AUTHOR=Qi Mengmeng , Shao Xianfeng , Li Ding , Zhou Yue , Yang Lili , Chi Jingwei , Che Kui , Wang Yangang , Xiao Min , Zhao Yanyun , Kong Zili , Lv Wenshan TITLE=Establishment and validation of a clinical model for predicting diabetic ketosis in patients with type 2 diabetes mellitus JOURNAL=Frontiers in Endocrinology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.967929 DOI=10.3389/fendo.2022.967929 ISSN=1664-2392 ABSTRACT=Background

Diabetic ketosis (DK) is one of the leading causes of hospitalization among patients with diabetes. Failure to recognize DK symptoms may lead to complications, such as diabetic ketoacidosis, severe neurological morbidity, and death.

Purpose

This study aimed to develop and validate a model to predict DK in patients with type 2 diabetes mellitus (T2DM) based on both clinical and biochemical characteristics.

Methods

A cross-sectional study was conducted by evaluating the records of 3,126 patients with T2DM, with or without DK, at The Affiliated Hospital of Qingdao University from January 2015 to May 2022. The patients were divided randomly into the model development (70%) or validation (30%) cohorts. A risk prediction model was constructed using a stepwise logistic regression analysis to assess the risk of DK in the model development cohort. This model was then validated using a second cohort of patients.

Results

The stepwise logistic regression analysis showed that the independent risk factors for DK in patients with T2DM were the 2-h postprandial C-peptide (2hCP) level, age, free fatty acids (FFA), and HbA1c. Based on these factors, we constructed a risk prediction model. The final risk prediction model was L= (0.472a - 0.202b - 0.078c + 0.005d – 4.299), where a = HbA1c level, b = 2hCP, c = age, and d = FFA. The area under the curve (AUC) was 0.917 (95% confidence interval [CI], 0.899–0.934; p<0.001). The discriminatory ability of the model was equivalent in the validation cohort (AUC, 0.922; 95% CI, 0.898–0.946; p<0.001).

Conclusion

This study identified independent risk factors for DK in patients with T2DM and constructed a prediction model based on these factors. The present findings provide an easy-to-use, easily interpretable, and accessible clinical tool for predicting DK in patients with T2DM.