential to standardize each sample preparation protocol

before MS data acquisition (173).
Frontiers in Endocrinology 05
2.2.1 Fresh frozen tissues, formalin fixed
paraffin embedded tissue blocks and
cytologic samples

As distinguished from LC-MS, MSI maps biomolecules

directly from the tissue surface in situ. Therefore, it is

important to preserve the original nature and integrity of the

tissue during the process of sample preparation and data

acquisition (51, 116). Most samples of endocrine tumors used

in MSI analysis are surgically resected suspicious nodules or
A

B

C

FIGURE 1

The ionization principles for SIMS-MSI, MALDI-MSI and DESI-MSI. A mass spectrometer is at least composed of ion source, mass analyzer and
detector. Different ion sources determine different ionization process. (A) Ionization process of SIMS-MSI. A primary ion beam possessing
energy strikes the sample surface, causing the interaction between the ions and the surface. The interaction processes bring about the emission
of atoms and molecules from the sample surface. (B) Ionization process of MALDI-MSI. Before the analysis, the matrix is applied to the sample
surface. The matrix forms co-crystals with the analytes. The co-crystals can absorb the laser’s energy upon laser irradiation. The energy uptake
then causes evaporation and desorption/ionization of the analytes. (C) Ionization process of DESI-MSI. It is carried out by applying
pneumatically-assisted electrospray, which produces charged solvent droplets directly at the sample surface. The charged droplets impact the
surface and produce gaseous ions.
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lumps, e.g., fresh frozen tissues and formalin fixed paraffin

embedded (FFPE) blocks of tissues. In some cases, cytological

samples are obtained by FNA (117, 174, 175). For fresh frozen

tissues or cytological samples, it is necessary to reduce the time

spent in harvesting the sample and the acquired fresh sample

needs to be snap-frozen in liquid nitrogen right away (176–178).

At last, samples can be preserved below -80° until the analysis.

Heat-stabilization and in situ focused microwave irradiation are

two alternatives to snap freezing the freshly harvested tissues

(179). Heat-stabilization inactivates the enzymes by quickly

heating the tissues to 95°C while in situ focused microwave

irradiation heats the tissues with focused microwaves to

deactivate enzymes within 2 seconds (180, 181). The processed

tissues can be preserved in the freezer extended periods.

For FFPE tissue blocks, the fixation can preserve the cellular

architecture and the composition of cells in the tissue; however,

it also results in cross-linking between nucleic acids, between

proteins and between nucleic acids and proteins (182). The

cross-linking between proteins inhibits the proteomic analysis

by MS seriously (183). This challenge can be overcome by

specific sample processing and post-sectioning treatments.

2.2.2 Sample processing
Figure 2A shows sample preparation protocols of fresh

frozen tissues in MSI. The first step is to slice the tissue into

thin sections by cryo-microtome (typically 3-20 mm) (184–186).

The tissue sections are then mounted onto the glass slides, metal

targets or indium-tin oxide (ITO) coated glass slides. Before

sectioning fresh frozen tissues, various embedding media can be

used to preserve the morphology of the tissues and assist with

the tissue section, including optimal cutting temperature

medium (OCT), carboxymethyl cellulose, gelatin, agarose or
Frontiers in Endocrinology 06
ice (121, 187–191). However, OCT could suppress analyte

signals and is not recommended in MSI (189, 192). A

universal embedding media composed of hydroxypropyl

methylcel lulose and polyvinylpyrrolidone has been

demonstrated to be compatible with SIMS-MSI, MALDI-MSI

and DESI-MSI (193). The section temperature significantly

varies according to tissue types (172, 194). Tissues containing

water are sectioned at higher temperature whereas tissue

samples that contain more fat can be sectioned at a lower

temperature (195). For FFPE tissue blocks, the tissue sections

can be analyzed by MSI after a series of treatments including

deparaffinization, rehydration and antigen retrieval, as presented

in Figure 2A. In addition, the cytologic samples collected by

FNA are smeared onto ITO slides or non-conductive slides for

the following MSI analysis (Figure 2B) (118, 174).

Histology staining is frequently cooperated with MSI to

connect the histology features of the tissue with the molecular

profiles (196). It has been demonstrated the distribution of

biomolecules obtained by MSI correlates well with the

histology structure of the tissue (197–199).

2.2.3 Post-sectioning treatments
Post-sectioning treatments aim to enhance the sensitivity of

analytes of interest. Biological tissues contain numerous

molecular species, whose abundance varies widely. If the

abundance of targeted analytes is relatively low, it is necessary

to tailor post-sectioning treatments (200).

Washing is a common post-sectioning treatment, aiming to

remove those interfering molecules and increase the signal

intensity of target analytes within the samples (201). The

washing strategy with ethanol solutions and water has been

commonly applied in the proteomic analysis to remove
TABLE 2 Common organic matrixes applied in MALDI-MSI.

Common organic matrixes in MALDI-MSI Target molecules

SA (117, 118) Proteins

2,5-dihydroxyacetophenone (119) Proteins

CHCA (112, 120) Peptides and lipids

2,5-DHB (121–123) Lipids, peptides and drugs

9-AA (124) Lipids and metabolites

1,5-diaminonaphthalene (125, 126) Lipids and metabolites

1,8-bis (dimethylamino) naphthalene (127) Lipids and metabolites

Graphene oxide (128) Lipids

Hydralazine (129) Proteins, lipids and metabolites

N‐ (1‐naphthyl) ethylenediamine dihydrochloride (130) Lipids and metabolites

Norharman (131) Lipids

Quercetin (132) Lipids
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interfering salts or lipids (202, 203). The washing solution with

ammonium formate or ammonium acetate was proved to

enhance detection sensitivity of lipid species (204).

For bottom-up proteomics, on-tissue digestion is performed,

involving proteolytic digestion of proteins before analysis by MS

(205–207). It is especially advantageous for FFPE samples. On-

tissue digestion applies trypsin solution to the sample surface after

antigen retrieval. The trypsin facilitates the digestion of cross-

linking proteins (136, 208). Abdelmoula et al. studied FFPE tissue
Frontiers in Endocrinology 07
blocks of oncocytic follicular thyroid cancer by MALDI-MSI

(209). Before the matrix application, the tissue section was

proceeded with deparaffinization, dehydration, antigen retrieval

and trypsin digestion. The MSI results showed that hundreds of

proteolytic peptide ions were detected and that many of them

exhibited specific distributions in association with the histological

structure of the tissues. FFPE tissues treated with on-tissue

digestion is proved to be compatible with the following

proteomic analysis (210).
A

B

FIGURE 2

Schemes of sample preparation for MSI and microproteomics. (A) Preparation protocols of fresh frozen tissues and FFPE tissue blocks for MSI
and LMD or LMJ guided microproteomics. The fresh frozen tissue is sliced into sections by cryo-microtome and the tissue sections are placed
on ITO slides or non-conductive slides. Then the tissue sections can be processed with MSI (For MALDI-MSI, matrix applying before data
acquisition is necessary). The tissue section can also be processed with LMD or LMJ. For LMD, the region of interest within the tissue section is
cut off and extracted, followed by LC-MS. For LMJ, the extracts obtained from the target region within the tissue surface can be directly
analyzed by LC-MS. After data acquisition, data analysis is performed. For the FFPE tissue block, it is sliced into tissue sections by microtome.
These FFPE tissue sections can be analyzed by MSI or LC-MS until they are treated with deparaffinization, rehydration and antigen retrieval. (B)
Preparation protocols of cytologic samples for MSI. The cytologic samples are collected by FNA. The cytologic samples are smeared onto the
ITO slides or non-conductive slides for the analysis of MSI.
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Chemical derivation is another post-sectioning strategy to

increase the detection sensitivity of specific lipids and metabolites,

such as steroids, catecholamine, and phospholipids (PLs) (211–

215). Ibrahim et al. performed an on-tissue chemical derivation of

dopamine, epinephrine and norepinephrine with 4- (N-methyl)

pyridinium boronic acid in SIMS-MSI and LDI-MSI of porcine

adrenal gland tissue (216). They demonstrated that the derivation

significantly improved the detection sensitivity of catecholamines

in tissue sections for both MSI techniques. Wang et al. achieved

simultaneous imaging of free fatty acids (FFAs) and phospholipids

with a high sensitivity in thyroid cancer tissue by chemical

derivation of FFAs with N,N-dimethylpiperazine iodide (127).

2.2.4 Data processing and analysis
The raw data of MSI is made of individual spectra with

spatial and molecular information, so it is generally complex and

high dimensional. The basic steps of MSI data processing consist

of denoising, baseline subtraction, normalization, peak picking

and peak alignment (217, 218). Due to variations in instruments,

sample heterogeneity and sample preparation, noises and

fluctuations in mass exist in the MSI raw data. Data

processing helps reduce the technical and analytical variations,

providing a more reliable elaboration of the MSI dataset (219).

After data processing, the MSI dataset can be submitted to the

statistical analysis. Huang et al. developed a data processing

pipeline for spatially resolved metabolomics analysis (219). In

the pipeline, 7 data pre-treatment methods (centering,

normalization, automatic scaling, UV scaling, Pareto scaling,

log transformation and square root transformation) were

investigated before a partial least squares discriminant analysis.

And the following score test and classification test revealed that

log transformations can reveal more low-abundance biomarkers

and produce better classification results.

The data analysis for MSI can be performed with

MassImager, Biomap, Data Explorer, MALDI Imaging Team

Imaging Computing System, FlexImaging, oMALDI Server 5.1

and SCiLS Lab (116, 220–225). Multivariate methods are

applied, such as principal component analysis, clustering

methods, factorization methods and classification methods

(226). These statistical analyses may discriminate differential

molecules between normal and tumor tissues and find potential

biomarkers for the tumor. Different from the publicly available

and commercial software tools, Cardinal is an open-source R

package that implements data processing (normalization,

baseline correction, peak detection and peak alignment),

visualization of mass spectra, statistical segmentation

(principal component analysis, Spatially-Aware and Spatially

Aware Structurally Adaptive) and classification (partial least

squares discriminant analysis and orthogonal projections) of

ion images for MSI (227). Cardinal also introduced Spatial

Shrunken Centroids, a novel method for model-based image

segmentation and classification.
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2.3 Mass spectrometry imaging in
proteomics of endocrine tumors

Gene alternations play a fundamental role in endocrine

tumors (228, 229). For example, BRAF (v-Raf murine sarcoma

viral oncogene homolog B1) mutations, RAS (rapidly accelerated

fibrosarcoma) mutations and RET (Proto-oncogene tyrosine-

protein kinase receptor Ret) rearrangements are common

genetic alternations in papillary thyroid carcinoma (PTC) and

follicular thyroid carcinoma (FTC); GNAS (guanine nucleotide

binding protein, alpha stimulating) gene mutations happens in

sporadic pituitary adenomas while MEN1 (menin 1) and AIP

(aryl hydrocarbon receptor interacting protein) mutations in

family isolated pituitary adenoma (230, 231). Though great

achievements have been made in elucidating the mechanism

and pathology of endocrine tumors through genomic analysis,

the gene expression and protein expression lack apparent

correlation (4, 232–234). Proteins are gene products, the

executors of cellular processes and more closely related to the

phenotypes (235). Proteomics is complementary to genomics in

revealing the alternations in structure, function and interactions

of proteins in tumorigenesis and tumor progress. With MSI as

the analysis tool, proteomics in endocrine tumors has showed

the potential to discover different protein signatures between the

tumor tissues and adjacent normal tissues and to discriminate

among different subtypes of thyroid cancers. The spatially

resolved proteomics of endocrine tumors can contributed to a

better understanding of the overall mechanism involved in the

tumorigenesis, progression, and metastasis.

The application of MSI in proteomics is capable of

discriminating between the normal tissue and the cancer tissue

as well as distinguishing between different subtypes of thyroid

tumors (236–238). Mainini et al. analyzed the cytological smears

obtained by ex vivo FNA from 7 patients with hyperplastic

nodules or PTC using MALDI-MSI (239). The MSI data was

processed with hierarchical cluster analysis and principal

component analysis to evaluate the different proteomic

expressions. And hyperplastic nodules and PTC were

successfully discriminated by hierarchical cluster analysis and

principal component analysis. Pagni et al. used MALDI-MSI to

compare the protein profiles of cytologic samples obtained from

patients diagnosed as hyperplastic nodules, Hürthle cell

follicular adenoma, medullary thyroid carcinoma (MTC) and

PTC (176). They evaluated 6 proteins whose expression in PTC

were different from that of benign lesions, but similar to that of

MTC. Different protein profiles that could distinguish between

PTC and MCT were also detected. Calligaris et al. presented the

application of MALDI-MSI in detecting and discriminating

nonpathological human pituitary glands, hormone secreting

and non-secreting human pituitary adenomas (240). They

validated the capability of MALDI-MSI to image prolactin

(PRL), growth hormone (GH), adrenocorticotropic hormone
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(ACTH) and thyroid stimulating hormone (TSH) within normal

glands and adenomas, but also submitted the MSI data to

principal component analysis to evaluate the different protein

signatures among nonpathological human pituitary glands,

hormone secreting and non-secreting human pituitary

adenomas. It was revealed that the sensitivity and specificity of

MSI data distinguishing ACTH secreting adenomas from

nonpathological pituitary were 100% and 93%, the sensitivity

and specificity of MSI data distinguishing GH secreting

adenomas from nonpathological pituitary were 82% and 100%

and the sensitivity and specificity of MSI data distinguishing PRL

secreting adenomas from nonpathological pituitary were 50%

and 100%, respectively.

The application of MSI proteomics is also capable of finding

potential protein biomarkers for the diagnosis of endocrine

tumors (241). Nipp et al. performed MALDI-MSI and

immunohistochemistry (IHC) on PTC tissues to find

biomarkers for the metastasis of PTC (242). Using MALDI-

MSI, they successfully found that thioredoxin, S100-A10 (p11,

the ligand of Annexin-II) and S100-A6 (Calcyclin) could

specially distinguish metastatic PTC from non-metastatic PTC.

And IHC validated that these three overexpressed proteins were

significantly associated with lymph node metastasis of PTC with

p values < 0.005 (p value for thioredoxin: 0.00003; p value for

S100A10: 0.00018; p value for S100-A6: 0.0013; Fisher’s

exact test).

The application of MSI in proteomics is capable of bringing

insight into the endocrine tumor progression. Tissue necrosis is

common in advanced and aggressive solid tumors (243). Scott

et al. studied the N-linked glycosylation of proteins in human

thyroid cancer tissue by MALDI-MSI (244). They demonstrated

that proteins with high mannose or branched glycans were

specially distributed in the cancer and stromal regions,

whereas the glycans of proteins in necrotic regions presented

limited branching, contained sialic acid modification and lacked

fucose modification. Gawin et al. used MALDI-MSI to compare

protein profiles between the primary PTC located in the thyroid

gland and the PTC with synchronous metastases in regional

lymph nodes (245). Thirty-six proteins were found remarkably

different in abundance between primary PTC and metastatic

PTC, which were then annotated as proteins involved in the

organization of the cytoskeleton and chromatin, as well as

proteins involved in immunity-related functions.
2.4 Mass spectrometry imaging in
lipidomics of endocrine tumors

Lipids are hydrophobic or amphipathic compounds with

great differences in their chemical composition and structure

(246). Lipids are divided into 8 categories: fatty acyls,

glycerolipids, glycerophospholipids, sphingolipids, sterol lipids,

prenol lipids, saccharolipids and polyketides (247). Lipids
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involve in many essential cellular processes, including

chemical-energy storage, composition of cell membrane

bilayer, cell-cell interactions and cellular signal transduction.

Lipidomics has been defined as a tool of full characterization of

lipid molecular species and of their biological roles with respect

to expression of proteins involved in lipid metabolism and

function, including gene regulation (248). Abnormal lipid

metabolism has been considered as a key feature of cancers

(249–252). Stearoyl-CoA desaturase (SCD1) has been proved to

be highly expressed in PTC, FTC and anaplastic thyroid

carcinoma (ATC) (253, 254). SCD1, a fatty acyl desaturase

encoded by stearoyl-CoA desaturase 1 gene, plays an

important role in de novo lipid biosynthesis (255). It is a rate-

limiting enzyme in the reaction of producing monounsaturated

fatty acids (such as oleic acid and palmitoleic acid) from

saturated fatty acids (such as stearic and palimitic acid).

Monounsaturated fatty acids are the substrates for the

synthesis of triglycerides, sphingolipids, glycolipids, (PLs), and

other lipoproteins (256, 257). The elevated SCD1 promotes the

proliferation, migration and invasion of cancer cells in PTC,

FTC and ATC. Several research groups have focused on the

lipidomics of endocrine tumors by MSI to analyze multiple lipid

species and detect lipid alternations during the tumorigenesis

(177, 258).

MSI showed the competency for detecting specific

phosphatidylcholine (PC), sphingomyelin (SM) and

phosphatidic acid (PA) species that may associate with the

pathological behaviors of PTC. Ishikawa et al. investigated the

distribution of lipids within cancerous and normal tissues from

PTC patients using MALDI-MSI and MS/MS identification

(259). The MSI analysis was performed by MALDI-TOF/TOF

with 2,5-DHB as the matrix. And it was found that three species

withm/z value 798.5, 796.5 and 741.5 were remarkably increased

in the cancerous tissue compared to the normal tissue. A hybrid

quadrupole/TOF mass spectrometer equipped with an

orthogonal MALDI source was used to identify these three

ions as [PC (16:0/18:1)+K]+ and [PC (16:0/18:2)+K]+ and [SM

(d18:0/16:1)+K]+, respectively. Wojakowska et al. employed

MALDI-MSI to find lipids that could discriminate between

PTC tissues and adjacent non-cancerous thyroid tissues (260).

They found that intensities of PC (32:0), PC (32:1), PC (34:1),

PC (36:3), SM (34:1), SM (36:1) and PA (36:2) and PA (36:3) of

the cancerous tissue were significantly higher than that of the

non-cancerous tissue.

MSI is also competent for imaging differential molecular

signatures for oncocytic thyroid tumors, e.g., the abnormal

expression of cardiolipins (CLs). CLs play an important role in

the stability and integrity of mitochondrial structure and

function. There is increasing evidence in the CL metabolism

reprogramming of cancers. However, the exact mechanism by

which CLs modulate cancer remains to be clarified (261). Zhang

et al. conducted the DESI-MSI analysis to image and

characterize the lipid composition for the oncocytic thyroid
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tumors (Hurthle cell adenoma and Hurthle cell carcinoma)

(262). They found that CL species were distributed in the

oncocytic thyroid tumor with an abnormally high abundance

and diversity, as compared with the non-oncocytic thyroid

tumors (PTC, FTC and follicular adenoma) and normal

thyroid samples. Feider et al. applied the integrated DESI-field

asymmetric ion mobility spectrometry-MSI approach to

measure CLs in oncocytic thyroid tumors (163). They

validated the existence of abundant CL species in the entire

thyroid tissue section and managed to identify m/z values of

723.479, 737.494 and 747.473 as CL (72:6), CL (74:8) and CL

(76:9). The ion images of MSI demonstrated that oncocytic

thyroid tumor was present throughout the tissue section, MSI

images were consistent with histologic images. The spatial

distribution of CLs among the entire tissue has the potential to

indicate specific locations of oncocytic thyroid tumor.

Moreover, MSI is competent for the detection of FFAs and

PLs of the cancer tissue and the para-cancer tissue to elucidate

the relatives between changes of FFAs and PLs and the cancer

development (263–265). FFAs are an essential constituent of

PLs. It has been revealed that FFAs greatly influence the energy

storge in the cancer microenvironment and act as second cellular

messengers (266). The metabolism of FFAs is an essential step in

de novo lipogenesis, which is more active in the cancer tissue

compared with the normal tissue (267, 268). Wang et al.

simultaneously imaged FFAs and PLs in the thyroid cancer

tissue and the para-cancer tissue by MALDI-MSI (127). They

found that the intensities of 7 FFAs (arachidic acid (C20:0), oleic

acid (C18:1), linolenic acid (C18:3), palmitoleic acid (C16:1),

arachidonic acid (C20:4), docosahexaenoic acid (C22:6) and

linoleic acid (C18:2)) were significantly higher in the cancer

tissue than that of the para-cancer tissue. The correlation

between FFAs and PLs was analyzed by submitting the

intensity of each detected PL and FFA derivative in each spot

for the cancer tissue and the para-cancer tissue to Spearman

correlation analysis. The heatmaps of the correlation between

FFAs and PLs in thyroid cancer samples were created to reveal

that the saturated FFAs (C16:0 and C18:0) were positively

correlated with PLs. This is because palmitic acid (C16:0) is

the main product of de novo fatty acid synthesis and a precursor

for the synthesis of other fatty acids. Combined with the

upregulation of palmitic acid in cancer tissue, this

phenomenon is due to the more active de novo synthesis of

fatty acids in cancer tissue to provide abundant precursors for

other lipid metabolism.
2.5 Mass spectrometry imaging in
metabolomics of endocrine tumors

Metabolites are intermediate end products generated by

chemical reactions within cells, tissues and organs (269).
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Metabolomics, focusing on the altered metabolites and

metabolic pathways within the biological sample, is a promising

technique in shedding light on the molecular mechanisms of

endocrine tumors (270–272). MSI has made great progress in the

metabolomic analysis of endocrine tumors, involving detection of

altered metabolites, elucidation of tumor metabolism

reprogramming and identification of possible biomarkers (273).

MSI has the ability to present the histology heterogeneity but

also can reveal the metabolic heterogeneity within the tumor.

Huang et al. studied the metabolism of PTC by ambient pressure

DESI-MSI (274). They built a spatially resolved metabolomic

data processing pipeline that revealed the tumor microregion

heterogeneity. A clear discrimination among the tumor, the

stromal and the normal tissue was shown. The para-cancer

region was further segmented into different microregions

based on the differential metabolic profiles. Additionally, this

study showed that the abundances of phenylalanine, leucine and

tyrosine were the highest in the tumor region, followed by the

stromal region, lowest in the normal tissue. It has been revealed

that amino acids are involved in glycolysis and tricarboxylic acid

cycles, reshaping the cellular metabolism (275). Cancers demand

abundant amino acids to promote cancer cell proliferation,

invasion and metastasis. Amino acids were usually present to

be increasingly expressed in PTC (276–279).

MSI has the ability to help elucidate the molecular

mechanism of the pheochromocytoma. The adrenal medulla,

in the central part of the adrenal gland, is composed of

chromaffin cells that synthesize catecholamines. The hormones

exert their effects by acting on alpha- and beta- adrenoreceptors

in the central nervous system and the periphery (280). The “fight

or flight response” is a key mechanism and causes a number of

physiological changes, such as increased blood pressure,

increased cardiac output and increased glycogenolysis in liver

and muscle tissue (281). Pheochromocytoma is formed in the

adrenal medulla. This type of tumor produces and releases a

large amount of circulating catecholamines and leads to a

constant activation of the “fight or flight response” (282).

Takeo et al. visualized the distribution of adrenaline and

noradrenaline in the normal tissue and the pheochromocytoma

tissue (213). They demonstrated that both catecholamines were

distributed in the adrenal medulla of the normal tissue, whereas

pheochromocytoma tissue showed a moderate adrenaline level

and an elevated level of noradrenaline with a homogeneous

distribution among the whole tumor region.

MSI has the potential to provide additional support for the

hypothesis that aldosterone-producing cell cluster (APCC) is the

origin of aldosterone-producing adenoma (APA) (283). It is

reported that aldosterone or 18-oxocortisol is a potential serum

marker of APA. Sugiura et al. visualized the distribution of

aldosterone or 18-oxocortisol in APCC, possible APCC-to-APA

transitional lesions and APA by MALDI-MSI (284). The ion

images revealed that aldosterone and 18-oxocortisol congregated
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within the tumor regions where aldosterone synthase was

distributed. The imaging results of possible APCC-to-APA

transitional lesions even suggested a path of cellular migration

from APCC to form APA inside the adrenal glands. Sun et al.

used MALDI-MSI to compare the metabolomic phenotypes

between APCC and APA (285). They processed the MALDI

spectra by component analysis. Depending on their respective

metabolite distribution patterns, the APCC were divided into 2

subgroups. Metabolic profiles of APCC in subgroup 1 were

distinct from APA, whereas subgroup 2 displayed metabolic

profiles similar to the APA group. Compared to subgroup 1,

subgroup 2 presented increased hexose monophosphate shunt,

enhanced metabolism of tryptophan via the kynurenine pathway

and the significant enhancement of N-acetylglucosamine, which

may be related to cell proliferation and APCC to APA transition.

MALDI-MSI has the potential to discriminate endocrine

tumors with different genotypes based on the metabolic profiles.

By using MALDI-FT-ICR with 9-AA matrix, Murakami et al.

analyzed the metabolism of APAs by MSI (286). The metabolic

data was processed with ortho-PLSDA clustering between

KCNJ5- (potassium voltage-gated channel subfamily J member

5) and CACNA1D- (calcium voltage-gated channel subunit

alpha1 D) mutated APAs. One hundred and thirty-seven

differential metabolites were screened out (adjusted p value <

0.05). In the following, the significantly altered metabolites were

submitted to the pathway analysis and the activation of purine

metabolism in KCNJ5-mutated APAs was demonstrated

(pathway impact = 0.13, p < 0.001, and FDR < 0.001).
3 Spatially resolved
microproteomics in endocrine
tumors

3.1 Spatially resolved microproteomics
and microextraction approaches

Conventional proteomics usually performs extraction by

preparing the whole piece of tissue into homogenate. The final

protein or peptide sample is injected into the LC-MS system in

solution. The homogenization process leads to the loss of the

histological structure of the tissue and the spatial localization of

the analytes (287). Moreover, proteins with low abundance

sometimes cannot be detected due to the interference of

abundant proteins (288). These challenges can be overcome by

spatially resolved microproteomics, which allows quantitative

and comparative proteomic analysis within a relatively small

surface area (mm) in the tumor microenvironment (61, 289–

295). Spatially resolved microproteomics is achieved by the

collaboration of LC-MS and microextraction approaches. Laser

microdissection (LMD) and liquid microjunction (LMJ) are two
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general microextraction approaches that help extract proteins

from a relatively limited area of the sample surface (296–298).

3.1.1 Laser microdissection
LMD can isolate and harvest subpopulations of tissue cells

relying on either infrared (IR) laser or ultraviolet (UV) laser

coupled with a microscope (34). The histology structure of the

sample is present under the microscope and regions of interest

are determined by direct microscopic visualization (299).

Figures 3A–C respectively introduce the principles of three

LMD systems from different vendors. In the system of Arcturus

laser capture microdissection, the tissue section is located on the

glass slide. A thermolabile membrane on bottom face of the cap

is placed on the tissue section. The IR laser activates the

membrane and the melted membrane extends to the tissue.

The adhesion force of the selected tissue area to the activated

membrane exceeds that to the glass slide. The selected area is

removed from the tissue (300). In Zeiss’s PALM microdissection,

the tissue section is mounted on a polyethylene napthalate

(PEN) membrane glass slide. After selecting the region of

interest, the UV laser ablates the surrounding cells and cuts

away the selected area (301). The cut-off areas are transported

into a collective tube by a defined laser pulse against gravity. In

the Leica LMD microdissection, the tissue section is mounted

on the PEN membrane glass slide and placed upside down on

the stage. The target tissue is dissected by the UV laser and

directly falls into a vessel underneath the tissue section by

gravity (302).
3.1.2 Liquid microjunction
LMJ performs microextraction within a well-defined area of

the tissue using the liquid microjunction interface (303–305).

The principle of LMJ is present in Figure 3D. In brief, a probe

aspirates a certain amount of extraction solvent and dispenses a

portion onto the tissue surface to create a liquid microjunction

between the probe and the tissue surface. Analytes that are

soluble in the solvent will be extracted into the liquid

microjunction. After a predefined extraction time, the probe is

aspirated and the extraction solution can be directly dispensed to

LC-MS system (163, 306). Alternatively, it is possible to perform

several cycles of extraction and pool all the collected solution in

the same vial to increase the quantity of samples for the further

analysis (307).

For spatially resolved microproteomics, there are two LMJ

strategies (308). Firstly, localized on-tissue digestion is

performed and digested peptides are extracted by LMJ (293).

Secondly, intact proteins are directly extracted from regions of

interest within the tissue (309). In conclusion, LMJ has shown

great capacities in extraction of proteins from specific cell

subpopulation, contributing extensively to the proteomic

analysis (310–312).
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3.1.3 Comparison of laser microdissection and
liquid microjunction

There are some similarities between LMD and LMJ. Before

being used, both of them need the histology structure of the

samples, which can be obtained from histology staining,
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immunochemistry and MSI molecular histology images. Both

of them are appliable to fresh frozen tissues, FFPE tissues and

cytologic smears. There are also a few differences between them.

For LMD, it can dissect regions of any size and any shape from

the sample surface. It can cut off an area of tissue with a few
A B

C D

FIGURE 3

(A) Principle of the Arcturus laser capture microdissection. A thermolabile membrane on bottom face of the cap is placed on the tissue section.
The infrared (IR) laser activates the membrane which extends to the tissue. The adhesion force of the tissue to the activated membrane exceeds
that to the glass slide. The selected area is removed from the tissue. (B) Principle of the Zeiss’s PALM microdissection. The tissue section is
mounted on a polyethylene napthalate (PEN) membrane coated glass slide. After selecting the region of interest, ultraviolet (UV) laser ablates
the surrounding cells and cuts away the selected area, which is then transported into a collection tube by a defined laser pulse against gravity.
(C) Principle of the Leica LMD microdissection. The tissue section is mounted on the PEN membrane glass slide and placed upside down on the
stage. The target tissue is dissected by the laser and directly falls into a collection tube underneath the tissue section. (D) Principle of liquid
microjunction extraction. The probe aspirates the extraction solvent and dispenses a portion onto the tissue surface to create a liquid
microjunction between the probe and the tissue surface. After a predefined extraction time, analytes that are soluble in the solvent are extracted
into the liquid microjunction. The extracted solution can be analyzed by LC-MS directly.
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square milimeters. It can also allow to obtain a region with a few

micrometers and even submicrometers in diameter. Therefore,

LMD can isolate a large area of tissue, cell clusters, single cell and

subcellular compartments. For LMJ, the droplet deposited on the

sample surface is a circle 0.25 to 4 mm in diameter (313). LMJ is

more appropriate to sample with the larger surface area (314).

Besides, the dissected sample obtained by LMD needs to be

extracted and it is always challenging to process the small

volume of sample. LMJ can perform the extraction in situ

from the target surface area of the sample and the extracts can

be directly introduced into the LC-MS system. During the

process, the sample consumption is largely reduced.
3.2 Application of spatially resolved
microproteomics in endocrine tumors

LMD or LMJ coupled with MS/MS makes full use of their

advantages in the analysis of heterogenous endocrine tumor

tissues, allowing for in-depth proteomic analysis and capable of

depicting the underlying protein alternations in the endocrine

tumor microenvironment (315, 316).

Prolactinoma is a subtype of pituitary adenoma and

encompasses various types of cells including prolactin cells,

endothelial cells, fibroblasts and other stomal cells (317). To

better explain the prolactinoma tumorigenesis from the

proteomics level, Liu et al. dissected pure prolactin cells from

prolactinomas using immune-LMD and performed bottom-up

proteomic analysis on the extracted proteins (318). By searching

the human International Protein Index database with MS/MS

spectra, they successfully set up a specific prolactinoma spectral

library of 2,243 proteins.

Amyloids are abnormal proteins, which deposit in the organs

and tissues, such as brain, heart, bladder, skin, thyroid,

parathyroid, muscles and nerves (319–321). As the amyloid

deposition increases, the normal function of organs and tissues

is disturbed (322). Some types of amyloidosis are associated with

the occurrence and development of the diseases (323–325).

Parathyroid hormone (PTH), a polypeptide hormone, has been

shown to form amyloid and amyloid-like beta-sheet aggregation

in parathyroid adenomas (326). Colombat et al. used LMD-LC-

MS/MS to analyze the protein profiling for parathyroid adenomas

whose histological analysis presented nodular typical amyloid

deposits. And the LMD-LC-MS/MS spectra successfully

identified the amyloid fibril protein in parathyroid adenomas as

PTH (327). They speculated that the formation of amyloid in a

subset of parathyroid adenomas resulted from inappropriate PTH

production. The physiological hormone aggregation might escape

the control of functional amyloid processes, leading to disease-

amyloid aggregation of PTH.

The pituitary gland can be divided into two distinct regions

both in anatomy and function: the anterior pituitary

(adenohypophysis, AH) and the posterior pituitary
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(neurohypophysis, NH). The anterior pituitary comprises of

five different types of epithelial endocrine cells, responsible for

secreting GH, PRL, TSH, ACTH, follicle stimulating hormone

and luteinizing hormone (328). The posterior secrets two

hormones: oxytocin and vasopressin. Kertesz et al. used an

automated LMJ system for profiling of arginine vasopressin

and ACTH in normal human pituitary gland and pituitary

adenomas (329). This spatially resolved sampling approach

allowed selective protein extraction from the anterior and the

posterior regions of the human pituitary gland as well as selective

protein extraction from the tumor region and the normal

posterior region of the ACTH secreting adenoma tissue. The

separation and identification of the extracted proteins were

processed with LC-MS/MS system. Heatmaps were created to

show that arginine vasopressin was mostly distributed in NH

regions and ACTH in AH regions. ACTH levels in secreting

adenomas and normal AH regions were significantly higher than

in non-secreting adenomas and NH regions. The results showed

that the signature of arginine vasopressin and ACTH in a series

of ACTH secreting and non-secreting pituitary adenomas was

consistent with the histopathological evaluation.
4 Conclusion and perspective

Multi-omics analysis for endocrine tumors is gaining much

attention in recent years (330–332). Endocrine tumors are

characterized by a marked diversity and high heterogeneity. Most

endocrine tumors are benign, evolving locally and slowly. However,

a fraction of endocrine tumors are malignant, as evidenced by

metastasis and fatal evolution (2). Biomarkers associated with

tumorigenesis, progression and metastasis are intensively

investigated, facilitating the development of novel diagnostic tools

and promising treatments. MSI techniques show the strength in

detection and identification of proteins, lipids and metabolites that

altered significantly between the tumor tissue and the normal

tissue. Compared with non-metastatic PTC, thioredoxin, S100-

A10 and S100-A6 were significantly elevated in metastatic PTC (p

values < 0.005). And the three proteins were identified as protein

biomarkers for PTC with lymph node metastasis. Besides, CL

species with an abnormal abundance and diversity are identified

as candidate biomarkers for oncocytic thyroid tumor, such as CL

(72:6), CL (72:8) and CL (76:9). Moreover, MSI result showed

aldosterone and 18-oxocortisol congregated within the tumor

regions where aldosterone synthase was distributed, serving as a

complementary for the view that aldosterone or 18-oxocortisol has

the potential to act as a biomarker for APA. With the advances in

LC-MS and microextraction approaches, spatially resolved

microproteomics in endocrine tumors has exhibited excellent

performances in revealing the regional protein profiles within the

heterogeneous tumor tissues.

The samples for endocrine tumors mainly comprise of fresh-

frozen tissues, FFPE tissues and cytologic samples. Proteomics,
frontiersin.org

https://doi.org/10.3389/fendo.2022.993081
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hou et al. 10.3389/fendo.2022.993081
lipidomics and metabolomics guided by MSI and spatially

resolved microproteomics can reflect the relative abundance

and spatial distribution of analytes. The sample preparation

protocols are crucial and need to be established based on the

purpose of the study and the collected samples. It should be

taken into account to protect the analytes from degradation and

displacement within the tissue and preserve the integrity of the

tissue during the preparation process.

MSI provides spatially resolved molecular analysis of

biological samples without labelling. However, MSI is

disadvantageous in molecule identification caused by local ion

suppression and has limitations in the depth of molecule

detection coverage compared with established proteomics,

lipidomics and metabolomics based on LC-MS/MS analysis

(333). The strategy that combines MSI, microextraction

approaches and LC-MS has the potential to solve the above

problem. In brief, the tissue is first analyzed with MSI to produce

localization-registered mass spectra and ion images. The tissue is

then segmented into different regions. And, the location

information of the target region is passed to the LMD or LMJ.

The microextraction is performed on the target regions. Lastly,

the extracts are analyzed with LC-MS/MS. This strategy allows

more comprehensive and deeper insights into the molecular

heterogeneity uncovered by MSI and enables a better

understanding of the molecular mechanism within the sample

(289). It has shown the potential of improving the

characterization and identification of proteins associated with

endocrine tumors (329). One limitation for this strategy in

lipidomcis and metabolomics is the small sample quantity

obtained by microextraction, which poses challenges to the

following LC-MS/MS analysis. Therefore, mass spectrometers

and chromatographic methods with significantly enhanced

sensitivity are required in this filed.

Advanced MSI techniques are remarkably promising in

single cell metabolomics, where the analysis on metabolites is

directly performed on single cells without any cell lysis,

separation or label (334). The spatial resolution of SIMS-MSI

with GCIBs as the primary ion beam can approach 1 mm,

capable of imaging a single cell (335). A spatial resolution of

around 1.4 mm has been achieved by the development of

atmospheric pressure MALDI MSI platform (336). High

spatial resolution MALDI-MSI (down to 0.5-5 mm) using both

reflection and transmission geometries has been being developed

by the Caprioli group (337, 338). MALDI-MSI is capable of

mapping and visualizing lipids in a single cell of newly fertilized

individual zebrafish embryos (339). MALDI-2 is a post post-

ionization technique. After the initial MALDI ionization, a

second laser that is parallel to the sample surface is applied to

post-ionize neutral molecules. MALDI-2 reduces ion

suppression effects and improves sensitivity by up to 3 orders

of magnitude. And spatial resolution can reach 5 mm. By

applying transmission-mode MALDI-2 ion source in MSI of

the brain tissue, the subcellular resolution was achieved (340).
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MSI-based single cell metabolomics devotes to profiling

metabolites spatially and/or temporally in a single cell level,

providing insights into the intracellular and intercellular

metabolic activities and revealing the intercellular heterogeneity.

With the development in mass spectrometry, chromatography,

microextraction methods, sample preparation protocols and data

analysis methods, analyses on the proteomics, lipidomics and

metabolomics of endocrine tumors will provide new dimensional

insights in molecular level, cellular even subcellular level and tissue

level, aiding in overcoming the problems of pathophysiology,

diagnosis, and treatment for endocrine tumors.
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ACTH adrenocorticotropic hormone

AH adenohypophysis

AIP aryl hydrocarbon receptor interacting protein

APA aldosterone-producing adenoma

APCC aldosterone-producing cell cluster

ATC anaplastic thyroid carcinoma

BRAF v-Raf murine sarcoma viral oncogene homolog B1

CACNA1D calcium voltage-gated channel subunit alpha1 D

CHCA alpha-cyano-4-hydroxycinnamic acid

CLs cardiolipins

DESI desorption electrospray ionization

DESI-MSI desorption electrospray ionization-mass spectrometry
imaging

2,5-DHB 2,5-dihydroxybenzoic acid

ESI electrospray ionization

FFAs free fatty acids

FFPE formalin fixed paraffin embedded

FNA fine needle aspiration

GCIBs gas cluster ion beams

GH growth hormone

GNAS guanine nucleotide binding protein, alpha stimulating

IHC immunohistochemistry

IR infrared

ITO indium-tin oxide

KCNJ5 potassium voltage-gated channel subfamily J member 5

LMD laser microdissection

LC-MS liquid chromatography-mass spectrometry

LC-MS/MS liquid chromatography with tandem mass spectrometry

LDI laser desorption/ionization

LMJ liquid microjunction

LMIGs liquid metal ion guns

m/z mass-to-charge ratio

MALDI matrix-assisted laser desorption/ionization

MALDI-MSI matrix-assisted laser desorption/ionization-mass
spectrometry imaging

MEN1 menin 1

MS mass spectrometry

(Continued)
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MSI mass spectrometry imaging

MTC medullary thyroid carcinoma

NH neurohypophysis

PA phosphatidic acid

PC phosphatidylcholine

PEN polyethylene napthalate

PLs phospholipids

PTC papillary thyroid carcinoma

PTH parathyroid hormone

PRL prolactin

RAS rapidly accelerated fibrosarcoma

RET Proto-oncogene tyrosine-protein kinase receptor Ret

SA sinapinic acid

SCD1 stearoyl-CoA desaturase

SIMS secondary ion mass spectrometry

SIMS-MSI secondary ion mass spectrometry-mass spectrometry
imaging

SM sphingomyelin

S100-A10 p11 the ligand of Annexin-II

S100-A6 Calcyclin

MS/MS Tandem mass spectrometer

TOF time-of-flight

TSH thyroid stimulating hormone

UV ultraviolet
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