Non-alcoholic fatty liver disease (NAFLD), a metabolic disorder that develops from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), has become an epidemic of chronic liver dysfunction worldwide. However, mechanisms that govern the transition from NAFL to NASH have not been fully elucidated.
Gene expression profile data of NAFLD liver tissues were obtained from Gene Expression Omnibus (GEO), including three microarray datasets with 60 NAFL and 44 NASH patients. Integrative differentially expressed genes (DEGs) between NAFL and NASH patients were identified using robust rank aggregation (RRA) analysis. Hub genes were identified combined with gene ontology functional annotation and protein–protein interaction network construction and validated using a sequencing dataset. Huh-7 cells with palmitate-induced lipid overload and NAFLD-diet mouse model of different stages were used to verify our findings.
RRA analysis determined 70 robust DEGs between NAFL and NASH. The most robustly upregulated genes were
Our integrated analysis identified novel gene signatures and provided comprehensive molecular mechanisms underlying the transition from NAFL to NASH. Metallothionein might be a potential intervention target for NAFLD progression.