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inflammasome, with a focus
on atherosclerosis

Liu Yang, Xuejiao Zhang and Qing Wang*

Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
Atherosclerosis is a lipid-driven chronic inflammatory disease that is

widespread in the walls of large and medium-sized arteries. Its pathogenesis

is not fully understood. The currently known pathogenesis includes activation

of pro-inflammatory signaling pathways in the body, increased oxidative stress,

and increased expression of cytokines/chemokines. In the innate immune

response, inflammatory vesicles are an important component with the ability

to promote the expression and maturation of inflammatory factors, release

large amounts of inflammatory cytokines, trigger a cascade of inflammatory

responses, and clear pathogens and damaged cells. Studies in the last few years

have demonstrated that NLRP3 inflammatory vesicles play a crucial role in the

development of atherosclerosis as well as its complications. Several studies

have shown that NLRP3 binding to ligands promotes inflammasome formation,

activates caspase-1, and ultimately promotes its maturation and the maturation

and production of IL-1b and IL-18. IL-1b and IL-18 are considered to be the two

most prominent inflammatory cytokines in the inflammasome that promote

the development of atherosclerosis. SGLT2 inhibitors are novel hypoglycemic

agents that also have significant antiatherosclerotic effects. However, their

exact mechanism is not yet clear. This article is a review of the literature on the

effects and mechanisms of SGLT2 inhibitors on the NLRP3 inflammasome,

focusing on their role in antiatherosclerosis.
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Introduction

Atherosclerosis is a lipid-driven chronic inflammatory disease that is widespread in

the walls of large and medium-sized arteries (1, 2). In recent years, fatal vascular diseases

caused by atherosclerosis have included stroke, acute myocardial infarction (MI), and

severe peripheral vascular disease (3, 4). Pathological changes in atherosclerosis include
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endothelial damage, lipid deposition, macrophages, the

formation of foam cells and the proliferation and migration of

smooth muscle cells (SMCs) (5). Previous research has shown

that the complex pathogenesis of atherosclerosis includes

activation of proinflammatory signaling pathways in the body,

increased oxidative stress, and increased expression of cytokines/

chemokines (6). Its main causes include lipid accumulation in

the arterial wall and chronic inflammation (2, 7, 8). Diabetes has

been shown to be an independent risk contributor to the

accelerated progression of atherosclerosis (9–11). Research has

shown that the rate of vascular disorders in T2DM patients is

two to four times higher than that in nondiabetic patients (12).

Diabetic patients are prone to atherosclerosis, which is

influenced by hyperglycemia, advanced glycosylation end

product production, dyslipidemia, inflammation, insulin

resistance, endothelial dysfunction and oxidative stress (4, 9, 13).

The results of several recent studies have shown that

inflammation is crucial for the onset and progression of

atherosclerosis and its complications (1, 14). The existence of

inflammasomes was first demonstrated by Martinon et al. in

2002 (15). It is a protein complex that is composed of pattern

recognition receptors (PRRs) activated by various physiological or

causative stimuli (16). Pattern recognition receptors (PRRs) target

pathogenicity in the innate immune response. The inflammasome

is an essential part of the innate immune system and has the

capacity to promote the expression and maturation of

inflammatory factors, release large amounts of inflammatory

cytokines, trigger a cascade of inflammatory responses and clear

pathogens and damaged cells (17, 18). The most typically

characterized and widely studied inflammasomes are the

nucleotide binding domain and leucine-rich repeat containing

family pyrin domain containing 3 (NLRP3) (19). NLRP3 is an

innate immune cell sensor (20). It identifies nonmicrobiological red

flags and causes and promotes a bacterial inflammatory reaction in

different disease conditions (17, 21, 22). The NLRP3 inflammasome

consists of three parts (8, 23–26): (1) The sensor molecule NLRP3

(a toll-like receptor), which includes three structural domains: a

pyrin structural domain (PYD), a nucleoside oligomerization

structural domain (NACHT) and a leucine-rich repeat sequence

structural domain (LRR). (2) Apoptotic spot-like protein (ASC),

containing an N-terminal pyrin domain (PYD) and a C-terminal

PYD recruitment domain (CARD), also called Pycard. (3)

Procaspase-1 contains a CARD and a catalytic structural domain

(Caspase-1). ASC plays a critical linkage role between receptor

NLRP3 and effector caspase-1 due to the lack of pyrin domain in

caspase-1 (27). The NLRP3 inflammasome is a concentric circle-

shaped tissue. The NLRP3 protein is located in the middle of the

circle, and the ASC layer surrounds the NLRP3 protein. Caspase-1

is located in the outermost layer and is attached to the ASC layer

(17, 28). The body can regulate the activation of the NLRP3

inflammasome at multiple levels, and in macrophages, two

independent signals are usually required (29). First, inflammatory
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factors induce NLRP3 and pro-IL-1b expression through

stimulation of nuclear factor-kb (NF-kb) (30, 31). When

pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs) are activated, this leads

to the interaction of PYD of NLRP3 inflammatory vesicle proteins

with PYD of ASC. The accumulation of these structural domains

eventually leads to the release of active caspase-1, converting

inactive procaspase-1 to active caspase-1 through the action of

NLRP3 inflammatory vesicles, thereby upregulating multiple

inflammatory cytokines and initiating defense mechanisms (29,

32). Inactive pro-interleukin-1b (Pro-IL-1b) can be converted to

active IL-1b by caspase-1 and released from cells to mediate

inflammatory responses in tissues (25, 30, 33–35). Active caspase-

1 is able to cleave gas protein D (GSDMD), causing the N-terminal

structural domain of GSDMD to form a pore in the plasma

membrane, which triggers cell lysis until death, also known as

pyroptosis (36–39). Pyroptosis is a form of cell death that is distinct

from apoptosis. It forces the exposure of intracellular pathogens to

other immune factors and triggers the release of cytokines and the

production of DAMPs to enhance the immune system’s response to

infection (29, 38, 40). Activation of NLRP3 inflammatory vesicles is

directly associated with the pathophysiology of chronic

inflammatory diseases, such as diabetes, and its associated

complications (29, 41–43). Wan et al. found that NLRP3

expression levels and plasma IL-1b levels are dramatically higher

in PBMCs from diabetic individuals than in those from healthy

controls (44). In addition, aberrant activation of the NLRP3

inflammasome is related to several types of inflammatory

diseases, including obesity (45), diabetes (46, 47), atherosclerosis

(8, 48, 49), nonalcoholic steatohepatitis (50), gout (51–53), and

Alzheimer’s disease (54, 55).

Current status of research on
the NLRP3 inflammasome
and atherosclerosis

The NLRP3 inflammasome is mainly expressed in monocytes,

macrophages, smooth muscle cells, endothelial cells, and dendritic

cells (24, 56, 57). Nevertheless, studies of atherosclerosis have

concentrated on the activation of inflammatory vesicles in

monocytes, macrophages and vascular smooth muscle cells (24).

Vascular smooth muscle cells (VSMCs) are the mesangial cells of

coronary arteries (58). In the early stage of atherosclerosis, activated

vascular smooth muscle cells have a good ability to proliferate and

migrate. These cells canmigrate from the arterial mesothelium to the

intima, forming fibrous cap-like structures. The fibrous cap secretes

extracellular matrix, which buries lipids in deeper layers and

prevents plaque degradation. Massive lipid deposition in plaques

leads to activation of the NLRP3 inflammatory vesicle response and

exacerbation of the inflammatory response, ultimately leading to

plaque necrosis (59). It has been shown that in foam cells and
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macrophages, NLRP3 inflammatory vesicles are mainly localized in

the cytoplasm and are associated with intracellular and extracellular

crystallization of cholesterol crystals (60). In macrophages, activation

of NLRP3 inflammatory vesicles can stimulate the formation of

cholesterol crystals, which are necessary for the development of

atherosclerosis (49); activation is an important mechanism driving

the development of atherosclerotic inflammation (61).

The NLRP3 inflammasome plays an important role in the

molecular etiology of atherosclerosis (48, 49, 62, 63). Multiple

studies in atherosclerotic patients and animal models have shown

that the NLRP3 inflammasome can increase IL-1b and IL-18

production, leading to the progression and instability of

atherosclerotic plaques (64). Wan et al. (44) applied NLRP3

knockout technology to inhibit NLRP3 inflammasome

activation and the expression of adhesion molecules ICAM-1

and vascular cell adhesion molecule-1 (VCAM-1) in the intima,

reducing atherosclerosis and stabilizing atherosclerotic plaques in

a diabetic atherosclerosis mouse model. Zheng et al. (65) showed

that silencing of the NLRP3 gene delayed the progression of

atherosclerosis in mice by administering NLRP3-RNA lentiviral

suspension to ApoE-/- mice fed a high-fat diet, mainly by

decreasing the plaque content of macrophages and increasing

the plaque content of smooth muscle cells. The mRNA levels of

NLRP3 inflammasome-related genes are significantly increased in

human atherosclerotic plaques compared to nonatherosclerotic

vessels, and particularly high expression is observed in patients

with symptomatic lesions (66). NLRP3 can be overexpressed in

the aorta of patients with atherosclerosis, making it an important

risk factor for the development of and correlation with the severity

of coronary artery disease (67). NLRP3, ASC, caspase-1, IL-1b,
and IL-18 levels are differentially elevated in unstable carotid

atherosclerotic plaques in patients undergoing carotid

endarterectomy (60, 66, 68). NLRP3 inflammasomes have been

shown to be activated by a variety of stimuli, including ion flux,

mitochondrial dysfunction, reactive oxygen species production,

and lysosomal damage (16, 69, 70). The mechanisms of NLRP3

inflammasome activation are quite complex, and how NLRP3

responds to these signaling events and initiates the assembly of the

NLRP3 inflammasome is not fully understood (69). A variety of

targets have been used to develop therapeutic strategies. For

example, they inhibit the activity of upstream signaling

pathways, block the assembly and activation of the NLRP3

inflammasome, inhibit caspase-1 activation and secretion of IL-

1 and IL-18 factors (5).
The role of IL-1b and IL-18 in the
pathogenesis of inflammation
in atherosclerosis

Several studies have shown that NLRP3 binding to ligands

promotes inflammasome formation, activates caspase-1, and

ultimately promotes its maturation and the maturation and
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secretion of IL-1b and IL-18 (66, 71, 72). IL-1b and IL-18

have important roles in the pathogenesis of atherosclerosis (73).
IL-1b

The interleukin 1 (IL-1) family acts on almost all tissues and

cells throughout the body. It plays a key role in innate immunity

and inflammatory responses (74). It is a key mediator of

inflammatory, autoimmune, infectious and degenerative

responses (75). Among all IL-1 family cytokines, IL-1a, IL-1b,
IL-18 and IL-1Ra are the most extensively studied members (48).

In recent years, interleukin-1b (IL-1b) and interleukin-18 (IL-

18) have been identified as the two most important

inflammatory cytokines that promote the development of

atherosclerosis (76).

IL-1b is known to be a key cytokine in atherogenesis (77, 78). It
is an inducible cytokine that is mainly produced by monocytes and

macrophages as well as neutrophils (74). IL-1b acts mainly as a

soluble mediator outside the cell and can act on tissues and organs

at a distance. IL-1b gene expression is low or absent in blood

mononuclear cells in healthy populations but significantly increased

in disease states (79). Knockout of the IL-1b gene in ApoE-/- mice

significantly reduces atherosclerotic plaque development (80).

Ablation of the IL-1 receptor (IL-1R) attenuates plaque

progression in atherosclerosis-prone mice (81). Active IL-1b has

the following main effects: a. Significantly increases the lifespan and

activity of neutrophils and macrophages (82) and induces lytic

enzymes and fibroblast proliferation (83). b. Induces and controls

the expression of genes related to fever, pain threshold, and

vasodilation, leading to vascular endothelial cell responses and

promoting immune cell responses to infected or injured tissues

(84). c. Binding to IL-1R stimulates the activation of the NF-kb and
mitogen-activated protein kinase (MAPK) pathways (85). d.

Stimulates the secretion of a range of other cytokines (86) and

induces the production of endothelin-1 and adherence molecules in

the endothelium, facilitating leukocyte migration and maintaining

the cycle of inflammation (87).
IL-18

A growing number of studies have demonstrated the critical

role of IL-18 in atherosclerosis. IL-18 is related to IL-1b both

biologically and structurally. Similar to IL-1b, it is generated as

an inactive precursor that requires cleavage by caspase-1 to

mature into a biologically active cytokine (88). In contrast,

unlike IL-1b, IL-18 is constitutively expressed (89). IL-18

binding protein (BP) is an IL-18-specific inhibitor. It is a

unique soluble protein that is mainly derived from endothelial

cells and monocytes/macrophages. Structurally, IL-18BP has an

immunoglobulin (Ig) structural domain (90). IL-18BP binds

mature IL-18 (but not pro-IL-18) with high affinity and blocks
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its interaction with cell surface receptors, thus acting as a natural

inhibitor (91). Circulating IL-18BP levels in healthy individuals

range from 0.5-7 ng/ml, while elevated IL-18BP levels have been

described in a number of autoimmune or inflammatory diseases

(92–94). It has been shown that IL-18BP-expressing plasmid

DNA prevents the development of fatty streaks in the thoracic

aortas of apoE knockout mice and slows the progression of

atherosclerotic plaques. IL-18BP has a high binding affinity for

IL-18, and IL-18BP is an important regulator of immune and

inflammatory responses in IL-18-related diseases (72). In

ApoE-/- mouse models, IL-18 has been shown to promote

atherogenesis via an interferon-g (IFN-g)-dependent pathway

(95). In contrast, IL-18-deficient ApoE-/- mice show reduced

atherosclerotic plaque extension (96). In addition, IL-18 gene

variants affect clinical outcomes in patients with coronary artery

disease (97). Atherosclerotic lesions are smaller in IL-18 gene-

deficient mice (98). Overexpression of IL-18BP and IL-18

deletion in ApoE-/- mice blocked IL-18 activity in vivo,

leading to impaired development of atherosclerotic injury (48).

Studies have shown that IL-18R-/- mice exhibit increased body

weight, ectopic lipid deposition, increased inflammation and

diminished AMPK signaling pathways in skeletal muscle (99).

Elevated IL-18 levels were found in obese and type 2 diabetic

patients (100, 101). IL-18 is a costimulatory cytokine that

mediates adaptive immunity and is required for interferon-

gamma (IFN-g) production (84).
The role of an SGLT2 inhibitor on
the NLRP3 inflammasome: Possible
effects on atherosclerosis

The NLRP3 inflammasome plays an important role in the

pathogenesis of atherosclerosis and may therefore be a

promising target for therapeutic approaches. Drugs known to

date to have targeted inhibitory effects on NLRP3

inflammasomes include statins, metformin (102), colchicine

(74), plant compounds (artemisinin, curcumin, rosmarinic

acid) (73), and the specific small molecule NLRP3 inhibitor

MCC950 (103).

SGLTs are membrane proteins on renal tubular cells whose

main role is to transport certain ions and small molecules that

mediate glucose reabsorption in the kidney. There are two types

of human SGLTs, SGLT1 and SGLT2. SGLT2 is a low-affinity,

high-volume cotransporter that is mainly located in the S1 part

of the renal proximal tubule and completes approximately 90%

of glucose reabsorption. SGLT1 is mainly expressed in the S2

and S3 segments of the brush border of the small intestine and

renal proximal tubule and is responsible for glucose transport in

the intestinal lumen and reabsorption of the 10% of glucose not

reabsorbed by SGLT2 in the renal proximal tubule (104, 105).
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The site of action of SGLT2 inhibitors is highly specific for the

inhibition of renal glucose reabsorption. Sodium-glucose

cotransporter-2 inhibitor (SGLT2i) is a blood glucose control

drug for the treatment of diabetes. It targets renal glucose

reabsorption in an insulin-independent manner to exert its

unique hypoglycemic effect (106). The selectivity of SGLT2i

for SGLT2 correlated well between in vivo and in vitro studies

(r = 0.985; P < 0.05) (107). SGLT2i regulate glycemic control by

enhancing glycosuria, osmotic diuresis and urinary sodium

excretion and exert additional positive effects, such as weight

loss (108). SGLT2 inhibitors are antiatherosclerotic mainly

through several aspects: improving endothelial dysfunction,

improving vascular smooth muscle dysfunction, reducing

macrophage inflammation and foam cell formation, reducing

oxidative stress, reducing inflammation, promoting autophagy,

increasing ketone bodies, reducing body weight, lowering blood

pressure, and lowering uric acid levels (10, 109–111). Four

SGLT2i have been approved for marketing: canagliflozin,

dapagliflozin, empagliflozin, and ertugliflozin. A network

meta-analysis of randomized controlled trials (RCTs) suggests

that engramine may be superior to other SGLT2 inhibitors and

has a lower risk of all-cause mortality and cardiovascular events

in patients with T2DM (112). However, the main drugs known

to have anti-inflammatory effects are dapagliflozin (113) and

empagliflozin (114). How SGLT2 inhibitors alter the

inflammatory process is not fully understood. Current studies

on the effects of SGLT2i on NLRP3 inflammatory vesicles have

focused on diabetic nephropathy (17, 115, 116), atherosclerosis

(25, 110), steatohepatitis (117), and cardiomyopathy (118).

A study showed that SGLT2i treatment in diabetic mice

improved atherosclerotic plaque regression while lowering blood

glucose levels (119). After 30 days of SGLT2i treatment in

patients with T2D combined with high cardiovascular risk,

NLRP3 inflammasome activity in macrophages was

dramatically attenuated, while IL-1b secretion was markedly

reduced (120). This may be related to its ability to inhibit

atherosclerosis by improving poor glucose tolerance associated

with suppression of inflammation (121). SGLT2i can

significantly inhibit the formation and development of aortic

lesions in diabetic ApoE−/− mice and delay the formation of

diabetic atherosclerosis (25). It has been shown that SGLT2

inhibitors can act directly on inflammatory pathways

independent of hypoglycemic pathways (111). SGLT2

inhibitors are safe and well tolerated in adults who are

overweight and obese but do not have diabetes (122). Under

normal glucose conditions, SGLT2i inhibits SMC migration and

proliferation by targeting il-17a-mediated oxidative stress,

NLRP3 expression and inflammatory responses without

inducing cell death (123). Synthesizing the current literature as

well as research results, we summarized the effects and

mechanisms of SGLT2i on the NLRP3 inflammasome in

atherosclerosis treatment (Figure 1).
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Direct action mechanisms

Reduction of oxidative stress
Oxidative stress is a state of imbalance in the body that

favors increased production of reactive oxygen species (ROS)

and reduced antioxidant defense systems, resulting in abnormal

cell signaling and dysfunction (124). As research progresses,

there is increasing evidence that ROS play a more important role

in atherogenesis than natural LDL. ROS play an essential role in

the inflammatory response, apoptosis, cell growth, alterations in

vascular tone, and oxidation of LDL cholesterol (125). Oxidative

stress has emerged as a key factor in the pathogenesis of

atherosclerosis (6). Studies have demonstrated that ROS

generation in the vessel wall is increased in people with risk

elements for atherosclerotic cardiovascular disease (CVD) (126).

The importance of ROS for macrophage-mediated immune

responses is unquestionable (127). Obesity can cause

inflammation and insulin resistance, the key cause of which is

the recruitment and polarization of macrophages (128). ROS

play a key role in NLRP3 inflammasome activation (129, 130),

and excessive ROS production is associated with vascular injury.

All NLRP3 agonists trigger the production of ROS, which

activate NLRP3 inflammatory vesicles through interaction with

ROS-sensitive thioredoxin reductase (TXNIP) (25).

DiMarco et al. demonstrated that accelerated atherosclerosis

in diabetes is associated with elevated ROS (131). SMC

proliferation and migration play a key role in the pathogenesis

of atherosclerosis. Persistent inflammation and oxidative stress
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are also involved in the development of vasoproliferative

diseases. In a study by Sukhanov et al., human aortic smooth

muscle cells (SMCs) were found to express SGLT2 mRNA and

protein, and the application of SGLT2i treatment under normal

glucose conditions reduced oxidative stress, NLRP3 expression,

SMC migration and proliferation and did not induce cell death

(123). Leng et al. showed that SGLT2i reduces the development

of atherosclerosis in the aortic root, mainly by lowering blood

glucose and lipids to inhibit the ROS-NLRP3-caspaspase-1

pathway in macrophages and reduce IL-1b and IL-18

production (25). In another study, Leng et al. effectively

prevented hepatocyte inflammation by treating double HFD/

STZ-fed ApoE-/- mice with SGLT2i, suggesting that SGLT2i

may be involved in the inhibitory activity of ROS-NLRP3

inflammatory vesicles (117).

Inhibition of the NF-kB signaling pathway
Sodium-glucose cotransporter 2 (SGLT2) is a transmembrane

protein that transports large amounts of glucose from the

extracellular to the intracellular compartment in the diabetic

setting. Excess intracellular glucose can induce the activation of

NF-kB, ultimately leading to increased expression of the

proinflammatory molecule HMGB1 (132). HMGB1 is a DNA-

binding protein in the nucleus, and when cells are activated to

release HMGB1, it can act as a strong mediator of inflammation

by inducing activation of its surface receptors RAGE and TLR-4,

thereby increasing the activity of the NF-kB signaling pathway.

SGLT2 inhibition may improve ROS, lipid peroxidation and
FIGURE 1

Mechanism of the effect of SGLT2 inhibitors on NLRP3 inflammatory vesicles in atherosclerosis.
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NLRP3-related pathways by attenuating glucose accumulation in

renal tubular cells and attenuating HMGB1 and RAGE/TLR-4

expression, thereby reducing NF-kB signaling pathway activity

(133–135). Activation of NLRP3 inflammatory vesicles involves

multiple signaling pathways, and the pathways interact with each

other, of which the NF-kB signaling pathway is an essential part of

the NLRP3 activation process (136). In atherosclerotic pathology,

NF-kB regulates the expression of several genes, including

cytokines (TNF-a, IL-1 and IL-6), monocyte chemotactic

proteins and adhesion protein molecules (137). NF-kB is

involved in the inflammatory response by binding to NF-kB
inhibitor (IkB) retained in the cytoplasm, which leads to the

formation of atherosclerotic plaques as well as plaque instability

and rupture (138). Activation of NF-kB can induce the

production of pro-IL-1b and increase the synthesis of NLRP3

(19). The effect of SGLT2 inhibitors on the NLRP3 inflammasome

may be related to its inhibition of the NF-kB signaling pathway.

Abdollahi et al. showed that SGLT2 inhibitors can exert direct

anti-inflammatory effects independent of glucose concentration,

at least in part through inhibition of TLR-4 expression and NF-kB
activation and the secretion of proinflammatory mediators (139).

Xu et al. showed that SGLT2i ameliorated inflammatory changes

induced by NF-kB pathway inhibition in diabetic proximal renal

tubular cells with mature IL-1b, IL-6 and TNF-a expression (115).

By treating ApoE -/- mice that were induced with atherosclerosis

with SGLT2 inhibitors, Liu et al. found that SGLT2 inhibitors

significantly reduced inflammation levels in vivo, mainly by

modulating NF-kB signaling to inhibit IL-1b expression in

oxLDL-treated macrophages (140). The above studies suggest

that SGLT2 inhibitors can exert their anti-inflammatory effects

by inhibiting the NF-kB signaling pathway, and this anti-

inflammatory effect is associated with restricted activation of the

NLRP3 inflammasome.

Activation of cellular autophagy
Autophagy refers to a mechanism by which intracellular

macromolecules (such as organelles and protein aggregates) are

broken down into their component parts and recycled within the

lysosome (141). Defective or dysfunctional components of the cell are

degraded. When mitochondrial autophagy removal is impaired, it

can lead to reduced release of mitochondria-derived DAMPs and

inhibit inflammasome activation (142). The autophagic status also

influences the development and progression of atherosclerosis. The

autophagy-deficient environment can exacerbate cholesterol crystal-

mediated hyperactivation of macrophage inflammasomes and their

atherogenic IL-1b response. Previous studies have shown that

macrophage autophagy is impaired in atherosclerotic lesions in

low-density lipoprotein receptor- or apolipoprotein E-knockout

mice (143, 144).

Currently, an increasing number of studies are focusing on

the relationship between NLRP3 inflammatory vesicles and
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autophagy. The mechanism of autophagy inhibition by NLRP3

inflammatory vesicles may lead to ASC reduction, NLRP3

phosphorylation and mitochondrial ROS clearance. Inhibition

of cellular autophagy can lead to the accumulation of damaged

mitochondria and ROS, which ultimately positively affects

NLRP3 inflammasome activity, thereby mediating the

inflammatory response (129). Autophagy has been suggested

to be the ultimate cellular degradation system of the NLRP3

inflammasome (145). Numerous studies have further shown that

autophagy can regulate inflammasome activation through

multiple mechanisms, including the NLRP3 inflammasome

(146–148). An SGLT2 inhibitor can restore phosphorylated

AMPK and autophagy levels induced by high glucose in a

dose-dependent manner, thereby inhibiting the activation of

the NLRP3 inflammasome (115). Multiple studies have shown

that SGLT2 inhibitor-mediated upregulation of autophagy can

reduce NLRP3 inflammasome expression, thereby attenuating

cardiomyocyte dysfunction and endothelial damage (33, 149).
Indirect mechanism of action: increase in
b-hydroxybutyric acid

Unlike other hypoglycemic agents, specific SGLT2i inhibit

glucose reabsorption by proximal renal tubular cells, and the

hypoglycemic effect can be independent of pancreatic cell function

and insulin sensitivity. This insulin-independent decrease in blood

glucose levels reduces the body’s need for insulin and induces an

increase in the glucagon-to-insulin ratio (150). Systemic energy

metabolism shifts to relative glucose deficiency and triggers

increased lipolysis in adipocytes, fatty acid oxidation, and

ketone body production in the liver (151, 152). It has been

shown that SGLT2i can cause more than doubling of the rate of

WAT lipolysis in rats (153), and WAT lipolysis can produce large

amounts of b-hydroxybutyric acid, acetoacetic acid and acetone

(154). SGLT2 inhibitors stimulate lipolysis and induce mild

ketogenic effects in patients with type 2 diabetes (155, 156). b-
hydroxybutyric acid (b-OHB) is an endogenous NLRP3

inflammasome inhibitor that can reduce the inflammatory

response (157). b-OHB is an NLRP3 inflammasome inhibitor

that can reduce NLRP3 inflammatory vesicle-mediated

production of IL-1b and IL-18 in human monocytes (158). Bae

et al. demonstrated that b-OHB can inhibit endoplasmic

reticulum stress and NLRP3 inflammasome activity in rats by

activating the AMPK pathway (159). Youm et al. found that b-
OHB inhibited NLRP3 inflammasome activation and reduced

macrophage and IL-1b production to stop the progression of

atherosclerosis (160). However, supplementation, such as ketone

supplements, can lead to the acute elevation of b-OHB in the

blood, which can significantly increase the activation of caspase-1

and the secretion of the proinflammatory cytokine IL-1b in whole
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blood (62, 161–163). However, if supplementation with ketone

supplements, for example, leads to an acute elevation of b-OHB in

the blood, it can significantly increase activation of caspase-1 and

increase secretion of the proinflammatory cytokine IL-1b in whole
blood (161–163). Multiple studies (120, 164) have shown that in

patients with T2D combined with CVD, SGLT2 inhibitors

significantly inhibit NLRP3 inflammasome activation and IL-1b
secretion in human macrophages by increasing serum b-OHB
levels and decreasing serum insulin, glucose, and uric acid levels.

In addition, SGLT2i can affect atherosclerosis as well as

cardiovascular events through multiple actions. Tighter glycemic

control through SGLT2i treatment can reduce the number of

monocytes, improve plasma lipoprotein profiles, and have a

significant positive impact on the inhibition of atherosclerosis

(165). SGLT2 inhibitors reduce the rate of major adverse

cardiovascular events and heart failure hospitalizations in

patients with T2DM, regardless of the presence of CVD (166,

167). SGLT2 inhibitors reduce the risk of new ventricular

arrhythmic events in patients with T2DM combined with AMI

(168). DAPA reduces intima-media thickening, eliminates

cardiac hypertrophy and myocardial injury, reduces cardiac

inflammation and fibrosis (169), and has an effect on

myocardial remodeling (170). In addition, engramine may

reduce debilitating conditions in patients with diabetes and

hypertension (171). During treatment with SGLT2 inhibitors,

a beneficial effect on the circadian rhythm of BP and sympathetic

nerve activity (SNA) was demonstrated, resulting in a decrease

in BP without a concomitant compensatory increase in HR

(172). Treatment with SGLT2 inhibitors in T2DM patients

treated with coronary artery bypass grafting (CABG)

significantly reduced the amount of inflammatory factors such

as IL-1, IL-6 and TNF-a (173).
Conclusion

In summary, NLPR3 inflammasome production has an

important role in promoting the development of atherosclerosis.

SGLT2 inhibitors can inhibit the development of atherosclerotic

plaques by inhibiting NLRP3 inflammatory vesicles through

multiple pathways. However, there may be crosstalk between

the above mechanisms; for example, increased intracellular ROS

levels can promote the activation of the NF-kB signaling pathway

and the initiation of cellular autophagy, cellular autophagy can

reduce intracellular ROS levels and inhibit the activation of the

NF-kB signaling pathway, and b-OHB can promote myocardial

autophagic flux and reduce the formation of mitochondrial ROS.

A variety of SGLT2i have been shown to attenuate atherosclerotic

lesions in animal models of diabetes (25, 174–176), and overall
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trial data estimated a relative reduction in the incidence of MACE

(HR 0.89, 95% CI 0.82-0.96) and stroke (HR 0.92, 95% CI 0.79-

1.08) of approximately 11% (177). In diabetic ApoE knockout

(ApoE-/-) mice, SGLT2i (1 mg/kg/day) increased the aortic root

atherosclerotic lesion area by 33% and reduced the atherosclerotic

plaque size by 27% (178). Drugs specific for the treatment of

atherosclerosis are still under further investigation. Indeed, the

potential mechanism of SGLT2 inhibitors on the CV system is

unclear (110). The results of the EMPA-REG study (179) suggest

that SGLT2i activate a nonclassical RAAS pathway, namely, the

angiotensin II type 2 receptor. Activation of angiotensin II type 2

receptors protects the cardiovascular system through multiple

mechanisms, mainly including vasodilation, increased sodium

excretion, anti-inflammation, and anti-arrhythmia. It has also

been shown that SGLT2i may reduce cardiovascular (CV) risk

in patients with type 2 diabetes mellitus (T2DM) by affecting the

aldosterone/renin ratio (ARR) through diuretic and sympathetic

depressant effects (104). An SGLT2 inhibitor, as a hypoglycemic

agent, also inhibits atherosclerosis, but its mechanism and

therapeutic effect still need more basic research and clinical

observation to clarify. What is certain is that patients with type

2 diabetes mellitus combined with atherosclerosis benefit more

from SGLT2 inhibitors.
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