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Objective: Pregnancy is a dynamic state involving multiple metabolic adaptions in various
tissues including the endocrine pancreas. However, a detailed characterization of the
maternal islet metabolome in relation to islet function and the ambient circulating
metabolome during pregnancy has not been established.

Methods: A timed-pregnancy mouse model was studied, and age-matched non-
pregnant mice were used as controls. Targeted metabolomics was applied to fasting
plasma and purified islets during each trimester of pregnancy. Glucose homeostasis and
islet function was assessed. Bioinformatic analyses were performed to reveal the
metabolic adaptive changes in plasma and islets, and to identify key metabolic
pathways associated with pregnancy.

Results: Fasting glucose and insulin were found to be significantly lower in pregnant mice
compared to non-pregnant controls, throughout the gestational period. Additionally,
pregnant mice had superior glucose excursions and greater insulin response to an oral
glucose tolerance test. Interestingly, both alpha and beta cell proliferation were
significantly enhanced in early to mid-pregnancy, leading to significantly increased islet
size seen in mid to late gestation. When comparing the plasma metabolome of pregnant
and non-pregnant mice, phospholipid and fatty acid metabolism pathways were found to
be upregulated throughout pregnancy, whereas amino acid metabolism initially
decreased in early through mid pregnancy, but then increased in late pregnancy.
Conversely, in islets, amino acid metabolism was consistently enriched throughout
pregnancy, with glycerophospholid and fatty acid metabolism was only upregulated in
late pregnancy. Specific amino acids (glutamate, valine) and lipids (acyl-alkyl-PC, diacyl-
PC, and sphingomyelin) were found to be significantly differentially expressed in islets of
the pregnant mice compared to controls, which was possibly linked to enhanced insulin
secretion and islet proliferation.
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Conclusion: Beta cell proliferation and function are elevated during pregnancy, and this is
coupled to the enrichment of islet metabolites and metabolic pathways primarily
associated with amino acid and glycerophospholipid metabolism. This study provides
insight into metabolic adaptive changes in glucose homeostasis and islet function
seen during pregnancy, which will provide a molecular rationale to further explore the
regulation of maternal metabolism to avoid the onset of pregnancy disorders, including
gestational diabetes.
Keywords: pregnancy, metabolic adaptions, mouse, islet metabolism, targeted metabolomics
INTRODUCTION

Pregnancy is a dynamic and complex state requiring
physiological adaptations that ensure a continuous supply of
essential nutrients to support the development and growth of the
fetus. These adaptions also prepare mothers for the postnatal
support period, and most importantly, to facilitate lactation.
Understanding maternal metabolism during gestation is
important not only for understanding what promotes a healthy
environment for fetal development, but also for identifying and
understanding metabolic disorders associated with pregnancy,
including gestational diabetes mellitus (GDM) and future risk of
type 2 diabetes (T2D).

Glucose metabolism is a key component of the metabolic
response to pregnancy gradually changing over the course of
gestation to meet the demands of the fetus. Fasting glucose was
observed to be significantly decreased in pregnant women, with a
concomitant increase in fasting insulin (1); whereas insulin
sensitivity was found to be unchanged or increased during early
pregnancy, but significantly impaired in later pregnancy (2, 3).
Pregnancy is also characterized by altered maternal lipid
metabolism, including an anabolic phase at early pregnancy and
a catabolic phase at later pregnancy (4). Besides metabolic
adaptions in the circulation, pancreatic islets also undergo major
structural and functional adaptions in response to the enhanced
demand for insulin, including: 1) increased glucose-stimulated
insulin secretion, 2) lower threshold for glucose-stimulated insulin
secretion, 3) increased insulin biosynthesis, 4) increased
proliferation, and 5) increased glucose metabolism (5–9).

Targeted metabolomics is a quantitative assay platformed to
assess specific metabolites associated with known biochemical
pathways or disease processes. Metabolomic profiling has been
instrumental in developing metabolic databases and identifying
potential disease biomarkers or metabolic pathways associated with
diseases like GDM and T2D associated with a GDM history (10–
13). Our previous studies have demonstrated the onset of future
T2D after GDM pregnancy was associated with upregulation of
glycolipid metabolism involving triacylglycerol and diacylglycerol
biosynthesis; but decreased sphingolipid/phospholipid metabolism
(11, 12, 14). The inhibition of sphingolipid metabolism in islets led
to impaired pancreatic beta cell function (14, 15). However, studies
applying metabolomics to evaluate metabolic changes associated
with pregnancy are limited, particularly those combined with
measurements of specific metabolic parameters including islet
n.org 2
and beta cell function. Several studies have applied metabolomics
to define biomarkers of GDM (16–21), but have yielded
inconsistent results, potentially due to a host of contributory
factors (i.e. small sample sizes, different methodology, various
treatments, etc.). At present, no studies have tracked
longitudinally changes in the circulating and pancreatic islet
metabolome over the course of a normal pregnancy. Such studies
would reveal alterations in the metabolome in circulation and islets
that coincide with adaptations in islet growth and function over the
course of pregnancy.

In this present preclinical investigation, a timed-pregnancy
mouse model was used to evaluate maternal metabolic adaptive
changes in circulation and pancreatic islets at different phases of
a normal pregnancy. Changes in the metabolome were then used
to identify specific metabolites and metabolic pathways
associated with adaptations in islet function during the
trimesters of pregnancy.
MATERIALS AND METHODS

Animals
FVB female and male mice of 8 weeks old were used for timed-
pregnancy mouse model generation. FVB female and male mice
were paired overnight in 1:2 (male: female) pairs. The next
morning, the presence of a copulatory plug was checked by
trained staff to confirm the successful mating. Age-matched non-
pregnant FVB female mice were used as controls. All female mice
have never been pregnant prior to this study. Mice with
gestational day (GD) 0.5-14 correspond to the first trimester in
humans, during which preimplantation and post-implantation
events occur. Mice with GD 14-17 are compared to the second
trimester in humans, which encompasses fetal and placental
growth. Mice with GD 17-birth align with the third trimester in
humans when fetal growth is accelerated. These time points are
highly translatable to humans and represent the three trimesters
during human pregnancy (22). A total of 5-7 pregnant or age-
matched non-pregnant mice were used in each trimester to
evaluate glucose homeostasis, islet function and islet
proliferation. Three groups of 500 islets isolated and pooled
from 2-3 pregnant or non-pregnant mice in each trimester were
subjected to targeted metabolomics analysis. Targeted
metabolomics was also performed on fasting plasma samples
collected from 4 pregnant or non-pregnant mice in each
May 2022 | Volume 13 | Article 852149
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trimester. All animal experiments andmethods have been approved
by the University of Toronto animal care committee (#20011576).

Oral Glucose Tolerance Test (OGTT) and
Plasma Insulin Measurement
Mice were fasted overnight (14-16 hours), and a 2 g/kg bolus of
glucose was administered by oral gavage as previously described
(23, 24). Briefly, blood glucose was measured using a Contour
glucometer (Ascensia Diabetes Care, Mississauga, ON, Canada)
at 0, 10, 30, 60, 90 and 120 mins. Blood samples were also
collected from tail vein at 0, 10 and 30 mins for plasma insulin
measurements. Fed glucose and insulin samples were collected at
9 am in each trimester. Plasma was separated by centrifugating at
6,000 rpm for 10 mins at 4°C. Insulin levels were then analyzed
by using a mouse supersensitive insulin ELISA (ALPCO, Salem,
NH, USA) (25, 26).

Mouse Islets Isolation
Pregnantandage-matchednon-pregnantmouse isletswere isolated
as described previously (27, 28). Briefly, mice were anesthetized via
isoflurane and cervical dislocationwas performed. The ampullawas
clamped with surgical suture to block the bile pathway to the
duodenum. Collagenase V solution was prepared at 0.8 mg/mL
using 1640RPMI (Sigma-Aldrich, Burlington,MA,USA).A needle
was inserted in the bile duct and 3 mL of prepared Collagenase V
solution was slowly dispersed. The well-perfused pancreas was
removed and placed in 5 mL of prepared Collagenase V solution.
Pancreas were then digested at 37.0°C for 11 mins followed by a
brief shake to produce a homogeneous digestive solution. The
digestion was terminated by adding 50 mL of full medium (1640
RPMI + 10% FBS + 1% penicillin/streptomycin). Islets were hand-
picked three times and allowed to recover overnight in full medium
prior to further experiments.

Glucose Stimulated Insulin Secretion
Glucose-stimulated insulin secretion studies were carried out as
previously described using 2.0 mM as low glucose and 11.0 mM
as high glucose (29, 30). Secreted insulin concentrations were
quantified by Homogenous Time-Resolved Fluorescence Kit
(Cisbio, Codolet, France) and the results were normalized to
total DNA content.

Immunohistochemistry
Thewhole pancreaswasdissected fromeachmouse andwasfixed in
10%neutral buffered formalin for 4-24hourbefore being embedded
in paraffin. The whole pancreas was stretched in the block to
maximize the total pancreatic area. Sections close to the middle
layer which represents the largest pancreatic area were used for
insulin, glucagon andKi67 staining as previously described (27, 28).
Imageswereobtainedusing theZeissAxioscanSlide Scannerandall
image quantifications were carried out by HALO (Indica Labs,
v.2.0.1145.14; Corrales, NM, USA). Beta-cell and alpha-cell mass
was calculated by multiplying the average insulin- or glucagon-
positive area in relation to the whole pancreatic area with the
pancreatic weight of corresponding animal, as previously described
(31). The counted beta-cell number on each sectionwas normalized
Frontiers in Endocrinology | www.frontiersin.org 3
to the corresponding whole pancreatic area of the section.
Individual beta-cell size was calculated by dividing the insulin-
positive area by the beta-cell number of a given section. Islet size
distribution was calculated by obtaining the percentage of islet
numbers in designated size ranges.

Immunofluorescence and
Confocal Microscopy
Immunofluorescence staining was performed as previously
described (27, 28). Briefly, intact islets were dispersed into single
islet cells using TrypLE (Thermo Fisher Scientific, Waltham, MA,
USA). Dispersed islets were then loaded onto the slides using a
Shandon Single Cytofunnel (Thermo Fisher Scientific). The slides
were fixed with 4% paraformaldehyde and incubated with primary
anti-insulin (Agilent Technologies, Santa Clara, CA, USA), anti-
glucagon (Abcam, Cambridge, MA, USA), and anti-Ki67 (Abcam)
overnight at 4°C. Secondary anti-guinea pig Alexa488 (Thermo
Fisher Scientific), anti-mouse Alexa555 (Abcam) and anti-rabbit
Cy5 (Thermo Fisher Scientific) were used to detect the target
proteins. Images were obtained using a Zeiss Axioscan Slide
Scanner (Zen, Blue Edition, v.2.3.69.1000; Carl Zeiss GmbH). All
image quantifications were carried out by HALO (Indica Labs,
v.2.0.1145.14; Corrales, NM, USA). Cell proliferation rate was
calculated by normalizing Ki67+ insulin+/glucagon+ cells to total
insulin+/glucagon+ cells.

Targeted Metabolomics and
Data Pre-Processing
Themetabolomics analyseswere carriedout asdescribedpreviously
(12, 13). A total of 500 islets were isolated and collected from the
pregnant or non-pregnant group in each trimester. Targeted
metabolomics was performed on fasting plasma samples and
isolated islets. In this study, the AbsoluteIDQ p180 kit (Biocrates
Life Sciences, Innsbruck, Austria) was used to quantify the
metabolites and explore the diverse physiological processes. This
platform allows the detection of up to 188 metabolites by using
mass-spectrometry-based techniques, including hexose, amino
acids (AAs), acylcarnitines (ACs), biogenic amines (BAs),
glycerophospholipids, and sphingomyelins (SMs). All analyses
were performed by the Analytical Facility for Bioactive Molecules
(The Hospital for Sick Children, Toronto, ON, Canada) without
disclosure of group allocation. For the data pre-processing,
metabolites with missing values >40% were excluded from the
study, which reduced the total number of metabolites from 188 to
139 in plasma samples and from 188 to 103 in islet samples. The
remaining missing values were imputed with half of the limit of
detection (LOD) value of each metabolite. The value of each
metabolite was normalized within the total value of each sample,
followed by log-transformation and mean-centric scaling;
distribution of data was then checked. The data pre-processing
was performed on the online platformMetaboAnalyst 5.0 (https://
www.metaboanalyst.ca/home.xhtml) (32). To further identify the
differentially expressed metabolites between pregnant and non-
pregnant mice, independent two-tailed student’s t-test was carried
out to evaluate significance. Afterwards, false discovery rate (FDR)
was calculated using Benjamini-Hochberg method for multiple
comparison. Given the limited sample numbers, metabolites with
May 2022 | Volume 13 | Article 852149
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FDR value<0.3 were considered to be significantly differentially
expressed between pregnant and non-pregnant mice.

Fuzzy C-Means Clustering and KEGG
Pathway Analysis
Fuzzy C-means clustering analysis was performed to identify the
clusters ofmetaboliteswith similar dynamic trends during the three
phases of pregnancy (33) in RStudio (Version 1.2.5033) using the
package “Mfuzz”. Theminimumcentroid distancebetween clusters
for a series of cluster numbers was calculated to determine the
appropriate cluster number in plasma and islet samples. Then
metabolites within each cluster were subjected to pathway
analysis using the Kyoto Encyclopedia of Genes and Genomes
(KEGG,KanehisaLaboratories, Kyoto, Japan)database.TheKEGG
pathway analysis was performed on MetaboAnalyst 5.0.

Statistics
The Shapiro–Wilk normality test was used to determine data
normality. Mann–Whitney U, unpaired student's t-test, and one-
or two-way ANOVA were applied to determine statistical
significance where applicable. P-values of less than 0.05 were
regarded as statistically significant.
RESULTS

Study Workflow
In the present study we aimed to evaluate changes in plasma and
islet metabolomes in response to normal pregnancy in a mouse
model by applying targeted metabolomics. Figure 1 outlines the
study design and workflow. Timed-pregnancy mouse models
studied at three time-points representing each of the three
trimesters were generated using FVB female mice starting at 8
weeks of age. An OGTT was carried out to evaluate glucose
homeostasis during each trimester. Fed glucose and fed insulin
were also measured in each trimester. Pregnant and non-
pregnant mice at each of the three trimesters were sacrificed
and islets isolated and collected. Islet size, islet proliferation rate,
glucose-stimulated insulin secretion and total insulin content
were evaluated. Fasting plasma and purified islet tissue were
subjected to a targeted metabolomics screen that included a wide
scope of metabolite classes, including over 50 metabolites
identified as associated with diabetes and prediabetes
pathology (10, 12). Comparisons of metabolites in circulation
and islets between pregnant and non-pregnant mice in each
trimester were summarized. A Fuzzy c-means clustering was
then applied to identify the clusters of metabolites whose levels
followed a similar trend throughout the pregnancy. Metabolites
within the clusters were then subjected to KEGG pathway
analysis to further illustrate the metabolic pathway changes
during pregnancy both in circulation and islets.

Whole Body Metabolism and Glucose
Homeostasis Changes During Pregnancy
Firstly, we evaluated glucose metabolism and insulin response
during normal pregnancy. Bodyweight was increased significantly
Frontiers in Endocrinology | www.frontiersin.org 4
in the 2nd and 3rd trimesters in pregnant mice (2nd trimester, p =
0.005; 3rd trimester, p = 0.0005) (Figure 2A). Compared to non-
pregnant mice, fasting glucose of pregnant mice began to decrease
significantly in the2nd trimesterandcontinued into the3rd trimester
(2nd trimester, p = 0.0003; 3rd trimester, p = 0.0003) (Figure 2B).
Fasting insulin was also significantly lower in pregnant mice
throughout pregnancy (1st trimester, p = 0.03; 2nd trimester, p =
0.005; 3rd trimester, p = 0.009) (Figure 2C). Similar to fasting, fed
glucose levels were significantly lower throughout pregnancy (1st

trimester, p = 0.02; 2nd trimester, p = 0.0001; 3rd trimester, p =
0.003); however, fed insulin levels in pregnant mice were higher
than non-pregnantmice (1st trimester, p = 0.046; 2nd trimester, p =
0.028; 3rd trimester, p = 0.070) (Figures 2D, E).We then performed
an OGTT to evaluate glucose disposal and insulin response after a
glucose load. When correcting to the basal glucose level, the area
under the curve (AUC) of glucose was significantly lower in
pregnant mice in the 2nd and 3rd trimesters (2nd trimester, p =
0.04; 3rd trimester, p = 0.03), suggesting a higher glucose disposal
during pregnancy (Figures 3A, B). After correcting for the baseline
insulin level, the AUC of insulin secretion during the first 10
minutes of OGTT were higher in pregnant mice, especially in the
2nd trimester (p = 0.03), suggesting a more robust insulin response
after a glucose load in pregnant mice compared to non-pregnant
ones (Figures 3C, D).

Dynamic Changes of Circulating
Metabolites and Pathways During
Normal Pregnancy
To better understand metabolic changes that occur during
pregnancy, we evaluated circulating metabolites over the three
trimesters, by applying targeted metabolomics to fasting plasma
samples. We identified 139 metabolites in circulation, including 21
amino acids (AAs), 10 acylcarnitines (ACs), 15 biogenic amines
(BAs), 1 monosaccharide, 78 glycerophospholipids, and 14
sphingomyelins (SMs). By comparing pregnant to non-pregnant
mice, the log2 fold changevalueof eachmetabolitewascalculatedand
shown inheatmaps (Supplementary Figure 1).Using fuzzy c-means
clustering, we then identified 10 major clusters of metabolites
(Figure 4). The top significantly regulated pathways of each cluster
of metabolites were identified using KEGG pathway analysis (p-
value<0.05) (Figure 4). Assimilating this data, comparing pregnant
mice to non-pregnant mice, AA metabolism pathways were
downregulated from 1st to 2nd trimester and upregulated in very
late pregnancy (3rd trimester), close to birth. The AA metabolic
pathways identified included glutathione metabolism, arginine and
proline metabolism, phenylalanine, tyrosine and tryptophan
biosynthesis, etc. (Figure 4 and Supplementary Figure 1, clusters
1-3). In addition, glycerophospholipid and fatty acid metabolism
pathways were steadily upregulated throughout the three phases of
pregnancy (Figures 4 and Supplementary Figure 1, clusters 4-6).

Additionally, we identified significantly differentially expressed
metabolites between pregnant and non-pregnant mice within each
trimester (Supplementary Figure 2). In the 1st trimester, 79 out of
139 metabolites detected were found to be significantly
differentially expressed (FDR<0.3), including 11 sphingomyelins,
59 phospholipids, 4 amino acids, 3 acylcarnitines, 1 biogenic
May 2022 | Volume 13 | Article 852149
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FIGURE 1 | Study design and workflow of the present study. A timed pregnancy mouse model was generated using FVB female mice (1st trimester, 0-14
gestation days; 2nd trimester, 14-17 gestation days; 3rd trimester, 17-21 gestation days) and age-matched non-pregnant mice were used as controls.
Purified islets and fasting plasma samples were collected during each trimester. Islet function and proliferation were assessed. Islets and fasting plasma
samples collected at each trimester were subjected to targeted metabolomics to identify the metabolic profiles in circulation and islets. Bioinformatics
analyses (differential expression analysis, Fuzzy c-means clustering and KEGG pathway analysis) were then performed to evaluate dynamic changes in islet
and maternal metabolism throughout the pregnancy.
Frontiers in Endocrinology | www.frontiersin.org May 2022 | Volume 13 | Article 8521495
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amine and hexose. Most of these analytes were downregulated in
pregnant mice (Supplementary Figure 2). In the 2nd trimester, 5
sphingomyelins, 9 phospholipids, 3 biogenic amines, 2
acylcarnitines and 4 amino acids were significantly changed.
Most lipid species (except lyso PCs) and amino acids were
upregulated in pregnant mice. In the 3rd trimester, 16
Frontiers in Endocrinology | www.frontiersin.org 6
phospholipids, 5 biogenic amines, 8 amino acids and hexose
were significantly differentially expressed. The majority of these
metabolites (except lyso PCs, valine, tyrosine, and hexose) were
significantly higher in pregnant mice. Overall, in circulation, most
differentially expressed analytes were clustered in lipids, including
phospholipids and sphingomyelins. In contrast to the changes of
A

B

C

D

E

FIGURE 2 | Body weight, glucose, and insulin levels in pregnant and non-pregnant mice at the same timepoints within the three trimesters. (A) Body weight. (B) Fasting
glucose levels. (C) Fasting insulin. (D) Fed glucose. (E) Fed insulin. *P < 0.05, **P < 0.01, ***P < 0.001, compared to age-matched non-pregnant FVB female mice.
May 2022 | Volume 13 | Article 852149
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lipids, amino acids and biogenic amines were marginally changed
between pregnant and non-pregnant mice, suggesting amino acid
metabolism remains more stable, while the lipids are largely
utilized for pregnancy and nutrient supply for infants.

Islet Proliferation and Islet Function During
Normal Pregnancy
To assess islet adaptions during pregnancy, islet proliferation and
islet function were evaluated. Pregnant mice showed significantly
increased beta-cell mass throughout the pregnancy (1st trimester,
p = 0.003; 2nd trimester, p = 0.05; 3rd trimester, p = 0.002)
(Figure 5A). Importantly, the increase observed in beta-cell mass
was also associated with a trend towards increased beta-cell
number per area (Figure 5B). However, beta-cell size was not
changed throughout pregnancy (Figure 5C). We also observed a
significant increase in the number of small (islet area < 1000
mm2) islets in the 2nd (p = 0.002) and 3rd trimester (p = 0.03), but
a significant decrease in the number of islets with islet area
Frontiers in Endocrinology | www.frontiersin.org 7
between 1000-5000 mm2 (p = 0.01) in the 3rd trimester
(Figure 5D). Moreover, there was a trend towards increased
alpha-cell mass in mid to late pregnancy, especially in the 2nd

trimester (p = 0.06) (Figure 5E). Mean islet size was significantly
larger in pregnant mice during the 2nd and 3rd trimesters (2nd

trimester, p = 0.0001; 3rd trimester, p = 2.2E-05) (Figures 5F, G).
By applying Ki67 staining, a biomarker of cell proliferation, we

observed an increase of islet cell proliferation in situ throughout
the pregnancy, compared to age-matched controls (Figure 6A).
Using cytospin and immunofluorescence staining, we also showed
a significant increase in both beta-cell and alpha-cell proliferation
in the 1st trimester (Figures 6B–D). Furthermore, beta-cell
proliferation continued to increase significantly in pregnant
mice during the 2nd and 3rd trimesters, compared to non-
pregnant mice (Figures 6B, C). We then evaluated islet function
and insulin secretion in vitro. In the 2nd trimester, insulin secretion
was increased significantly under the treatment of KCl in the
pregnant mice, compared to controls (p=0.003, Supplementary
A

B

C

D

FIGURE 3 | Glucose and insulin levels during oral glucose tolerance test (OGTT) in the three trimesters of pregnancy. (A) Glucose levels during OGTT. (B) Baseline
corrected and baseline non-corrected area under the curve (AUC) of glucose during OGTT. (C) Insulin secretion during OGTT. (D) Baseline corrected and baseline
non-corrected AUC of insulin during the first 10 minutes of OGTT. *P < 0.05, **P < 0.01, ***P < 0.001, compared to age-matched non-pregnant FVB female mice.
May 2022 | Volume 13 | Article 852149
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FIGURE 4 | Dynamic changes in metabolic profiles of fasting plasma during the three trimesters of pregnancy. Fuzzy c-means soft clustering was applied to identify
the clusters of metabolites with the same trends during pregnancy. KEGG pathway analysis was performed to identify the major regulating signaling pathways within
the clusters with the same trend. Fold changes are log transformed and indicated by color scale in the matrix. In heatmaps, red color indicates up-regulated in
pregnant mice, whereas blue represents down-regulated in pregnant mice, compared to non-pregnant and age-matched mice. A total of 4 pregnant and non-
pregnant mice were used in each trimester.
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A

B

C

D

E

F

G

FIGURE 5 | Islet proliferation in pregnant and non-pregnant mice during the three trimesters of pregnancy. (A) Beta-cell mass. (B) Individual beta-cell size. (C) Beta-
cell number/area. (D) Islet size distribution. (E) Alpha-cell mass. (F, G) Isolated islet size. Beta-cell mass was determined by multiplying the pancreas weight by the
percentage of insulin-positive area in relation to whole pancreas section area. Beta-cell size was calculated by dividing the insulin-stained area by the total beta-cell
number. Beta-cell number was counted with HALO (version 2.0.1145.14) and was normalized by whole tissue area. A total of 5-7 pregnant and non-pregnant mice
were used in each trimester. *P < 0.05, **P < 0.01, ***P < 0.001 compared to age-matched, non-pregnant FVB female mice.
Frontiers in Endocrinology | www.frontiersin.org May 2022 | Volume 13 | Article 8521499
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A

B

C

D

FIGURE 6 | Islet proliferation in pregnant and non-pregnant mice during the three trimesters of pregnancy. (A) Representative images of Ki67-stained pancreatic
sections from pregnant and non-pregnant mice in each trimester. (B) Insulin, glucagon and Ki67 staining of isolated islets using cytospin-immunofluorescent method.
(C) Beta-cell proliferation rate. (D) Alpha-cell proliferation rate. Cell proliferation rate was calculated by normalizing Ki67+ insulin+/glucagon+ cells to total insulin+/
glucagon+ cells. *P < 0.05, ***P < 0.001 compared to age-matched, non-pregnant FVB female mice.
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Figure 3A). In the 3rd trimester, 2mM glucose (p=0.009), 11mM
glucose (p=0.049) and KCl (p=0.016) induced increased insulin
secretion in the pregnant mice (Supplementary Figure 3A). No
significant changes were observed in the total insulin content of
islets derived from pregnant mice compared to controls
(Supplementary Figure 3B). However, after normalizing the
insulin secretion with total DNA content/cell number, there was
no significant difference in glucose-stimulated insulin secretion or
total insulin content throughout the pregnancy (Figure 7).

Dynamic Changes of Metabolites in Islets
During the Normal Pregnancy
To better understand islet metabolism changes during normal
pregnancy, we employed targeted metabolomics on islets from
pregnant mice and controls at each of the three trimester time
points. We identified a total of 103 metabolites in islet samples,
encompassing 19 AAs, 5 BAs, 66 glycerophospholipids, and 13
SMs. By comparing pregnant mice to non-pregnant mice, the
log2 fold change value of each metabolite was calculated and
shown in the heatmaps (Supplementary Figure 4). Seven major
clusters of metabolites, as well as their top corresponding
significant pathways (p-value < 0.05) were identified. Notably,
and in contrast to the circulating metabolome, amino acid
metabolism pathways in general were upregulated throughout all
three phases of pregnancy, including BCAA biosynthesis,
phenylalanine, tyrosine and tryptophan biosynthesis, and
glutathione metabolism (Figure 8 and Supplementary Figure 4,
clusters 1-3). In addition, glycerophospholid and fatty acid
metabolism pathways (linoleic acid metabolism and alpha-
linolenic acid metabolism) were downregulated during the early-
to mid-pregnancy but reversed close to delivery (Figure 8 and
Supplementary Figure 4, clusters 4-6). No significantly enriched
pathway was identified for cluster 7. After assimilating metabolite
changes throughout the three phases of pregnancy, we observed
more active AA metabolism and lipid metabolism in islets,
especially during the late gestation (Figure 9).

Furthermore, differentially expressed metabolites were
identified by comparing the pregnant mice with non-pregnant
mice in each trimester (Supplementary Figure 5). There were no
significant changes in metabolome in the islets during the early
pregnancy (1st trimester). In the2nd trimester, 12phospholipids and
1 biogenic amine were changed significantly, with most of them
being downregulated in pregnant mice (Supplementary Figure 5).
In the 3rd trimester, we identified 2 sphingomyelins, 20
phospholipids, 2 biogenic amines, and 3 amino acids as
significantly differentially expressed between pregnant and non-
pregnantmice.Most lipids andamino acidswere upregulated in the
late pregnancy (Supplementary Figure 5). Overall, the
metabolome remained quite stable in the early trimester within
islets but changed significantly during mid to late gestation.
DISCUSSION

In the present study, we have established a timed-pregnancymouse
model and applied targeted metabolomics on plasma and islet
Frontiers in Endocrinology | www.frontiersin.org 11
samples to evaluate adaptive metabolic changes of the whole body
and islets which occur during normal pregnancy. Fasting glucose,
fasting insulin, and fed glucose were lower in pregnant mice.
Following the OGTT, although basal insulin was lower, insulin
responses were significantly enhanced post-glucose load
throughout the pregnancy. We also observed enhanced islet
proliferation and progressive increases in mean islet size during
pregnancy.When comparing the plasma/circulatingmetabolomics
of pregnant and non-pregnant mice, phospholipid and fatty acid
metabolism pathways were found to be upregulated throughout
pregnancy, whereas amino acid metabolism pathways decreased
from early- to mid-pregnancy but increased in late-pregnancy.
Conversely, in islets, metabolomics revealed a consistent
enrichment in amino acid metabolism pathways throughout
pregnancy, with glycerophospholid and fatty acid metabolism
pathways upregulated in late pregnancy.

We observed that fasting glucose, fasting insulin, and fed
glucose levels were lower in pregnant mice. However, fed insulin
levels were higher in pregnant mice. In human studies, fasting
glucose decreases progressively with advancing gestation (1).
This could be attributed to increased maternal blood volume
during pregnancy (34), but also due to the insulin independent
redirection of glucose disposal towards the uterus (35, 36),
leading to deceased glucose levels compared to respective
controls. The decreased fasting insulin levels that were
observed in the present study could also be a compensatory
response to the decreased fasting glucose levels. However, fed
insulin levels were higher in pregnant mice compared to non-
pregnant mice, which could be due to enhanced insulin secretion
upon nutritional load to maintain glucose homeostasis
during pregnancy.

We performed OGTTs to evaluate the glucose homeostasis in
pregnant and non-pregnant mice throughout the pregnancy. We
found that the AUC of glucose during the OGTT was decreased
in the pregnant mice, especially in the mid- to late-pregnancy,
and that the insulin response during the first 10 minutes of
OGTT was higher in the pregnant mice. During pregnancy, islets
undergo compensatory morphological changes such as increases
in beta-cell mass, which are likely achieved through a
combination of hypertrophic expansion, islet proliferation,
potential neogenesis from precursor cells as well as a decrease
in apoptosis (34, 37, 38). In addition, there are functional
changes in islets, including increased insulin production and
secretion (39, 40).

In the present study, both alpha and beta cell proliferation
were found to be significantly elevated in early to mid-
pregnancy, a probable cause of the increased islet size seen in
mid to late gestation. It has been reported that the functional and
morphological adaptions in the islets occur in response to
pregnancy itself. Szlapinski et al. showed a significantly
increased alpha-cell proliferation at GD 9.5 in mouse
pregnancies, resulting in an increased alpha-cell mass at GD
18.5 (41). Beta-cell proliferation and beta-cell mass were also
observed to increase dramatically during the pregnancy (39). The
proliferation of islet cells may be attributed to multiple
pregnancy hormones, including prolactin (PRL) and placental
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lactogen (PL), which are required for increasing beta-cell mass
during pregnancy (42–44). Multiple genes have been noted to be
involved in this process, which are primarily downstream of
lactogens (39, 45, 46). However, we showed that glucose-
stimulated insulin secretion was not different between the
pregnant and control islets at any stage of pregnancy when
normalized to DNA content, suggesting the increased insulin
secretion that we observe was likely due to increased beta cell
number/mass and thus increased secretory capacity.

Applying targeted metabolomics to fasting plasma, we
noticed an up-regulation of phospholipid and fatty acid
metabolism throughout the pregnancy. Lipid metabolism
during pregnancy has been divided into 2 phases: anabolic and
catabolic (4, 47). During the first 2 trimesters of human gestation,
fat is stored in the fat deposits, whereas in later pregnancy (3rd
trimester), fat tissue is broken down (4, 48–51). Enhanced de
novo lipogenesis and maternal hyperphagia are factors
contributing to early pregnancy anabolism; whereas in late
pregnancy, enhanced adipose tissue lipolytic activity and
reduced activity of adipose tissue lipoprotein lipase (LPL) lead
to accelerated breakdown of fat deposits as well as decreased fat
deposits. One striking example of this mobilization of lipid
depots is the increase in free fatty acid and phospholipid
concentrations in maternal plasma with advancing gestation
(52–54), which was also shown in our study. We also observed
that in circulation, AA metabolism was decreased in the early- to
Frontiers in Endocrinology | www.frontiersin.org 12
mid-pregnancy and increased in later pregnancy (GD19) close to
delivery. It has been demonstrated that circulating
concentrations of maternal amino acids are decreased during
pregnancy (55–57). Specifically, most amino acid levels decrease
in the early pregnancy, remain at a lower level throughout later
pregnancy, and increase to non-pregnant levels after delivery (57,
58). Reduced amino acid levels in early pregnancy could in part
be attributed to the changes in renal function since amino acids
are filtered by the glomerulus and reabsorption of amino acids is
decreased during pregnancy (58–60). Additionally, these changes
in amino acid concentrations are likely affected by the increased
need for protein synthesis (61).

Our islet-specific metabolomics data showed that there was
an activation of amino acid metabolism pathways within the
islets throughout normal pregnancy. Additionally, valine,
glutamate and tyrosine were found to be significantly
upregulated in pregnant mice in the 3rd trimester. In islets and
beta-cell lines, specific amino acids (L-arginine, L-lysine, L-
alanine, L-proline, L-leucine, L-valine, L-glutamate and L-
glutamine) have been shown to be associated with enhanced
insulin secretion under glucose stimulation (62–66). For
example, mitochondrial glutamate is involved in glucose-
induced insulin exocytosis (67), and cytosolic glutamate plays a
key role in linking glucose metabolism to incretin/cAMP action
to amplify insulin secretion (68). Branched-chain amino acids,
consisting of valine, leucine and isoleucine are also reported to
A

B

FIGURE 7 | Glucose stimulated insulin secretion in islets collected during the three trimesters of pregnancy. (A) Insulin secretion under low glucose (2mM), high
glucose (11mM) and KCl treatment. (B) Total insulin content. Insulin secretion and total insulin content were normalized to total DNA content/cell number.
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FIGURE 8 | Dynamic changes of metabolic profiles in isolated islets during the three trimesters of pregnancy. Fuzzy c-means soft clustering was applied to identify
the clusters of metabolites with the same trends during pregnancy. KEGG pathway analysis was performed to identify the major regulating signaling pathways within
the clusters with the same trend. Fold changes are log transformed and indicated by color scale in the matrix. In heatmaps, red color indicates up-regulated in
pregnant mice, whereas blue represents down-regulated in pregnant mice, compared to non-pregnant and age-matched mice.
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mediate insulin exocytosis (69, 70), which could be due to
upregulated glucokinase, increased anaplerosis and TCA
activity in the beta-cell (70, 71). These data suggested the
enhanced insulin response after glucose load that was observed
in pregnant mice could be attributed to the accumulation of
specific amino acids within islets.

Very few studies have evaluated the effects of amino acids on
the proliferation of islets. Amino acids enter the cells through
transporters, such as the L-amino acid transporter 1 (LAT1),
which is expressed abundantly in the islets, and knocking down
LAT1 in beta-cells and islets induced an inhibition of leucine-
stimulated mTORC1 activation and islet cell proliferation (72).
Dean et al. and Kim et al. showed that blocking the action of
glucagon on the alpha-cell resulted in elevated circulating amino
acids and led to increased alpha-cell proliferation, which may be
linked by amino acid transporter Slc38a5 (73, 74). In addition,
Frontiers in Endocrinology | www.frontiersin.org 14
calcium sensing receptor (CASR) expressed in pancreatic islets,
which has affinity for several amino acids, was shown to be
associated with increased islet function and alpha-cell
proliferation, suggesting that the CASR pathway plays a key
role in regulating islet function and mass (75). Similarly, GPR142
agonists and its endogenous ligands tryptophan and
phenylalanine were shown to stimulate beta-cell proliferation
and insulin secretion, which may act through alpha-cell derived
glucagon-like peptide 1 (GLP-1) stimulation of beta-cells (76–
78). On the contrary, Mullooly et al. showed that elevated levels
of branched-chain amino acids have little effect on islet viability,
but increased levels of L-arginine were beta-cell toxic, leading to
decreased islet proliferation and increased islet cell apoptosis,
through the elicitation of an endoplasmic reticulum stress
response (79). Based on these results, further studies focused
on the effect of amino acids on islet proliferation are required.
FIGURE 9 | Metabolic adaptive changes in islets during pregnancy. The integrated metabolic networks of amino acid, acylcarnitine, and lipid metabolism in the
islets during the three trimesters of pregnancy. Triplets of squares denote 1st trimester, 2nd trimester and 3rd trimester data, respectively. Solid squares in red
and blue represent significant changes. Empty squares denote non-significance. Red color indicates up-regulated in pregnant mice, whereas blue represents
down-regulated in pregnant mice, compared to age-matched, non-pregnant female mice. Fold change value between 0.95 and 1.05 was considered no change
and shown as grey color.
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There was a fluctuation in lipid metabolism (glycerophospholipid
and fatty acid metabolism) throughout pregnancy, with most
phospholipids/sphingolipids being upregulated in pregnant
mouse islets during late pregnancy compared to controls
(Supplementary Figure 3). Lipids increase in the beta cell
during glucose stimulation that coincides with insulin secretion
(80). This supports lipids and lipid remodeling as necessary
during insulin biosynthesis and exocytosis. The phospholipids
within insulin secretory granules (ISG) are shown to be in a
dynamic state and facilitate fusion of ISG with the plasma
membrane, enhancing the glucose-stimulated insulin
exocytosis (81). However, the proposed effects of lipids on islet
proliferation and function currently diverge greatly. Several
preclinical studies showed that fatty acids along with glucose
lead to insulin resistance and a marked increase in the beta-cell
proliferation and islet size, but these effects were not observed
with the infusion of fatty acids alone (82–85). In marked contrast,
Pascoe et al. found that fatty acid infusion in mice blocked
glucose-induced beta-cell proliferation in vivo (86). The effects
of fatty acids on islets proliferation also depends on the degree of
unsaturation. Saturated fatty acids such as palmitate are associated
with beta-cell dysfunction, whereas monounsaturated fatty acids
such as oleate promote beta-cell proliferation and protect beta-
cells against the toxic effects of palmitate (87, 88). It is noteworthy
that besides metabolites and pathways examined in the present
study, the proliferation of islets may also be associated with other
pathways/genetic targets that we were unable to evaluate. During
pregnancy, several genes have been shown to be upregulated that
are likely influencing the degree of proliferation during pregnancy
(89). As such, investigating the effects of metabolites on
proliferation and changes related to pregnancy, such as
modifications at the gene level should be further investigated.

There are of course some limitations to this study. First, there
are biological and physiological differences between humans and
mice, which should be considered particularly when translating
research from rodents to human populations. Second, the
number of animals used in this study is limited. Despite these
limitations, this study provides insight into the metabolic
adaptions during pregnancy, providing a molecular rationale to
further explore the regulation of maternal metabolism and
pregnancy disorders, like gestational diabetes.
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