AUTHOR=Bedrick Bronwyn S. , Kohn Taylor P. , Pecker Lydia H. , Christianson Mindy S. TITLE=Fertility preservation for pediatric patients with hemoglobinopathies: Multidisciplinary counseling needed to optimize outcomes JOURNAL=Frontiers in Endocrinology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.985525 DOI=10.3389/fendo.2022.985525 ISSN=1664-2392 ABSTRACT=
Hemoglobinopathies are autosomal recessive disorders that occur when genetic mutations negatively impact the function of hemoglobin. Common hemoglobinopathies that are clinically significant include sickle cell disease, alpha thalassemia, and beta thalassemia. Advancements in disease-modifying and curative treatments for the common hemoglobinopathies over the past thirty years have led to improvements in patient quality of life and longevity for those who are affected. However, the diseases, their treatments and cures pose infertility risks, making fertility preservation counseling and treatment an important part of the contemporary comprehensive patient care. Sickle cell disease negatively impacts both male and female infertility, primarily by testicular failure and decreased ovarian reserve, respectively. Fertility in both males and females with beta thalassemia major are negatively impacted by iron deposition due to chronic blood transfusions. Hematopoietic stem cell transplant (HSCT) is currently the only curative treatment for SCD and transfusion dependent beta thalassemia. Many of the conditioning regimens for HSCT contain chemotherapeutic agents with known gonadotoxicity and whole-body radiation. Although most clinical studies on toxicity and impact of HSCT on long-term health do not evaluate fertility, gonadal failure is common. Male fertility preservation modalities that exist prior to gonadotoxic treatment include sperm banking for pubertal males and testicular cryopreservation for pre-pubertal boys. For female patients, fertility preservation options include oocyte cryopreservation and ovarian tissue cryopreservation. Oocyte cryopreservation requires controlled ovarian hyperstimulation (COH) with ten to fourteen days of intensive monitoring and medication administration. This is feasible once the patient has undergone menarche. Follicular growth is monitored