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Integrative analysis reveals novel
associations between DNA
methylation and the serum
metabolome of adolescents
with type 2 diabetes: A cross-
sectional study

Prasoon Agarwal1,2, Brandy A. Wicklow1,3, Allison B. Dart1,3,
Nikho A. Hizon1,4, Elizabeth A.C. Sellers1,3, Jonathan
M. McGavock1,3, Charlotte P. J. Talbot1,2, Mario A. Fonseca1,2,
Wayne Xu4,5, James R. Davie1,4,5, Meaghan J. Jones1,4,
Animesh Acharjee6,7,8* and Vernon W. Dolinsky1,2*

1Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the
Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada,
2Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada,
3Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada,
4Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada,
5Research Institute in Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada,
6Institute of Cancer and Genomic Sciences, University of Birmingham, Winnipeg, MB, Canada,
7Institute of Translational Medicine, University Hospitals Birmingham National Health Service (NHS)
Foundation Trust, Birmingham, United Kingdom, 8National Institute for Health and Care Research
(NIHR) Surgical Reconstruction and Microbiology Research Centre, Birmingham, United Kingdom
Objective: Rates of type 2 diabetes (T2D) among adolescents are on the rise.

Epigenetic changes could be associated with the metabolic alterations in

adolescents with T2D.

Methods: We performed a cross sectional integrated analysis of DNA

methylation data from peripheral blood mononuclear cells with serum

metabolomic data from First Nation adolescents with T2D and controls

participating in the Improving Renal Complications in Adolescents with type

2 diabetes through Research (iCARE) cohort study, to explore the molecular

changes in adolescents with T2D.

Results: Our analysis showed that 43 serum metabolites and 36 differentially

methylated regions (DMR) were associated with T2D. Several DMRs were

located near the transcriptional start site of genes with established roles in

metabolic disease and associated with altered serummetabolites (e.g. glucose,

leucine, and gamma-glutamylisoleucine). These included the free fatty acid

receptor-1 (FFAR1), upstream transcription factor-2 (USF2), and tumor necrosis

factor-related protein-9 (C1QTNF9), among others.
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Conclusions: We identified DMRs and metabolites that merit further

investigation to determine their significance in controlling gene expression

and metabolism which could define T2D risk in adolescents.
KEYWORDS

type 2 diabetes mellitus, metabolomics, DNA methylation, integration of
data, pediatrics
Introduction

Type 2 diabetes (T2D) is a global epidemic, but a major

concern is the rising incidence among youth (1). In 1990 T2D

accounted for only 3% of new diagnoses of diabetes among U.S.

children, but by 2010 that number rose to 45% in some

populations (2). In the Canadian province of Manitoba, the

annual incidence of T2D in children increased from 22.8 to 35.7

cases per 100,000 children between 2007 and 2017, affecting a

disproportionate number of First Nations youth (3). An

understanding of the underlying pathology of T2D is

paramount to improving clinical outcomes.

Adult-onset T2D progresses gradually from impaired

glucose tolerance to b-cell failure, but in youth, the loss of b-
cell function is accelerated (4). Single gene polymorphisms alone

do not explain the rapid rise of T2D in youth observed over a

single generation, suggesting the pathophysiology of T2D in

youth could involve additional gene and environment

interactions (5). As our study population is First Nations

youth in Canada, we remain cognizant of the environmental,

social and political impact of colonization which has had a

powerful detrimental effect on Indigenous populations.

Colonization disrupted food sovereignty and connection to the

land that blocked access to traditional farming, food-gathering,

hunting and fishing practices that are fundamental to the

maintenance of health within First Nations populations and an

associated dependence on non-traditional foods with inferior

nutrient qualities. Environmental alterations such as these could

have a major influence on the epigenome (changes occurring on

the DNA where the DNA sequence itself is not changed), which

then may affect T2D risk (6, 7).

Metabolites play a key role as both biomarkers and

mediators of T2D development, and metabolic perturbations

could explain the aggressive course of T2D in youth (8, 9).

Though studies have characterized the circulating metabolomic

profile of adults with insulin resistance and T2D, data from

pediatric populations are limited. Some studies reported that

aromatic and branched chain amino acids (BCAAs) were

associated with insulin resistance and T2D in youth (8, 10–

13). Through a combination of indirect calorimetry and mass

spectrometry researchers showed that, unlike adults with T2D,
02
changes in acylcarnitine’s and fatty acid oxidation were not

observed in youth with T2D (8). Collectively these findings

suggest that the metabolic perturbations of T2D are different in

adolescents compared to adults. Growing evidence suggests that

epigenetic modifications including DNA methylation can be

affected by the nutritional and metabolic state (14). Persistent

changes in the methylome could also be associated with

pathogenic metabolic profiles. For example, alterations in

DNA methylation have been reported in peripheral blood

mononuclear cells (PBMCs) and human islets from T2D

adults (7). To date, no studies have linked DNA methylation

and serum metabolomic profiling of adolescents diagnosed

with T2D.

Since the pathogenesis of pediatric T2D is different from

T2D in adults, the objective of this study was to explore changes

in the epigenetic landscape of peripheral blood mononuclear

cells that are associated with an altered serum metabolome. In

this study, we linked differentially methylated regions (DMRs) to

five biologically important metabolites that were significantly

altered in adolescents with T2D. The metabolites correlated with

several DMRs in adolescents with T2D that were located near

the transcriptional start sites (TSS) of several biologically

relevant genes, including the free fatty acid receptor-1

(FFAR1), upstream transcription factor-2 (USF2), and the

novel cytokine, tumor necrosis factor-related protein-9

(C1QTNF9). These data will help us generate new hypotheses

to investigate the mechanisms that influence the metabolomic

profile of adolescents diagnosed with T2D.
Material and methods

iCARE cohort

The iCARE cohort study (15) received informed consent

from study participants and approval from the University of

Manitoba/Health Sciences Centre Research Ethics Board

(HS13255), First Nations patient and parent advisory

committee and the First Nation Health and Social Secretariat

of Manitoba and the iCARE participant and parent advisory

committees. In this study, we performed a subgroup analysis of
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the iCARE cohort that consisted of 12- to 24-year-old First

Nations adolescents diagnosed with T2D prior to 18 years of age

(mean age of 15). The controls are normoglycemic overweight or

obese adolescents at risk of developing T2D (mean age of 16). All

of the patients were fasting a minimum of 8h prior to sample

collection. The diagnosis of T2D was based on biochemical and

clinical criteria and the absence of insulin and glutamic acid

decarboxylase antibodies. All the clinical parameters are shown

in Table 1 (for the whole cohort) and Supplementary Table 3

(samples selected from the cohort for SOLiD sequencing). Non-

adjusted p-values were calculated using Student’s t- test and Chi-

Square test.
Metabolomics analysis of T2D
adolescent serum

Samples were prepared using the automated MicroLab

STAR® system (Hamilton Company, Boston, U.S.A).

Metabolomic methods utilized a Waters ACQUITY ultra-

performance liquid chromatography (UPLC) and a Thermo

Scientific Q-Exactive high resolution/accurate mass

spectrometer interfaced with a heated electrospray ionization

(HESI-II) source and Orbitrap mass analyzer operated at 35,000
Frontiers in Endocrinology 03
mass resolution. [See Supplementary Methods (Supplement

S1)]. Raw data was extracted, peak-identified and QC

processed using Metabolon ’s hardware and software.

Compounds were identified by comparison to library entries

of purified standards or recurrent unknown entities. Entities

with more than 20% missing values were removed,

MetaboAnalyst 4.0 was used to impute values (replace the

value by a small value which is half of the minimum positive

value in the original data), followed by data filtering and auto

scaling. Details of metabolite quantification and data scaling are

found in the Supplementary Methods (Supplement S1).
SOLiD library preparation and
bioinformatics analysis

Genomic DNA was extracted from the peripheral blood

mononuclear cells (PBMC) from a subset of the cohort that were

included in the serum metabolomics dataset and was comprised

of 21 adolescents with T2D and 10 control participants. Libraries

were prepared according to the MethylMiner™ manufacturer’s

protocol (ThermoFisher scientific Catalog number ME10025).

MethylMiner enriches double-stranded methylated DNA based

on CpG methylation density, with increased sensitivity over
TABLE 1 Anthropometric characteristics of the primary cohort used in the study.

Anthropometric characteristics Control adolescents (n=42) Adolescents with T2D (n=113) P-value Statistical test

Age (years) 16.08 (3.11) 15.24 (2.58) 0.09 t-test

Gender (Male/Female) (14/28) (35/78) 0.78 Chi-Square

Weight (kg) 90.33 (23.56) 86.46 (22.73) 0.35 t-test

Height (cm) 166.00 (8.53) 165.28 (9.64) 0.67 t-test

Waist (cm) 104.96 (19.72) 105.03 (18.28) 0.98 t-test

BMI (kg/m²) 32.43 (6.79) 31.37 (6.49) 0.37 t-test

BMI Z-score 1.66 (0.83) 1.79 (0.72) 0.31 t-test

Duration of diabetes (years) / 2.12 [3.12] / /

Albuminuria (%) 9.5 39.6 <0.001 Chi-Square

Ambulatory Hypertension (%) 22.5 22.8 0.92 Chi-Square

Nocturnal Hypertension (%) 22.5 32.7 0.23 Chi-Square

Plasma glucose (mmol/L) 3.44 (1.59) 11.38 (5.95) <0.001 t-test

ALT (units/L) 25.64 (23.05) 29.28 (22.28) 0.32 t-test

AST (units/L) 22.61 (10.35) 22.45 (14.91) 0.95 t-test

HbA1c (mmol/mol) 5.65 (0.24) 9.38 (2.73) <0.001 t-test

Total Cholesterol (mmol/L) 3.91 (0.67) 4.45 (0.98) <0.01 t-test

Triglycerides (mmol/L) 1.28 (0.64) 2.19 (2.13) <0.01 t-test

HDL (mmol/L) 1.22 (0.31) 1.12 (0.28) 0.06 t-test

LDL (mmol/L) 2.10 (0.51) 2.37 (0.68) <0.05 t-test

Total Cholesterol/HDL Ratio 3.37 (0.93) 3.95 (1.19) <0.05 t-test

LDL/HDL Ratio 1.83 (0.64) 2.17 (0.79) <0.05 t-test
Values are means (SD). For the variable “duration of diabetes”, values are presented as median [interquartile range]. P values ≦ 0.05 were considered significant. P-values were calculated
using Student’s t-test and Chi-Square test.
T2D, type 2 diabetes mellitus; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; HbA1c, glycated hemoglobin.
There are 42 controls and 113 patients with T2D included in this study.
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antibody-based methods. The methylated DNA obtained was

subjected to SOLiD sequencing where 50-bp single end sequence

reads were ensured by quality check (noise to signal ratio). The

sequence reads were mapped to the human reference genome

(hg19) using the MethylMiner™ Mapping Analysis module of

the LifeScope v2.5.1 software package (Life Technologies).
Data preprocessing and normalization

Regions enriched with DNA methylation across the genome

were identified using the “callpeak” function from Model-based

Analysis of ChIP-seq (MACS2) (16), with model fold = [5, 30]

and FDR < 0.05 on the aligned reads generating 31 peaksets. The

below peak filtering was done using the DiffBind package in R

(17). As we included males and females in the cohort, we

removed sex chromosomes using ENCODE blacklist regions

(18) and those present in at most 2 samples were excluded from

downstream analyses, leaving a total of 732 984 peaks. The edgeR

package (19) was used to normalize for sequencing depth

and effective library size by transforming data into counts per

million and performing the trimmed mean of M-value

(TMM) normalization.
Linear modelling

Cell-type proportion effects were corrected for using the sva

package (20) reference-free cell-type correction method. The top

2 surrogate variables were included in the regression model. A

generalized linear model in edger was used to identify

differentially methylated regions (DMRs) between diabetes

cases and controls using the following formula: Reads ~

Diabetes status + Age + Sex + BMI + SVs. Multiple testing

was corrected for using the Benjamini-Hochberg method.

Statistical significance was set at FDR < 0.05.
Multivariate statistical analysis

The multiomic data sets (metabolomic and DNA

methylation data) were analyzed using the multivariate

statistical analysis tools found in SIMCA (version 13; Umetrics

AB, Umeå, Sweden) and Metaboanalyst 5.0. Unsupervised

hierarchical clustering was performed for the 43 statistically

significant metabolites to identify different metabolite clusters.

Based on the relevance of metabolites to the profile of T2D

patients from other studies, we selected five metabolites from

each of the separate clusters for data fusion (gamma-

glutamylisoleucine, glucose, leucine, palmitoylcholine and

sphingomyelin). We used a supervised classification method
Frontiers in Endocrinology 04
called orthogonal partial least-squares discriminant analysis

(OPLS-DA) to identify the metabolites and DMRs that are

most interesting for this analysis. We quantified model

statistics based on the fraction of the sum of squares for the

selected component (R2), which equates to the percentage of the

model variance explained, and the predictive ability (Q2). Cross-

validation was performed to predict and estimate the model

performance (whether models were over fitted). For OPLS-DA

models, random permutation was used whereby the class

membership of individual samples are permuted randomly. In

addition, ANOVA of the cross-validated residuals (CV-

ANOVA) test was performed within Simca to further validate

the models validated by selecting two thirds of the samples

randomly and then predicting the class membership of the rest

of the one third. We used variable importance in the projection

scores (VIP) to prioritize the metabolites. A VIP score cutoff of

>1.5 was considered in the model (21).
Peak annotation and omics data fusion
and visualization

The peaks were annotated to -5000 bp to 5000 bp of the (TSS

of the nearest gene) the nearest gene using the software Genomic

region enrichment of Annotation s tool (GREAT v 4.04) where

human genome assembly hg19 was used for annotation and for

the background the whole genome was used. Omics data fusion

was performed on selected metabolites and the peaks that were

annotated to the closest genes. The selected metabolites and

DMRs were fused based on the Pearson correlation values and

visualized via R statistical software (https://www.r-project.org/)

package called qgraph (22). IGV v.2.13.2 was used to make the

genomic track where the BAM files for all the controls and T2D

samples were used. All of the tracks were auto scaled.
Results

Patient characteristics

We used a cross sectional design to compare the serum

metabolomic profiles of 113 First Nations adolescents (age range

10 - 24 years and BMI range of 19 – 48 kg/m2) with T2D to 42

normoglycemic First Nations controls. Higher levels of fasting

blood glucose and HbA1c were observed in the adolescents with

T2D compared to controls (Table 1; p-value <0.001 using t-test).

Among adolescents with T2D, the average time from diagnosis

of T2D was 2.12 years. HbA1c was associated with weight (r=-

0.20), waist circumference (r=-0.24) and BMI z-score (r=-0.31);

however, in controls HbA1c was associated with ALT (r=0.32)

(Supplementary Figure 2).
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Metabolites associated with T2D
in adolescents

To characterize metabolic changes that are associated with

T2D development in adolescents, we performed UPLC-MS/MS

on the serum of fasted individuals. We initially identified a total

of 820 individual metabolites. After the missing value estimation

features with more than 20% missing values were removed, then

after preprocessing we obtained 481 metabolites (Supplementary

Figure 1A). A VIP score cutoff of >1.5 resulted in 43 significant

metabolites (Table 2). To show the most significant super

pathways for the significant metabolites, we plotted a fold

change vs p-value volcano plot (Supplementary Figure 5A)

and a frequency bar plot (Supplementary Figure 5B). We used

an unsupervised approach and performed PCA analysis where

the T2D adolescents were clearly separated from the control

group (Figure 1A). The permutation plot of the PCA (Figure 1B)

validates the robustness of the model. Further we used an

orthogonal partial least discriminant analysis (OPLS-DA)

predictive model with 43 metabolites and the variation

explained or goodness of fit in control vs. T2D patients (R2) of

63.8% and a predictive variation or goodness of prediction (Q2)

had a value of 59.7% (Supplementary Figure 3A). To verify our

model, we permuted the group labels (control and T2D patients)

100 times to generate random models and observed that our

model was significantly different from the permuted variations

(Supplementary Figure 3B). Differential levels of the 43

significant metabolites between control and T2D patient

samples are shown in (Figure 2). Next, we performed

unsupervised hierarchical clustering for the 43 metabolites,

which formed five different clusters. Each cluster represented

metabolites that mostly belong to similar sub-pathways

(Figure 3A). Broadly, these 43 metabolites were categorized

into seven super pathways, including lipids (35%), peptides

(26% gamma-glutamyl amino acids), amino acids (10%),

carbohydrates (17%), nucleotides (2% purine metabolism),

cofactors and vitamins (2% ascorbate and aldarate

metabolism), and xenobiotics (7%) (Figure 3B). Based on their

biological relevance to metabolic health in diabetes, we selected

metabolites from most of the clusters (Figure 3A). The

differential levels of the selected metabolites (gamma-glutamyl

isoleucine, glucose, leucine, palmitoyl choline and

sphingomyelin) were statistically significant (Figure 4A; p

<0.05) and were further used to integrate with the epigenetic

data. To understand the robustness and accuracy of the five

selected metabolites we estimated the area under the curve

(AUC), which was 0.944 for both controls and T2D,

demonstrating the robustness of our model (Figure 4B).
Frontiers in Endocrinology 05
Differential methylation of DNA in
adolescents with T2D

To describe the epigenetic changes associated with

adolescents with T2D in First Nations youth, we performed

DNA methylation profiling on PBMC genomic DNA from the

iCARE cohort study participants. The bioinformatic pipeline

used to obtain the significant DMRs is shown in (Supplementary

Figure 1B). After peak calling and peak filtering, we obtained

732984 peaks. Using linear regression comparing adolescents

with and without T2D, we controlled for age, sex, BMI and

surrogate variables to correct for cell type differences, we

obtained 459 significant peaks (Supplementary Table 1). Peaks

were annotated to cis-regulatory regions of the TSS of the

nearest genes (-5000 kb upstream to 5000 kb downstream).

Using the above criteria, we obtained 42 regions out of which 36

significant DMRs were within the 5kb upstream or downstream

window of the TSS and six were close to more than one gene

(Table 3). Among these 36 DMRs seven were located near the

TSS. Some of these genes have biological relevance to T2D, such

as FFAR1 , USF2, C1QTNF9, Arylsulfatase A (ARSA),

Chromodomain Helicase DNA Binding Protein 8 (CHD8),

Protocadherin Alpha 1 (PCDHA1) and Natriuretic Peptide B

(NPPB) (Table 3). The methylation peaks of the nearest DMRs

to the FFAR1, C1QTNF9 and USF2 genes are represented in

Supplementary Figures 6A–C).
Correlation between metabolites and
DNA methylation in youth with T2D

To improve our understanding of mechanisms involved in

metabolic perturbations in youth-onset T2D, we investigated the

link between DNA methylation and altered levels of metabolites.

To predict the T2D status using the selected 5 metabolites the

value of the Area Under the Curve (AUC) was 0.94,

demonstrating a high accuracy of prediction (Figure 4B). We

used a graph-based correlation method to find the significant

correlations between the five representative metabolites and the

36 DMRs that were located within the -5kb and 5kb window of

the TSS of the nearest genes. Figure 5 shows that upon data

integration, the metabolites were negatively (green lines) as well

as positively correlated (red lines) to several genes. Glucose

was correlated with 31 DMRs, leucine correlated to 7

DMRs, gamma-glutamylisoleucine correlated with 30

DMRs, palmitoylcholine was correlated with 10 DMRs

and sphingomyelin was correlated to a single DMR

(Supplementary Table 2). Interestingly, FFAR1 was negatively
frontiersin.o
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TABLE 2 Significant Serum Metabolites in Youth with T2D.

Biochemical Comp
ID

Super
Pathway

Sub Pathway KEGG
ID

HMDB
ID

PUBCHEM Log2
(FC)

FDR

Pyroglutamine 46225 Amino Acid Glutamate Metabolism NA NA 134508 -0.95336 1.11E-07

Imidazole Lactate 15716 Amino Acid Histidine Metabolism C05568 HMDB02320 440129 -0.54818 2.98E-08

Leucine 60 Amino Acid Leucine, Isoleucine and Valine
Metabolism

C00123 HMDB00687 6106 0.29615 3.06E-07

Cystine 56 Amino Acid Methionine, Cysteine, SAM and
Taurine Metabolism

C00491 HMDB00192 67678 0.85621 0.017982

N-Acetyltaurine 48187 Amino Acid Methionine, Cysteine, SAM and
Taurine Metabolism

NA NA 159864 -0.93978 3.07E-16

Creatinine 513 Amino Acid Creatine Metabolism C00791 HMDB00562 588 -0.23991 0.000023

Gamma-Glutamylalanine 37063 Peptide Gamma-glutamyl Amino Acid NA HMDB29142 440103 -0.66669 0.000081

Gamma-Glutamylglutamate 36738 Peptide Gamma-glutamyl Amino Acid C05282 HMDB11737 92865 -0.63692 0.004894

Gamma-Glutamylglutamine 2730 Peptide Gamma-glutamyl Amino Acid C05283 HMDB11738 150914 -0.68509 5.84E-10

Gamma-Glutamylglycine 33949 Peptide Gamma-glutamyl Amino Acid NA HMDB11667 165527 -1.1881 2.0E-08

Gamma-Glutamylhistidine 18245 Peptide Gamma-glutamyl Amino Acid NA NA 7017195 -0.74326 0.000024

Gamma-Glutamylisoleucine 34456 Peptide Gamma-glutamyl Amino Acid NA HMDB11170 14253342 -0.39281 0.020489

Gamma-Glutamyl-Alpha-Lysine 55015 Peptide Gamma-glutamyl Amino Acid NA NA 65254 -0.74009 0.000010

Gamma-Glutamylmethionine 44872 Peptide Gamma-glutamyl Amino Acid NA HMDB29155 7009567 -1.0817 1.74E-09

Gamma-Glutamylthreonine 33364 Peptide Gamma-glutamyl Amino Acid NA HMDB29159 76078708 -0.72121 0.000049

Gamma-Glutamylvaline 43829 Peptide Gamma-glutamyl Amino Acid NA HMDB11172 7015683 -0.49642 0.008625

Gamma-Glutamylserine 54914 Peptide Gamma-glutamyl Amino Acid NA NA 22844748 -0.68682 0.000036

1,5-Anhydroglucitol (1,5-AG) 20675 Carbohydrate Glycolysis, Gluconeogenesis, and
Pyruvate Metabolism

C07326 HMDB02712 64960 -1.997 9.46E-20

Glucose 48152 Carbohydrate Glycolysis, Gluconeogenesis, and
Pyruvate Metabolism

C00031 HMDB00122 79025 0.95686 2.62E-14

Ribonate 27731 Carbohydrate Pentose Metabolism C01685 HMDB00867 5460677 1.0173 2.31E-09

Fructose 577 Carbohydrate Fructose, Mannose and Galactose
Metabolism

C00095 HMDB00660 5984 0.99634 3.68E-09

Mannose 48153 Carbohydrate Fructose, Mannose and Galactose
Metabolism

C00159 HMDB00169 18950 1.0482 1.41E-12

N-Acetyl-glucosamine/N-
Acetylgalactosamine

46539 Carbohydrate Aminosugar Metabolism NA HMDB00215 24139 -0.27191 0.000042

Palmitoylcholine 52944 Lipid Fatty Acid Metabolism (Acyl
Choline)

NA NA 151731 -1.0277 3.87E-08

Oleoylcholine 53260 Lipid Fatty Acid Metabolism (Acyl
Choline)

NA NA 59040790 -1.0407 8.96E-08

Linoleoylcholine 57463 Lipid Fatty Acid Metabolism (Acyl
Choline)

NA NA NA -1.1395 2.15E-09

Stearoylcholine 57464 Lipid Fatty Acid Metabolism (Acyl
Choline)

NA NA NA -1.1569 0.000000044

Arachidonoylcholine 53261 Lipid Fatty Acid Metabolism (Acyl
Choline)

NA NA 122198216 -1.2076 2.06E-08

1-(1-Enyl-Palmitoyl)-2-
Palmitoleoyl-GPC (P-16:0/16:1)

52713 Lipid Plasmalogen NA HMDB11207 52923882 -0.50345 1.16E-10

1-(1-Enyl-Palmitoyl) -2-Oleoyl-
GPC (P-16:0/18:1)

52478 Lipid Plasmalogen NA NA NA -0.34017 2.49E-06

Sphingomyelin (D18:2/14:0, D18:1/
14:1)

47154 Lipid Sphingolipid Metabolism NA NA NA -0.38072 0.000207

Sphingomyelin (D18:1/20:1, D18:2/
20:0)

48491 Lipid Sphingolipid Metabolism NA NA NA -0.31732 1.00E-06

Sphingomyelin (D18:2/24:1, D18:1/
24:2)

52437 Lipid Sphingolipid Metabolism NA NA NA -0.25523 0.000010

Sphingomyelin (D18:2/23:1) 57482 Lipid Sphingolipid Metabolism NA NA NA -0.34705 0.000085

(Continued)
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correlated to glucose and leucine, but was positively correlated to

gamma-glutamylisoleucine. USF2 was also positively correlated

with gamma-glutamylisoleucine and negatively correlated with

leucine and glucose. C1QTNF9 was positively correlated to

gamma-glutamylisoleucine and negatively correlated to

glucose. We further correlated all the metabolites and 36

DMRs and found several of them to be highly correlated

(Supplementary Figure 4). The number of DMRs that

correlated to metabolites are shown in Supplementary Table 4.
Discussion

T2D in adolescents is aggressive and phenotypically different

from T2D in adults (4, 23). The mechanisms underlying these

differences are poorly understood although detrimental

environmental exposures related to poverty, food insecurity,

and poor housing related to the impact of colonization likely

have an important role (24). To our knowledge this is the first

study to link differential DNA methylation in PBMCs with the

serum metabolome in youth-onset T2D. Using stringent VIP

scores, we identified 43 metabolites associated with T2D and by

peak calling for adolescents with T2D vs the controls, we

obtained 459 significant peaks. Among these 459 DMRs, 36

were located near the TSS of genes. Some of these DMRs

correlated with the selected metabolites, including 31 that were

associated with fasting glucose levels, 7 correlated with leucine,

30 with gamma-glutamyl isoleucine and 10 with palmitoyl

choline. DMRs that strongly associated with several of the

metabolites in T2D patients included DMRs near the TSS in

FFAR1, USF2, and C1QTNF9. Interestingly, these three genes

have biological relevance in T2D. This data highlights that
Frontiers in Endocrinology 07
complementary information provided by epigenetic marks

provide new insight into the metabolic perturbations occurring

in adolescents with T2D. Future research will examine the novel

role for the DMRs near these genes in regulating gene expression

and serum metabolite levels in T2D.

We found that amino acids were the most commonly altered

metabolite in the circulation of adolescents with T2D. In adults,

high levels of aromatic and BCAAs are predictive of future T2D

development (25) and a strong negative association exists

between these levels and insulin sensitivity (26, 27). Altered

amino acid catabolism in adipose tissue is believed to be the

underlying reason that amino acid levels are altered in obese and

insulin resistant adults (28). In adolescents, elevated levels of

BCAAs have been reported to be associated with obesity (11)

and impaired diastolic cardiac function (13). Unlike adults,

increased levels of BCAAs were positively associated with

beta-cell function, relative to insulin sensitivity in adolescents

(8, 10). Consistent with these findings we observed that the

BCAA leucine was increased in the serum of adolescents with

T2D. Given that seven DMRs correlated with serum leucine

levels in T2D, this finding sets the stage to examine whether

these DMRs are involved in regulating leucine levels in

adolescents that could underlie the differential effects of

BCAAs on beta-cell function in adolescents and adults with

T2D. Notably, levels of a broad range of gamma-glutamyl

dipeptides were also reduced in adolescents with T2D.

Gamma-glutamyl amino acids are considered to be involved in

regulating oxidative stress through their involvement in

glutathione production.

We identified an association between lipid metabolism and

adolescents with T2D. Reductions in circulating levels of several

sphingomyelins, lysophosphatidylcholines and acyl-alkyl
TABLE 2 Continued

Biochemical Comp
ID

Super
Pathway

Sub Pathway KEGG
ID

HMDB
ID

PUBCHEM Log2
(FC)

FDR

Sphingomyelin (D18:1/20:2, D18:2/
20:1, D16:1/22:2)

57481 Lipid Sphingolipid Metabolism NA NA NA -0.40633 0.000085

Sphingomyelin (D18:2/20:2/24:2) 57479 Lipid Sphingolipid Metabolism NA NA NA -0.51498 3.37E-10

Sphingomyelin (D18:1/22:2, D18:2/
22:1, D16:1/24:2)

57477 Lipid Sphingolipid Metabolism NA NA NA -0.42945 2.98E-07

Glycosyl Ceramide (D18:2/24:1,
D18:1/24:2)

57453 Lipid Ceramides NA NA NA -0.44786 8.52E-07

7-Methylguanine 35114 Nucleotide Purine Metabolism, Guanine
containing

C02242 HMDB00897 11361 -0.2625 0.000006

Oxalate (Ethanedioate) 20694 Cofactors and
Vitamins

Ascorbate and Aldarate
Metabolism

C00209 HMDB02329 971 1.2738 0.000087

Gluconate 587 Xenobiotics Food Component/Plant C00257 HMDB00625 10690 1.2306 1.16E-10

2-Keto-3-Deoxy-Gluconate 48141 Xenobiotics Food Component/Plant C00204 HMDB01353 161227 1.2781 6.48E-10

Tartronate (Hydroxymalonate) 20693 Xenobiotics Bacterial/Fungal C02287 HMDB35227 45 -0.96185 0.000006
fro
NA, not available; FC, fold change; FDR, False discovery rate; Comp ID, Compound ID.
The super and the sub pathways of metabolites determined by their KEGG, HMDB and, PUBCHEM ids. The folds changes are converted to log2 values. FDR calculated unpaired t-test. The
negative sign indicates the lower levels and positive value is higher levels as compared to the controls.
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phosphatidylcholine (plasmalogens) were observed. These acyl-

alkyl phosphatidylcholines belong to a class of antioxidant

plasmalogens and could reflect the state of oxidative stress. On

the other hand, since lysophosphatidylcholines in the

bloodstream are derived from oxidation of phosphatidylcholine

in low density lipoproteins, could suggests a reduction in its

oxidation. These results are consistent with a previous study

showing that serum levels of acyl-alkyl phosphatidylcholines

and lysophosphatidylcholines are reduced in obese children

(29). In adult populations, elevated sphingolipids are generally

associated with obesity and greater insulin resistance (30). We

observed reductions in a number of sphingolipids in First Nations
Frontiers in Endocrinology 08
adolescents with T2D. This finding is consistent with another

study of normoglycemic North American Indigenous adolescents

and young adults (31) that identified an association between

obesity and lowered sphingolipid. Thus, there appears to be a

role for altered lipid metabolism in the natural history of T2D. In

light of this, nutritional strategies developed by and for First

Nations people should be crucial to improving their health status

as a whole (32).

We identified a DMR near FFAR1 that was positively

correlated with gamma-glutamylisoleucine and negatively

correlated with glucose and leucine. FFAR1 (also known as

GPR40) induces the Gaq signaling cascade which activates
A

B

FIGURE 1

Unsupervised analysis of serum metabolomics. (A) PCA analysis based on the 43 metabolites and all 155 samples. The controls are shown in
green and the T2D samples in blue (B) Permutation conducted to validate the variation obtained during the PCA. The R2 (shown in blue) and Q2
(shown in red) values indicate the robustness of the PCA model.
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phospholipase C and inositol 1,4,5-triphosphate (IP3)

formation, stimulating Ca2+ mobilization from the

endoplasmic reticulum and triggering insulin secretion (33).

Free fatty acids are proposed to potentiate glucose-stimulated

insulin secretion through FFAR1 activation, evidenced by a

reduction in Ca2+ oscillations following the inactivation of

FFAR1 using GW1100 (a GPR40 inhibitor) (34). Given that

FFAR1mRNA and protein expression are reduced in the islets of

diabetic mice (35) and an FFAR1 agonist improved glucose and

lipid metabolism in obese mice (36), it is conceivable that altered

DNA methylation near the TSS of the FFAR1 gene could be

associated with alterations in insulin secretion and glucose

homeostasis in adolescents with T2D, although this hypothesis

requires further investigation.

Another relevant discovery was the identification of a DMR

near the TSS of the USF2 gene that correlated with glucose,

leucine and gamma-glutamylisoleucine. USF2 is a ubiquitous

basic helix-loop-helix transcription factor that binds to E-box

elements. High glucose levels upregulate USF2 expression in the
Frontiers in Endocrinology 09
liver and USF2 regulates SREBP-1c and stimulates fatty acid

synthesis in the liver that leads to lipid accumulation (37, 38).

This is consistent with our previous finding that hepatic steatosis

was 3-fold higher in First Nation adolescents with T2D

compared to normoglycemic controls (39), although whether

methylation of the USF2 promoter is a contributing factor

remains to be investigated.

We also identified a DMR near the TSS of the C1QTNF9

gene, that was correlated with serum glucose and gamma-

glutamylisoleucine levels in adolescents with T2D. C1QTNF9

encodes a novel cytokine, termed CTRP9, that is a paralog of

adiponectin and is expressed by adipose tissue, heart and

endothelium. CTRP9 protects cells against high glucose and

palmitate-induced oxidative stress (40, 41). CTRP9 has been

reported to attenuate diabetic nephropathy and improve cardiac

function in obese and diabetic mice (42, 43). However, increased

CTRP9 in the circulation correlated with insulin resistance in

humans (44, 45), suggesting that more studies investigating

CTRP9 actions in T2D are necessary. Given that Dart et al.
FIGURE 2

Heatmap of differential levels of 43 serum metabolites. 43 metabolites that were significantly different between T2D adolescents (blue color
class) and control adolescents (green color class). Red color indicates the increased and the blue indicates reduced levels. The red boxes show
the six major clusters formed. On the left of cluster is shown the compound identification for the respective metabolite. The red arrows show
the five metabolites that were used for data integration.
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(46, 47) reported a higher incidence and earlier onset of major

diabetes-related complications in a cohort of adolescents with

T2D compared to a cohort of adolescents with type 1 diabetes,

follow-up studies will examine the association between

alterations in DNA methylation and the risk for complications

of diabetes in youth. These findings correspond with a growing

body of literature linking genome-wide alterations in DNA

methylation to complications of diabetes (48, 49).

In Canada, First Nation youth account for a disproportionate

number of T2D diagnoses (50). Environmental influences,

including nutrition, have a major role in defining T2D risk, but

T2D in youth is also associated with poverty and lower

socioeconomic status (47, 48, 51). Epigenetic changes mediate

environmental influences on the genetic architecture. We

uncovered several DNA methylation and metabolite alterations
Frontiers in Endocrinology 10
that provide important new knowledge about the cellular changes

occurring in First Nations adolescents associated with T2D. This

supports the theory that social inequities, purposeful starvation,

dispossession of land and traditional ways of living in First

Nations youth induced molecular and biological manifestations

of chronic disease risk (49). However, we also acknowledge that

our study cannot separate whether these changes in metabolites

and DNAmethylation are a consequence of T2D development or

contribute to the development of T2D in youth. One of the major

limitations of our analysis is the small sample size. Since our

study only captures a snapshot of the changes following a

diagnosis of T2D, further studies are warranted in a larger

sample size in the iCARE cohort, as well as replication in other

populations to determine whether these findings are

generalizable to the wider population of adolescents with T2D
A

B

FIGURE 3

Pathway analysis of Serum Metabolites. (A) Pearson correlation-based clustering of the significant metabolites. Five major clusters obtained are
shown in red boxes. Each metabolite is represented by their compound identification (Table 2 shows the respective metabolites). The sub
pathways of the metabolites are represented in the boxes. The five metabolites chosen for data integration are indicated by a red arrow. (B) 43
metabolites were categorized into seven super pathways, including lipids (35%), peptides (26% gamma-glutamyl amino acids), amino acids (10%),
carbohydrates (17%), nucleotide (2% purine metabolism), cofactors and vitamins (2% ascorbate and aldarate metabolism), and xenobiotics (7%).
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or whether these changes are unique to First Nation adolescents.

Future work in longitudinal settings would also provide a clearer

picture of the mechanisms involved in the development of T2D

and its associated complications in adolescents. Finally, we

recognize that the serum metabolomic profile may not be

reflective of the metabolic changes in all tissues. Moreover, the

DNA methylation patterns in PBMCs may not reflect

methylation and gene expression changes in all tissues that

generate serum metabolites. However, some of the genes and

metabolites have been separately linked to altered metabolism in
Frontiers in Endocrinology 11
T2D by previous studies, suggesting that our integrative approach

provides relevant information about youth-onset T2D.

Nonetheless, future functional studies determining mechanisms

of how DNA methylation induces changes in gene expression

and the observed metabolites are warranted.

In summary, we integrated serum metabolomic and

genome-wide DNA methylation data in a systems medicine-

based approach that is well suited to generate new hypotheses

about the complex and variable factors that contribute to the

development of T2D in pediatric populations. We identified
A

B

FIGURE 4

Selection of representative metabolites for data integration. (A) Statistical significance of the five selected metabolites for data integration. The
p-value is estimated using an unpaired t-test. The p-value < 0.05 is considered to the significant. (B) The Area Under the Curve (AUC) of the five
selected metabolites was 0.94, demonstrating a high accuracy of prediction.
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several robust candidate DMRs located near the TSS of genes

such as USF2, FFAR1 and C1QTNF9 that are correlated to a

collection of metabolites that are relevant to metabolic

homeostasis in T2D. We will test the hypothesis that T2D
Frontiers in Endocrinology 12
induced DNA methylation of USF2, FFAR1 and C1QTNF9,

among others, affect gene expression and metabolite levels.

This study lays the groundwork for future research about how

epigenetic and metabolite alterations relate to T2D
TABLE 3 Significant peaks that are differentially methylated between T2D and controls.

Chromosome Start End Peak number Nearest gene Distance from TSS Methylation Status

chr22 51064477 51064877 Peak117 ARSA 1923 Decreased

chr8 22412013 22412413 Peak135 SORBS3 3005 Decreased

chr11 67810920 67811320 Peak137 TCIRG1 4637 Decreased

chr1 11919744 11920144 Peak16 NPPB -956 Increased

chr19 38016396 38016796 Peak166 ZNF793 2289 Increased

chr1 27189779 27190179 Peak176 SFN 346 Decreased

chr4 190943560 190943960 Peak18 FRG2 4652 Decreased

chr19 3767151 3767551 Peak184 MRPL54 4689 Decreased

chr19 3767151 3767551 Peak184 RAX2 4882 Decreased

chr19 4557053 4557766 Peak185 SEMA6B 2410 Decreased

chr16 68269125 68269525 Peak190 ESRP2 1162 Decreased

chr20 61923486 61923886 Peak205 COL20A1 -852 Decreased

chr11 823636 824345 Peak21 EFCAB4A -3594 Decreased

chr19 35843080 35843480 Peak271 FFAR1 835 Decreased

chr11 56057882 56058282 Peak272 OR8H1 484 Decreased

chr14 21899880 21900280 Peak275 CHD8 -213 Decreased

chr11 840258 840658 Peak289 POLR2L 2087 Decreased

chr11 840258 840658 Peak289 TSPAN4 -3988 Decreased

chr12 108083057 108083457 Peak310 PWP1 3748 Increased

chr12 51478875 51479275 Peak320 CSRNP2 -1742 Increased

chr22 30727674 30728074 Peak338 TBC1D10A -4984 Increased

chr11 67191345 67191745 Peak34 RPS6KB2 -4427 Decreased

chr6 24723903 24724303 Peak380 C6ORF62 -3039 Decreased

chr11 46726740 46727140 Peak381 ARHGAP1 -4791 Decreased

chr11 46726740 46727140 Peak381 ZNF408 4572 Decreased

chr19 1065608 1066008 Peak404 HMHA1 -114 Decreased

chr17 79782003 79782403 Peak42 FAM195B 2335 Decreased

chr13 24882421 24882821 Peak428 C1QTNF9 1317 Decreased

chr16 58030446 58031214 Peak432 USB1 -4447 Decreased

chr16 58030446 58031214 Peak432 ZNF319 2932 Decreased

chr6 30587385 30587785 Peak435 MRPS18B 2099 Increased

chr6 30587385 30587785 Peak435 PPP1R10 -2564 Increased

chr19 35757516 35757916 Peak44 USF2 -2252 Decreased

chr2 18765729 18766129 Peak458 NT5C1B 4883 Decreased

chr9 139835090 139835490 Peak51 C8G -4423 Decreased

chr9 139835090 139835490 Peak51 FBXW5 3812 Decreased

chr5 140167607 140168007 Peak64 PCDHA1 1931 Decreased

chr20 39990179 39990942 Peak75 EMILIN3 4906 Decreased

chr2 241512174 241512574 Peak76 RNPEPL1 4270 Decreased

chr19 11642058 11642458 Peak77 ECSIT -2269 Decreased

chr13 21349929 21350329 Peak81 N6AMT2 -2041 Increased

chr17 48613911 48614311 Peak87 EPN3 4207 Decreased
All the significant peaks that were annotated using GREAT -5000 to 5000 bp of the TSS. Chromosome indicates the chromosome number of the peak, start indicates the start of peak, end
indicates the end of peak, peak number is the unique number of a peak, nearest gene indicates the closest gene to the center of the peak, Distance from TSS indicates the distance of the peak
from the TSS of the gene. The methylation status is indicated as increased or decreased.
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pathogenesis in adolescents and evaluate their predictive

power in the development of T2D and its associated

complications. Our findings generate new hypotheses that

will test whether the identified DMRs regulate the expression

of the nearby genes in metabolic cell types and whether

altered expression of these genes influences metabolite

levels. Elucidating the linkages between DNA methylation

patterns in PBMCs and circulating metabolites would

alsoserum highlight the advantage of integrating data from

multiple sources.
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FIGURE 5

Integration of metabolic and epigenomic data. The red lines indicate the positive correlation and green lines indicate the negative correlation.
The five metabolites and the genes are shown in the circles.
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SUPPLEMENTARY FIGURE 1

Schematic workflow of the analysis for epigenetic and metabolomic

datasets. (A) Shows the workflow of the data processing steps,
normalization and, data analysis steps followed for obtaining the

significant metabolites. (B) Shows the workflow of data processing,

normalization and, analysis to obtain the significant DMRs.

SUPPLEMENTARY FIGURE 2

Pearson correlation between all the clinical variables of primary cohort.

(A) Clinical variables of controls that include age, height, weight, waist
size, BMI, glucose levels, AST, ALT and HbA1c levels. Similarly, (B) Clinical
variables of T2D patients.

SUPPLEMENTARY FIGURE 3

Serum metabolomic profile of youth with T2D. (A) OPLSDA model based
on the significant metabolites (i.e. 43 metabolites). The controls are

shown in green and the T2D samples are in blue. (B) Permutation
conducted to validate the variation obtained during the OPLSDA. The

R2 (shown in green) andQ2 (shown in blue) values indicate the robustness

of the OPLSDA model.

SUPPLEMENTARY FIGURE 4

Correlation plot for all the significant metabolites and 36 DMRs. Red color

shows the positively correlated and blue shows negatively correlated.
Non correlated ones are shown in white. The five metabolites chosen for

data integration are indicated by a red arrow.

SUPPLEMENTARY FIGURE 5

Clusters of super pathways for metabolites. a) x-axis of the volcano plot
for the super pathways shows the log2 fold change and y-axis shows the

p-value. b) x-axis of the bar plot shows the super pathways, and the y-axis
shows the frequency of each pathway.
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SUPPLEMENTARY FIGURE 6

Visualization of DMRs genomic location using IGV genome viewer. Red
color is for the 10 control samples and blue color for 21 T2D samples. All

the shown regions have decreased methylation as compared to controls.
The two vertical lines in each figure shows the approx. peak region. (A)
shows genomic location of DMR nearest to TSS of the gene FFAR1. (B) shows
genomic location of the DMR nearest to TSS of gene C1QTNF9. (C) shows

genomic location of the DMR nearest to TSS of the gene USF2.

SUPPLEMENTARY TABLE 1

Significant DMRs/peaks file. The table contains all the significant DMRs/
peaks obtained in the DNA methylation analysis. The file contains the

genomic location of each peak followed by the significance level.
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SUPPLEMENTARY TABLE 2

Data integration correlation values. The table contains the correlation
values obtained from the DMR and five metabolites integration. The green

colored values show the negative correlation and red values show the
positive correlation.

SUPPLEMENTARY TABLE 3

Information of the DNA methylation sequencing samples. The table
provides the information of the samples that were sequenced and

submitted in the European Genome-phenome Archive.

SUPPLEMENTARY TABLE 4

All the correlated metabolites and DMRs
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