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pregnancy in women with
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Yingnan Liu1,2, Boya Li1,2, Jie Yan1,2 and Huixia Yang1,2*

1Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China, 2Beijing Key
Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China, 3Department of
Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China, 4School of
Life Sciences, Tiangong University, Tianjin, China, 5Department of Epidemiology and Biostatistics,
School of Public Health, Peking University, Beijing, China, 6Department of Rheumatology and Clinical
Immunology, Peking University First Hospital, Beijing, China, 7Department of Clinical Laboratory, Peking
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Background: Effectively predicting the risk of adverse pregnancy outcome

(APO) in womenwith systemic lupus erythematosus (SLE) during early andmid-

pregnancy is a challenge. This study was aimed to identify potential markers for

early prediction of APO risk in women with SLE.

Methods: The GSE108497 gene expression dataset containing 120 samples (36

patients, 84 controls) was downloaded from the Gene Expression Omnibus

database. Weighted gene co-expression network analysis (WGCNA) was

performed, and differentially expressed genes (DEGs) were screened to

define candidate APO marker genes. Next, three individual machine learning

methods, random forest, support vector machine-recursive feature

elimination, and least absolute shrinkage and selection operator, were

combined to identify feature genes from the APO candidate set. The

predictive performance of feature genes for APO risk was assessed using

area under the receiver operating characteristic curve (AUC) and calibration

curves. The potential functions of these feature genes were finally analyzed by

conventional gene set enrichment analysis and CIBERSORT algorithm analysis.

Results: We identified 321 significantly up-regulated genes and 307 down-

regulated genes between patients and controls, along with 181 potential

functionally associated genes in the WGCNA analysis. By integrating these

results, we revealed 70 APO candidate genes. Three feature genes, SEZ6,

NRAD1, and LPAR4, were identified by machine learning methods. Of these,

SEZ6 (AUC = 0.753) showed the highest in-sample predictive performance for

APO risk in pregnant women with SLE, followed by NRAD1 (AUC = 0.694) and
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LPAR4 (AUC = 0.654). After performing leave-one-out cross validation,

corresponding AUCs for SEZ6, NRAD1, and LPAR4 were 0.731, 0.668, and

0.626, respectively. Moreover, CIBERSORT analysis showed a positive

correlation between regulatory T cell levels and SEZ6 expression (P < 0.01),

along with a negative correlation between M2 macrophages levels and LPAR4

expression (P < 0.01).

Conclusions:Our preliminary findings suggested that SEZ6,NRAD1, and LPAR4

might represent the useful genetic biomarkers for predicting APO risk during

early andmid-pregnancy in women with SLE, and enhanced our understanding

of the origins of pregnancy complications in pregnant women with SLE.

However, further validation was required.
KEYWORDS

systemic lupus erythematosus, adverse pregnancy outcome, early and mid-
pregnancy, bioinformatic analysis, machine learning
Introduction

Systemic lupus erythematosus (SLE) was a systemic

autoimmune inflammatory disease that affected many organ

systems (1). The incidence of SLE ranged from about 40 to 200

cases per 100,000 individuals, depending on ethnicity (2). The

global prevalence of SLE was rising annually (3), and women of

childbearing age were the most susceptible to SLE (4). A

previous study (5) reported that pregnant women with active

SLE exhibit a markedly increased risk of adverse pregnancy

outcomes (APOs), such as preeclampsia (PE), abortion, preterm

birth, stillbirth, renal failure and fetal growth restriction (6).

Early prediction of APO risk in women with SLE was crucial for

reducing maternal and infant mortality.

Previous studies (5, 7–10) had reported multiple predictors

of APO in women with SLE. Mankee et al. (7) identified positive
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lupus anticoagulant (LAC) in the first trimester as a strong

predictor of pregnancy loss. Buyon et al. (5) showed that LAC

(odds ratio [OR], 8.32; CI, 3.59–19.26), antihypertensive use

(OR, 7.05; CI, 3.05–16.31), a Physician’s Global Assessment

score greater than 1 (OR, 4.02; CI, 1.84–8.82), and low platelet

count (OR, 1.33; CI, 1.09–1.63 per decrease of 50 K cells/L) were

powerful predictors of APO in pregnant women with SLE. Kim

et al. (8) confirmed that soluble fms-like tyrosine kinase-1 (sFlt1)

was a robust predictor of severe APO during early pregnancy in

patients with SLE and/or antiphospholipid antibodies.

Vicoveanu et al. (10) determined an SLE Disease Activity

Index 2000 (SLEDAI-2k) score greater than or equal to 4 from

the first trimester and maternal body mass index to be the top

predictors for APO in women with SLE. However, even after

intensive research, prediction strategies for the first and second

trimester are lacking. Since the advent of sequencing technology,

transcriptomics, metabolomics, and proteomics had been

utilized in SLE research during pregnancy (11). These methods

had greatly improved understanding of the etiology,

pathogenesis, and molecular mechanisms.

This study was aimed to find potential genetic biomarkers

associated with APO risk in pregnant women with SLE based on

transcriptomics data. We selected the GSE108497 dataset from 8

US centers and 1 Canadian center (12) to discover APO feature

genes in peripheral blood. We identified 70 APO candidate

genes by performing both differentially expressed genes (DEGs)

analysis and weighted gene co-expression network analysis

(WGCNA). We then identified three feature genes: seizure

related 6 homolog (SEZ6), non-coding RNA in the aldehyde

dehydrogenase 1A pathway (NRAD1), and lysophosphatidic

acid receptor 4 (LPAR4) by employing machine learning (ML)

methods. Finally, we determined the prediction performance of
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SEZ6, NRAD1, and LPAR4 using the area under the receiver

operating characteristic curve (AUC) and calibration curves.

ROC curve analysis and calibration curves showed that SEZ6

exhibited satisfactory predictive performance (AUC = 0.753)

and discrimination ability to predict the risk of APO. The

AUC of 0.731 based on leave-one-out cross validation

(LOOCV) displayed SEZ6 had a fair predictive performance.

The level of immune cell infiltration was highly linked with the

progression and outcome of SLE (13, 14). We observed

significant differences in the infiltration of critical immune

cells, such as plasma cells, naïve CD4 T cells, and monocytes,

between the SLE patients with APO (SLE-APO) and with

normal pregnancy outcome (SLE-NC) groups. SEZ6 was

positively correlated with regulatory T (Treg) cells levels (P <

0.01), and LPAR4 was negatively correlated with M2

macrophages abundance (P < 0.01). These integrative results

of this study provide insight to assist in the identification of

high-risk patients and enable early identification of APO in

pregnant women with SLE.
Methods

Data sources

All gene expression profiles analyzed in this study were

obtained from the GSE108497 GEO dataset, included peripheral

whole blood samples from SLE-APO and SLE-NC, in 8 US

centers and 1 Canadian center during September 2003 to August

2013 (12). According to the descriptions in Hong et al. (12),

APO were defined as: (1) fetal deaths > 12 gestational week

[GW] unexplained by chromosomal abnormalities, anatomical

malformations, or congenital infections; (2) neonatal death

before discharge due to preterm complications; (3) preterm

delivery or termination of pregnancy < 36 GW owing to

growth restriction or placental insufficiency; and (4) small for

gestational age of less than the fifth percentile at birth. Peripheral

blood samples collected at five specific time points (P1, < 16 GW;

P2, 16–23 weeks; P3, 24–31 weeks; P4, 32–40 weeks; and P5, 8–

20 weeks postpartum) were utilized for microarray analysis, as

described by Hong et al. (12). Because we aimed to investigate

APO in early and mid-pregnancy, we retained samples only

from individuals with a GW under 24 weeks (total SLE-APO, n =

36; total SLE-NC, n = 84; P1 SLE-APO, n = 18; P1 SLE-NC, n =

45; P2 SLE-APO, n = 18; P2 SLE-NC, n = 39).
DEGs analysis

DEGs were screened using the “limma” package in R software

(v. 3.6.1) (15). The genes with an absolute log2 fold change greater

than 0.5 and a P-value less than 0.05 were considered DEGs (16).
Frontiers in Endocrinology 03
WGCNA

WGCNA was applied to analyze co-expressed gene modules

and identify potential genes associated with clinical traits.

WGCNA was performed using the “WGCNA” package in R

(17). A power of b=6 and a scale-free R2 = 0.9 were adopted as

soft-thresholding parameters to construct a signed, scale-free co-

expression gene network. Subsequently, the adjacency matrix

was converted into a topological overlap matrix, and the

topological overlap dissimilarity was used as hierarchical

clustering input.
Functional enrichment analysis of APO
candidate genes

APO candidate genes were identified as intersecting genes of

DEGs and the turquoise module in WGCNA. After obtaining

the APO candidate genes, disease ontology (DO), Gene

Ontology (GO), and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were performed using the

“DOSE” and “clusterprofiler” packages (including”enrichGo”

and “enrichKEGG” functions) in R (18, 19).
Feature genes screening by ML

ML algorithms had advantages in multi-omics integrated

analysis and provided potent data mining tools for discovering

new clinical predictors (20–23). To screen feature genes, we

selected random forest (RF) (24), support vector machine-

recursive feature elimination (SVM-RFE) (25), and least

absolute shrinkage and selection operator (LASSO) models

(26). RF, SVM-RFE, and LASSO analyses were performed

using the R packages “randomForest”, “caret”, and “glmnet”,

respectively. RF was a non-parametric method using random

decision trees for classification, and was used for many biological

applications ranging from gene selection to disease prediction

(24). SVM-RFE was an efficient machine learning algorithm for

selection and visualization of the most relevant features through

non-linear kernels (25). The LASSO regression was used for

feature selection and dimension reduction (26). We identified

feature genes by creating Venn diagrams of RF, SVM-RFE and

LASSO results, as reported previously (27, 28).
Evaluation of predictive performance

Receiver operating characteristic curves (ROCs) and

calibration curves were used to evaluate the predictive ability

of feature genes. To further examine the predictive performance

of feature genes, LOOCV method was applied. Calibration
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curves were constructed using the “calibrate” function in “rms”

package of R software with 1000 bootstrap resampling (29).
Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using

GSEA software (30). For each gene set of interest, an enrichment

score was calculated and statistical significance was determined

by comparing against the expected result of 10000 randomly

permutations of the original data set (31). Gene sets with a

nominal p-value < 0.05 and a false discovery rate (FDR) of < 0.25

were accepted as significantly enriched.
Immune cell infiltration analysis

The CIBERSORT (32) algorithm in the “CIBERSORT” R

package was used to quantify the relative proportions of

infiltrating immune cells for each sample and evaluate their

correlation with the expression of feature genes.
Statistical analysis

All analyses were performed using R software (v.3.6.1). P <

0.05 was considered significant, P < 0.01 was considered highly

significant, and P < 0.001 was considered very highly significant.
Results

Data preprocessing and DEG screening

We analyzed data from 36 SLE-APO patients and 84 SLE-

NC individuals during early to mid-pregnancy in 8 US centers

and 1 Canadian center (Figure 1). The baseline characteristics of

SLE-NC and SLE-APO groups were listed in Supplementary

Table 1. The original expression datasets from GSE108497

showed acceptable normalization (Figure 2A). Based on the

defined criteria, we obtained 628 DEGs between SLE-APO and

SLE-NC. Of these, 321 were significantly upregulated and 307

were significantly downregulated in the SLE-APO group relative

to the SLE-NC group (Figure 2B). Heat map construction

revealed that DEGs between the SLE-APO and SLE-NC

groups were distinguishable (Figure 2C).
Identification of clinically significant
modules and genes in WGCNA network

To further investigate candidate genes associated with clinical

traits of SLE-APO, we performed the WGCNA analysis. To begin
Frontiers in Endocrinology 04
with, for construct a scale-free network, we set the soft threshold

(b) = 6 (scale-free R2 = 0.90; Supplementary Figure 1A).

Subsequently, modules with high similarity were merged and

the co-expression module (turquoise) was identified

(Supplementary Figure 1B). Correlation analysis between co-

expression modules and disease revealed that the MEturquoise

module was significantly negatively correlated with SLE-APO

(r = −0.24, P = 0.009; Figure 3A). Furthermore, the correlation

between the gene significance and module membership was 0.19

(P = 0.01; Figure 3B). We identified 181 genes closely associated

with SLE-APO in the WGCNA network (Figure 3C).
DO, GO, and KEGG enrichment analysis
of APO candidate genes

To reduce the false positive rate, we performed the Venn

diagram analysis and obtained 70 APO candidate genes

(Figure 3C). To further explore the biological functions of these

candidate genes, we performed DO, GO, and KEGG. DO

enrichment analysis showed that APO candidate genes were

significantly enriched in multiple myopathy- and cardiomyopathy-

related pathways (Supplementary Figure 2A). Previous research

found that SLE patients with APO had a higher rate of subclinical

cardiovascular disease (33). GO enrichment analysis results were

divided in biological process, cellular component, and molecular

function (Supplementary Figure 2B). For biological process, 70 APO

candidate genes were significantly enriched in vascular associated

smooth muscle cell migration and glomerular visceral epithelial cell

differentiation. For cellular component, genes were associated with

the postsynaptic membrane and synaptic membrane. In the

molecular function category, APO candidate genes were mainly

enriched in gated channel, ion channel, potassium channel and

ligand−gated ion channel activity. KEGG enrichment analysis

showed that APO candidate genes were mainly enriched in

progesterone-mediated oocyte maturation, cell cycle, and oocyte

meiosis pathways (Supplementary Figure 2C).
Screening and verification of feature
genes via ML models

Three ML models (SVM-RFE, RF, and LASSO) were applied

to screen feature genes from 70 APO candidate genes. The SVM-

RFE model highlighted 13 genes (Supplementary Table 2), and

the highest prediction accuracy was up to 73.9% (Supplementary

Figure 3A). RF analysis highlighted 15 genes, with SEZ6 ranked

highest by importance score (Figure 3D; Supplementary

Figure 3B, and Supplementary Table 3). The LASSO algorithm

identified 19 genes (Supplementary Figure 3C, Supplementary

Table 4). By determining the intersection of these three ML

models, we identified three feature genes: SEZ6, NRAD1, and

LPAR4 (Figure 3E).
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The AUC and calibration curve were the metric to evaluate

the prediction performance. We evaluated the capability of the

diagnostic classifier in distinguishing between SLE-APO and

SLE-NC, showing that SEZ6 had the highest in-sample

predictive ability (AUC = 0.753) followed by NRAD1

(AUC = 0.694), and LPAR4 (AUC = 0.654) (Figure 4A). The

LOOCV results showed that the AUC for the SEZ6, NRAD1,

and LPAR4 was 0.731, 0.668, and 0.626, respectively (Figure 4B).

Then, the calibration curve of SEZ6, NRAD1, and LPAR4 for

predicting the risk of the SLE-APO exhibited good agreement

between predictions and actual observations (Figures 4C–4E).
GSEA of feature genes

All three feature genes exhibited lower expression in the SLE-

APO group than in the SLE-NC group (Supplementary Figure 4). To
Frontiers in Endocrinology 05
investigate the biological roles of these feature genes, we performed

GSEA in the low-expression group of the three feature genes.

The genes downregulated in the SEZ6 low-expression group

were significantly associated with arachidonic acid metabolism,

cardiac muscle contraction, ribosome, thiamine metabolism and

epithelial cell signaling in helicobacter pylori infection

(Figure 5A). Genes downregulated in the NRAD1 low-

expression group were enriched in complement and coagulation

cascades, ferroptosis, hippo signaling pathway–multiple species,

phototransduction and epithelial cell signaling in helicobacter

pylori infection (Figure 5B). The downregulated genes in the

LPAR4 low-expression group showed a strong correlation with

allograft rejection, asthma, autoimmune thyroid disease,

phototransduction, and ribosome pathways (Figure 5C).

Furthermore, SEZ6 expression was positively correlated with

LPAR4 expression and negatively correlated with NRAD1

expression in SLE-APO group (Figure 5D).
FIGURE 1

Flow chart of the data processing procedure. *P < 0.05, **P < 0.01, and ns, not significant.
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Infiltrating immune cells in SLE-APO

We performed immune cell infiltration analysis between

the SLE-NC and SLE-APO groups. The fraction of immune

cells in the SLE-NC and SLE-APO groups as estimated by

CIBERSORT were shown in Figure 6A. The SLE-APO group

exhibited a significantly higher proportion of plasma cells (P <

0.05) and naïve CD4 T cells (P < 0.01) and significantly lower
Frontiers in Endocrinology 06
proportion of monocytes (P < 0.01) than the SLE-NC group

(Figure 6B). To further elucidate the immune-related

functions of SEZ6, NRAD1, and LPAR4, we performed a

correlation analysis between these genes and immune

infiltrating cells. The results showed that SEZ6 was positively

correlated with Treg cells levels (P < 0.01), and LPAR4 was

negatively correlated with M2 macrophage (P < 0.01)

abundance (Figure 6C).
A

B

C

FIGURE 2

The screening of DEGs from GSE108497. (A) Visualization of GSE108497 after normalization. The horizontal axis represents the sample symbol
and the vertical axis represents the expression values. The short black line in the box plot indicates the median value of gene expression. (B) A
volcano plot of differentially expressed genes (DEGs). The genes with an absolute log2 fold change greater than 0.5 and P-value less than 0.05
were selected. Red dots represent upregulated genes while blue dots represent downregulated genes. (C) Heat map of the DEGs. The legend of
“type” on the top right indicates the SLE patients with APO (SLE-APO) and SLE patients with normal pregnancy outcome (SLE-NC).
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Discussion

SLE was a complex autoimmune disease with unpredictable

severity, especially during pregnancy (34). Previous research had

shown that most cases of SLE exacerbation (42.8%) occurred in

the third trimester (35). Preterm premature rupture of

membranes (16.6%), PE or eclampsia (15.6%), and preterm

labor (12.7%) were the most common complications of SLE

during pregnancy (36). Therefore, more studies were needed to

identify biomarkers that could help predicting APO during early
Frontiers in Endocrinology 07
and mid-pregnancy. Recent studies had shown that two

metabolites (LysoPC C22:5 and tryptophan) (37) and three

proteomic predictors (SVEP1, LCAT, TGM2) (38) could

accurately predict APO in pregnant woman with SLE during

mid-pregnancy. Nevertheless, many challenges remained

regarding the prediction of APO risk in women with SLE

during the first-trimester, requiring further research.

In this study, we employed multiple gene screening modes

(DEG analysis, WGCNA and ML algorithms) and identified

feature genes to identify potential markers for early prediction of
A

B

C

D

E

FIGURE 3

Identification of feature genes. (A) Heatmap of the correlation between module eigengenes and SLE-NC and SLE-APO. (B) Scatter plot for
correlation between the gene significance for SLE-APO and Module Membership in the turquoise module. (C) Venn diagram illustrating the
intersections of WGCNA-identified co-expressed genes and DEGs. (D) Genes ranked by importance for the RF algorithm. (E) Venn diagram
displaying 3 feature intersecting genes according to the SVM-RFE, RF and LASSO analysis.
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APO risk in women with SLE. We identified SEZ6, NRAD1, and

LPAR4 as closely related to APO in women with SLE. ROC curve

analysis and calibration curves showed that SEZ6 exhibited fair

predictive performance (LOOCV-validated AUC = 0.731) and

satisfactory discrimination ability to predict the risk of APO.

Notably, significant differences were observed in the infiltration

of critical immune cells, such as plasma cells, naïve CD4 T cells,

and monocytes, between the SLE-APO and SLE-NC groups.

SEZ6 was positively correlated with Treg cells levels (P < 0.01),

and LPAR4 was negatively correlated with M2 macrophages

levels (P < 0.01).

The functions of SEZ6, NRAD1, and LPAR4 were closely

linked with immune regulation or pregnancy complications. The

SEZ6 family included SEZ6, SEZ6-like (SEZ6L) and SEZ6L2.

SEZ6 was essential for nervous system development and

maintenance (39). A recent study (40) showed that SEZ6

family were novel complement regulator and that SEZ6

protein restricted C3b/inactive C3b opsonization in Chinese
Frontiers in Endocrinology 08
hamster ovary cells through classical and alternative pathways.

NRAD1, also known as LINC00284, was localized to the nucleus

and bound chromatin to affect gene expression (41). A recent

study (42) demonstrated that NRAD1 was significantly

downregulated in PE placental samples. Lysophosphatidic acid

(LPA) exerted a variety of biological effects, including motility

and proliferation, by binding to the LPA receptor LPAR1-6. In a

previous study (43), WGCNA of gene expression profiles in

placental tissue from pregnant women with severe PE indicated

that LPAR4 might play key roles in PE development. mRNA

expression level of LPAR4 had been shown to be significantly

higher in the placentas of PE patients than in normal

placentas (44).

GSEA results revealed that most downregulated genes in the

low SEZ6, NRAD1, and LPAR4 expression groups were mainly

enriched in metabolic, ribosome and immune pathways. Down-

regulated genes in the SEZ6 low-expression group were

significantly enriched in arachidonic acid and thiamine
A B

D E

C

FIGURE 4

Predictive abilities for SEZ6, NRAD1, and LPAR4. (A) The ROC curve of SEZ6, NRAD1, and LPAR4 for predicting APO risk in women with SLE
during early and mid-pregnancy. (B) The Leave-one-out-cross-validation ROC curve of SEZ6, NRAD1, and LPAR4 for predicting APO risk in
women with SLE during early and mid-pregnancy. (C–E) The calibration curves for SEZ6(C), NRAD1 (D) and LPAR4 (E) for predicting APO risk in
women with SLE during early and mid-pregnancy.
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metabolism. Arachidonic acid could be metabolized into

prostaglandins through the cyclooxygenase pathway (45). A

recent study (46) showed that prostaglandin D2 (PGD2) and

PGD2 receptors (PTGDRs) induced basophil activation and

infiltration in the kidney of SLE patients by mediating C-X-C

theme ligand 12 (CXCL12). This study suggested that PTGDR-1

and PTGDR-2 represented promising therapeutic targets to

prevent flares in SLE patients. Besides, maternal thiamine

metabolism was closely related to fetal development, and

thiamine diphosphate levels had been shown to be higher in

preterm than in full-term infants and lower in multiples than in
Frontiers in Endocrinology 09
singletons (47). GSEA results further suggested a close

relationship between SEZ6, LPAR4 and ribosomal related

pathway. Ribosome biogenesis and translation were

particularly critical for cell growth and proliferation (48). Jie

et al. (49) reported that knockdown of ribosomal protein L39

(RPL39) inhibited the proliferation, migration, and invasion of

trophoblast cells in vitro. APO was closely related to abnormal

biological function of trophoblasts, since trophoblast cells were

vital to placental and fetus development (50, 51). Therefore, the

expression of SEZ6 and LPAR4 might play potential pathogenic

role in APO. Furthermore, the enriched pathways of NRAD1
A B

DC

FIGURE 5

Biological pathways analysis in the low-expression group of three feature genes by GSEA analysis. (A–C) Down-regulated gene sets in the low-
expression group of SEZ6 (A), NRAD1 (B) and LPAR4 (C). (D) Correlation analysis of gene expression of SEZ6, NRAD1, and LPAR4 in SLE-APO group.
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and LPAR4 included immune system pathways, such as those

related to complement and coagulation cascades, asthma, and

autoimmune thyroid disease. The disorder of the immune

system had been associated with numerous APO (52, 53). A

recent study (52) reported that activation of complement and

coagulation cascades was the main pathophysiological pathway

enriched in early-onset severe PE. Pregnant women with early-

onset severe PE had significantly higher deposits of C5b-9 and

Von Willbrand factor compared to those without complications.
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A recent study (53) showed that autoimmune thyroid disease

was associated with increased risk of fetal growth restriction,

small-for-gestation age, PE and preterm birth.

The level of immune cell infiltration was closely related to the

progression and outcome of SLE (13, 14). To further investigate

the role of immune cell infiltration in SLE-APO, we performed a

comprehensive evaluation using CIBERSORT and conducted

correlation analysis between infiltrating immune cells and SEZ6,

NRAD1, and LPAR4. The SLE-APO group exhibited a
A

B C

FIGURE 6

Immune cell infiltration analysis for SLE-NC and SLE-APO. (A) The proportion of 22 immune cells in SLE-NC and SLE-APO groups quantified by
the CIBERSORT algorithm. (B) The difference of the proportions of 22 immune cells between SLE-NC and SLE-APO groups. (C) The correlation
between SEZ6, NRAD1, and LPAR4 and immune-infiltrating cells in SLE-APO group. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not significant.
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significantly higher proportion of plasma cells (P < 0.05) and naïve

CD4+ T cells (P < 0.01), and a significantly lower proportion of

monocytes (P < 0.01) than the SLE-NC group. Previous studies

(54, 55) had shown that plasma cells played a key role in the

development of SLE and were positively associated with disease

activity in patients with SLE. The plasma cells signature had been

shown to increase in SLE pregnancies with fetal complications in

the third trimester (12). Naïve CD4 T cells could differentiate into

T helper cell (Th), follicular T helper and Treg subpopulations

after T cell receptors activation in different cytokine environments

(56). Previous study had found DNA methylation defects played

an important role in the pathogenesis of SLE (57). Xin L et al. (58)

found that committed Th1 CD4+ T cell differentiation blocked

pregnancy induced Foxp3 expression with antigen specific fetal

loss. Previous research (59) revealed significant fewer monocytes

in SLE patients than in healthy individuals. Because monocytes

regulated multiple immune responses, the decrease in monocytes

would lead to an abnormal regulation of the immune response

and played key roles in the pathogenesis of SLE (60). Monocyte

activation was significant for normal pregnancy. Monocyte-

derived macrophages played influential roles in trophoblast

invasion, remodeling of spiral arteries, and immune homeostasis

at the maternal-placental interface (61, 62).

Our results showed that SEZ6 was positively correlated with

Treg cells levels (P < 0.01), and LPAR4 was negatively correlated

with M2 macrophages levels (P < 0.01). Miscarriage, PE, and

implantation failure were closely associated with the

maldistribution and dysfunction of Treg cells (63). The

number of decidual effector Treg cells was reduced in patients

with early miscarriage (64), and clonally expanded effector Treg

cells were significantly reduced in patients with PE (65), as

compared to normal pregnancies. Macrophages were classically

polarized into classically activated macrophages (M1) and

alternatively activated macrophages (M2) in response to

stimulation by different immune microenvironments (66).

Studies (67, 68) had shown that a decrease in the proportion

of M2-like macrophages and an increase in total macrophages

was detrimental to embryo implantation. Therefore, we

hypothes i zed tha t SEZ6 and LPAR4 might exe r t

immunomodulatory roles in the development of APO. Further

studies were needed to elucidate the complex interactions

between genes and immune cells.

Our study contributes to the existing literature in three

major aspects. First, because most previous studies (37, 38, 69)

focused on data from the second trimester to predict the risk of

APO in women with SLE, data from first trimester was urgent

needed. For this reason, we specifically focused on women in

early and mid-pregnancy. Second, noninvasive prenatal testing

had received widespread attention since its introduction in 2011

because it only required maternal peripheral blood (70). This

had led to increasing interest in developing peripheral blood-

based biomarkers for pregnant women (71–73). Thus, in the

present study, we performed transcriptome analysis from
Frontiers in Endocrinology 11
peripheral blood samples taken during pregnancy from nine

North America centers (12). Based on the large-scale application

of noninvasive prenatal testing, the validation of the findings of

this study in a larger population was feasible. Third, this study

employed various methods, including DEG analysis, WGCNA,

and ML, to find new biomarkers. Our findings provided new

ideas for future research on APO risk in women with SLE.

However, there were some limitations in our study. First,

although we included a fairly large group of 120 samples from

patients in nine centers, our results were exploratory in nature

and require further validation. Second, while the AUC of SEZ6

showed a satisfactory value, the results needed to be interpreted

with caution considering our results were based on within-

sample performance. Third, we did not evaluate the

performance of our biomarkers with known APO risk factors,

such as LAC status, sFlt1 values, and SLEDAI-2k scores. Fourth,

the underlying mechanisms by which these feature genes

affected pregnant women with SLE remained unknown.

Further studies on the relationship between these genes and

immune cell infiltration were also necessary.

In conclusion, we identified three predictive gene

biomarkers (SEZ6, NRAD1, and LPAR4) of APO in pregnant

women with SLE, among which SEZ6 and LPAR4 were closely

associated with immune cell infiltration. We found SEZ6,

NRAD1, and LPAR4 might be sensitive biomarkers of APO

risk in pregnant women with SLE. Our findings help to improve

our understanding of the pathogenesis of APO in women with

SLE, and will contribute to the development of personalized

clinical management of pregnant women with SLE.
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