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Diabetic kidney disease (DKD) is a severe microvascular complication in patients with
diabetes and is one of the main causes of renal failure. The current clinical treatment
methods for DKD are not completely effective, and further exploration of the molecular
mechanisms underlying the pathology of DKD is necessary to improve and promote the
treatment strategy. Sirtuins are class III histone deacetylases, which play an important role
in many biological functions, including DNA repair, apoptosis, cell cycle, oxidative stress,
mitochondrial function, energy metabolism, lifespan, and aging. In the last decade,
research on sirtuins and DKD has gained increasing attention, and it is important to
summarize the relationship between DKD and sirtuins to increase the awareness of DKD
and improve the cure rates. We have found that miRNAs, lncRNAs, compounds, or drugs
that up-regulate the activity and expression of sirtuins play protective roles in renal
function. Therefore, in this review, we summarize the biological functions, molecular
targets, mechanisms, and signaling pathways of SIRT1–SIRT7 in DKD models. Existing
research has shown that sirtuins have the potential as effective targets for the clinical
treatment of DKD. This review aims to lay a solid foundation for clinical research and
provide a theoretical basis to slow the development of DKD in patients.
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Abbreviations: AFSCs, Amniotic fluid stem cells; AGEs, Advanced glycation end products; BAT, Brown adipose tissue; EMT,
Epithelial-mesenchymal transition; GBM, Glomerular basement membrane; GMCs, Glomerular mesangial cells; GSPB2,
Grape seed procyanidin B2; HFD, High-fat diet; HG, High glucose; HGECs, Human glomerular endothelial cells; HIC1,
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stimulation of angiotensinogen expression in immortalized rat RPT cells; ISLQ, Isoliquiritigenin; KD, Knockdown; Nampt,
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notoginseng saponins; RMCs, Renal mesangial cells; ROS, Reactive oxygen species; STZ, Streptozotocin; T1DM, Type 1
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1 INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder with chronic
microvascular and macrovascular complications. DM is one of
the most problematic health issues of the 21st century due to its
severe complications. DM affects approximately 451 million
people worldwide and is projected to reach 693 million by
2045 (1). NAD+ plays a key role in redox and energy
metabolism. NAD+ acts as a co-substrate in the deacetylation
reactions of sirtuins, and the regulation of the NAD+-sirtuins
axis is a pivotal pathway for the new therapies of metabolic
diseases (2). Moreover, in different renal disease models, such as
diabetic kidney disease (DKD), sirtuins have been proven to
regulate anti-fibrosis and anti-oxidative stress functions, and
maintain the glomerular barrier integrity (3). DKD, diabetic
retinopathy, and diabetic peripheral neuropathy are the main
complications of DM, among which DKD has attracted
worldwide attention due to its high incidence (20%–40% in
diabetic patients) and poor prognosis (4, 5). DKD is a chronic
disease that leads to renal failure; the treatments for rena0l failure
are dialysis and kidney transplantation (6). However, once the
disease progresses to end-stage renal disease, the course of this
disease is both uncontrollable and irreversible ( (7). Although
many researchers have studied the molecular mechanism of
DKD and attempted to improve treatment strategies, DKD
remains a clinically intractable complication of DM.

Histone deacetylases (HDACs) in eukaryotes are divided into
IV classes, among which the I, II, and IV groups depend on Zn2+,
whereas class III sirtuins depend on NAD+ to exert catalytic
activity (8). The sirtuin family is classified into SIRT1–SIRT7
based on differences in the core structural domain, all of which
catalyze the deacetylation of Nℇ-acyl-lysine on histone and non-
histone substrates ( (9, 10). SIRT1, SIRT6, and SIRT7 are mainly
found in the nucleus, SIRT2 is localized in the cytoplasm, and
SIRT3, SIRT4, and SIRT5 are found in mitochondria, and their
positions are not fixed (11). Sirtuins are involved in the
regulation of various biological activities, including DNA
repair, apoptosis, cell cycle, oxidative stress, metabolism,
lifespan, and aging (12, 13). Based on biological regulatory
functions, many studies have shown that the sirtuin family has
therapeutic effects in many diseases. Sirtuins are pharmacological
targets in neurodegenerative diseases, including Alzheimer’s
disease, Parkinson’s disease, and Huntington’s disease (14).
Moreover, the regulation of sirtuins reveals a complex network
of cellular metabolism and will provide clues for the diagnosis,
treatment, and prevention of cancer (15). Additionally, as
mitochondrial sirtuins affect many aspects of mitochondrial
metabolism and signal transduction, targeting sirtuins may
represent a potential therapeutic target to combat age-related
mitochondrial recession (16). Through reviewing the literature,
we found many studies on sirtuins and DKD, but a lack of
systematic and detailed summaries. Therefore, in this review, we
have first introduced the biological regulatory functions of
SIRT1–SIRT7 in DKD animal and cell models. Subsequently,
we have summarized the signaling pathways for treating DKD
with various treatments, and finally, examined the differences
and clinical implications of sirtuins in DKD studies.
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2 SEARCH STRATEGY

Data for this review were identified by searching PubMed and
Web of Science using the search terms “histone deacetylase”,
“sirtuins”, “SIRT”, “diabetic nephropathy”, “diabetic kidney
disease”, and “diabetic complication” for collecting articles
from 2004 to 2021, with the language limited to English.
3 PATHOLOGICAL PROCESS OF DKD

The pathogenesis of DKD is multifactorial, involving structural,
physiological, hemodynamic, and inflammatory processes,
which ultimately lead to a decreased glomerular filtration rate
(17). Hyperglycemia and hypertension are critical factors in the
development of DKD (17). Proteinuria is an important factor in
the development of DKD, which is directly and predictably
associated with kidney damage (18). Proteinuria results from
an abnormal permeability function of the glomerular filtration
barrier, which consists of three layers of glomerular endothelial
cells, the glomerular basement membrane (GBM), and podocytes
(19). DKD is a microvascular complication of DM that develops
from micro-proteinuria to massive proteinuria, ultimately
leading to end-stage renal disease (18). Importantly, metabolic
and hemodynamic changes in DM cause ultrastructural changes
in the glomerular filtration barrier, including podocyte foot
process fusion and separation, GBM thickening, reduction of
endothelial cell glycocalyx, accumulation of mesangial
extracellular matrix, and glomerular sclerosis, all of which are
directly related to the increase in proteinuria (20).

3.1 Relationship Between the Expression
of SIRT1–SIRT7 and DKD
The important role of SIRT1 has been demonstrated by the
enhanced mitochondrial damage in SIRT1 knockdown mice with
DM, and its role in maintaining kidney cell homeostasis under
mitochondrial stress or damage (21). Moreover, in advanced
glycation end products (AGE)-treated rat primary glomerular
mesangial cells (GMCs), investigators found that the
overexpression of SIRT1 protected against reactive oxygen
species (ROS) production and fibrosis by enhancing the
Keap1/Nrf2/ARE pathway (22). Additionally, under the
condition of HG-induced HK-2 cells, the deacetylase activity of
SIRT1 decreased and resulted in renal tubular injury induced by
the SIRT1/NF-kB/microR-29/Keap1 signaling pathway (23).

Furthermore, a reduction in the NAD+/NADH ratio has been
shown to induce a decrease in SIRT3 activity and enhance
mitochondrial oxidative stress in a DKD rat model (24).
Another investigator found that the overexpression of SIRT3
antagonizes apoptosis in HG-induced HK-2 cells via the AKT/
FOXO1 and AKT/FOXO3a signaling pathways (25). Similarly, in
a streptozotocin (STZ)-induced mouse model, high expression of
SIRT3 inhibited aberrant glycolysis and prevented fibrosis via the
activation of PKM2 dimer formation and HIF-1a accumulation
(26). Moreover, in HG-induced endothelial cells, the
overexpression of SIRT3 activated the AMPK/SIRT3 pathway to
sustain redox balance and alleviate vascular inflammation (27).
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A previous report indicated that the overexpression of SIRT4
reduced the inflammatory effect and restrained apoptosis and the
production of ROS in HG-induced mouse podocytes via the
mitochondrial pathway (28).

In HG-induced podocytes, the overexpression of SIRT6
reduced mitochondrial dysfunction and apoptosis by activating
the AMPK pathway (29). Another report illustrated that
overexpression of SIRT6 promoted M2 macrophage
transformation and alleviated kidney injury in in vivo and
in vitro DKD models by upregulating the expression of Bcl−2
and CD206, and reducing the expression of Bax and CD86 (30).
Additionally, another study demonstrated that in db/db mice
and AGE/HG-induced human podocytes, overexpression of
SIRT6 showed anti-apoptosis and anti-inflammatory effects by
inhibiting the Notch pathway (31).

Taken together, these findings indicate that the
overexpression of SIRT1, SIRT3, SIRT4, and SIRT6 reduces the
biological impairment of kidney function in DKD models.

3.2 Gene Polymorphism and Clinical
Research of Sirtuins in DKD
Human gene polymorphism plays an important role in elucidating
the susceptibility and tolerance of the human body to diseases and
poisons, the diversity of clinical manifestations of diseases, and the
response to drug therapy (32–34). Studies have shown that SIRT1
and FOXO1 play important roles in the pathogenesis of DKD.
Single nucleotide polymorphisms were analyzed by including 1066
patients with type 2 diabetes (T2DM) (413 without DKD and 653
with DKD), and the results indicated that the SIRT1 gene variant
rs10823108 and the FoxO1 gene variant rs17446614 may be
associated with DKD in patients with T2DM (35). Another
study of gene polymorphisms suggested that, among 1016
patients with T2DM (388 without DKD and 628 with DKD),
the transcriptional coactivator p300 rs20551 polymorphism is
associated with the development of DKD, and the SIRT1
polymorphism is related to albumin-creatinine ratio progression
(36). The researchers analyzed changes in serum vash-1 and other
biomarkers in 692 patients with T2DM, and found that the UACR,
VASH-1, HbA1c, ESR, CRP, VEGF, HIF-1a, TNF-a, and TGF-b1
levels in all patient groups were significantly higher, and the SIRT1
levels were lower compared to healthy controls. These findings
indicated that serum VASH-1 may be associated with the
expression of renal inflammation and fibrosis-related factors and
have a potential connection with DKD (37). Another two-center,
randomized study evaluated 117 patients with stage 2–4 DKDwho
were treated with sevelamer carbonate. The results showed that
sevelamer carbonate increased anti-inflammatory defenses,
including nuclear factor like-2, AGE receptor 1, and SIRT1, and
decreased pro-inflammatory cytokines, such as TNF receptor 1
(38). In the latest clinical study, 313 patients with T2DM, 102 pre-
diabetic patients, and 100 healthy volunteers were selected to study
the relationship between SIRT6 and glucolipid metabolism and
urinary protein. The clinical study results showed that SIRT6
increased with glucolipid metabolism and urinary protein
markers, and is therefore expected to be a potential biomarker
for the early prediction and diagnosis of glucolipid metabolism
disorders and related nephropathy (39). The results of the above
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gene polymorphism and clinical studies indicate that sirtuins may
represent a molecular target to explore new therapeutic
approaches for DKD in the clinic.
4 BIOLOGICAL EFFECTS OF SIRT1–SIRT7
IN DKD MODELS

In the cell models of DKD, injury models are mostly induced by
HG or AGE, while most kidney fibrosis models are induced by
TGF-b1 or HG in podocytes, mesangial cells, renal tubular cells,
and some endothelial cells (Table 1). In podocyte, proximal
tubular cell, and mesangial cell models, SIRT1 and SIRT3 are
involved in the mechanism by which therapeutic drugs restore
mitochondrial biosynthesis. In podocyte and mesangial cell
models, SIRT1 and SIRT6 play significant roles in reducing
abnormal mitochondrial function. Moreover, SIRT1, SIRT3,
and SIRT4 are involved in the anti-oxidative stress effect in
podocytes, mesangial cells, and renal tubular cells. SIRT1, SIRT3,
SIRT4, SIRT6, and SIRT7 all participate in reducing the
apoptosis of podocytes, mesangial cells, and renal tubular cells
in DKD models. In most DKD cell models, therapies targeting
SIRT1, SIRT3, SIRT4, and SIRT6 have shown anti-inflammatory
effects. In DKD tubular cell models, both SIRT1- and SIRT3-
targeted therapies displayed anti-fibrosis effects and suppressed
epithelial-mesenchymal transition (EMT). Targeting SIRT1 also
enhanced autophagy in various DKD models. By summarizing
the results of previous research, we found that SIRT1, SIRT3,
SIRT4, SIRT6, and SIRT7 play different biological functions in
DKD cell models. Notably, SIRT1 is the most widely investigated
HDAC with the most diverse biological functions (Figure 1).

Animal models are valuable for studying the pathological
origins of human diseases because they allow in-depth
investigation of mechanisms, which cannot be explored in
clinical studies. As DKD animal models, db/db mice or rats, STZ
and/or HFD-induced mice or SD/Wistar rats, and some unique
transgenic mouse models are often used as research objects. We
summarized the research methods of SIRT1, SIRT3, SIRT4, SIRT6,
and SIRT7 in different DKD animal models to understand the
methods of animal models more intuitively (Tables 2–9).

Generally, these abnormal manifestations, such as
inflammation, oxidative stress, abnormal mitochondrial function,
renal fibrosis, podocyte loss and apoptosis, and impaired
autophagy, are all likely to occur during the development of
DKD. Meanwhile, SIRT1, SIRT3, SIRT4, SIRT6, and SIRT7 play
diverse regulatory roles in these physiological processes.
5 THE ROLE OF SIRT1–SIRT7 IN
SIGNALING PATHWAYS IN DKD MODELS

5.1 AMPK/Sirtuins/PGC-1a Pathway
AMPK and SIRT1 are the two main energy sensors, which directly
affect the activity of PGC-1a through phosphorylation and
deacetylation, respectively (40). Studies have shown that impaired
renal function under HG is directly related to the inactivation of the
May 2022 | Volume 13 | Article 801303
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AMPK/SIRT1/PGC-1a signaling pathway (41). The study results
showed thatCL316, 243, glycyrrhizic acid, and a polysaccharide from
okra (OP) all played antioxidant roles, reduced inflammation, and
improved fibrosis through activation of the AMPK/SIRT1/PGC-1a
pathway in STZ and/or HFD-induced db/db DKD mouse models
(42–44). Resveratrol, pro-renin receptor shRNA, and grape seed
procyanidin B2 (GSPB2) regained SIRT1 expression via the AMPK/
SIRT1/PGC-1a signaling axis in DKD models, thus restoring
mitochondrial biosynthesis and function, reducing oxidative stress,
and inhibiting apoptosis (40, 41, 45–47). In DKD animal or cell
models, FGF21, metformin, salidroside, and roflumilast increased or
restored the expression level of SIRT1 and played anti-apoptotic and
anti-oxidative roles by activating the AMPK/SIRT1 pathway (48–
51). Moreover, catalpol and geniposide (GE) up-regulated the
expression of SIRT1 in DKD models and inhibited oxidative stress
and inflammation by activating the AMPK/SIRT1/NF-kB pathway
(52, 53). Additionally, in HG-induced renal tubule cells, restoration
of SIRT3 expression through stanniocalcin-1 activated the AMPK/
SIRT3 pathway to produce antioxidant and anti-apoptotic activities
(54). Furthermore, cocoa,metformin, glycyrrhizic acid, andprobucol
restored SIRT1 expression by activation of the AMPK/SIRT1
pathway, ultimately reducing oxidative stress, apoptosis, and
enhancing autophagy in DKD models (26, 55–58). However, one
particular study reported that resveratrol improved oxidative stress
and enhanced mitochondrial biogenesis without altering SIRT1
expression, and is independent of the AMPK/SIRT1 pathway. The
distinction is that they usedH2O2-exposedproximal tubular cells as a
DKDmodel, as opposed to HG or AGE, which are more commonly
used (59). In HG-induced immortalized human mesangial cells
(iHMCs), theobromine could activate SIRT1 and decrease kidney
extracellular matrix (ECM) accumulation by activating the AMPK
pathway (60). In BTBR ob/ob mice, honokiol protected
mitochondrial health by activating mitochondrial SIRT3, which
first revealed the renal protective effect of SIRT3 on diabetic
glomerular disease (61). Moreover, in STZ-induced mouse models,
salidroside and resveratrol restored SIRT1 expression via the SIRT1/
PGC‐1a pathway, thus inhibiting fibrosis and reducing
Frontiers in Endocrinology | www.frontiersin.org 4
mitochondrial oxidative stress, respectively (61–63). BF175, as an
activator of SIRT1, increased SIRT1 activity to acetylate PGC‐1a and
activate PPARg to reduce podocyte loss and oxidative stress (64).
Furthermore, glucagon−like peptide−1, formononetin, and
resveratrol enhanced SIRT1 expression in DKD models to
attenuate apoptosis and oxidative stress by activating SIRT1 (65–
67). Beyond this, in HG-induced podocytes or mesangial cells,
overexpression of lncRNA SOX2OT, overexpression of lncRNA
GAS5, or downregulation of miR-138 increased SIRT1 expression
or activity to induce autophagy, inhibit fibrosis, and decrease
inflammation, respectively, by regulating the miR-9/SIRT1, miR-
221/SIRT1, and miR-138/SIRT1 axes (68–70). Through the studies
reported above, we conclude that AMPK/Sirtuins/PGC-1a is a
crucial pathway in regulating the pathological process of
DKD (Table 2).

5.2 SIRT1/p53 Pathway
SIRT1 specifically associates with and acetylates the tumor
suppressor protein p53, thereby negatively regulating p53-
mediated transcriptional activation. More importantly, p53
deacetylation by SIRT1 prevents DNA damage and stress-
induced cell senescence and apoptosis (71, 72). A previous
study has shown that in HG-induced podocytes or HK-2 cells,
inhibition of miR-150-5p or miR-155-5p, which could bind to
the 3’-UTR of SIRT1, promoted autophagy by targeting the
SIRT1/p53 pathway (73, 74). Moreover, in DKD animal and
cell models, H2S, resveratrol, and calcium dobesilate restored or
enhanced SIRT1 expression to prevent apoptosis by activating
the SIRT1/p53 pathway (75–77). These reports suggest that the
SIRT1/p53 pathway reduces cellular stress in HG-induced cells
or STZ-induced animals’ models (Table 3).

5.3 SIRT1/NF-kB-Related Pathway
Previous studies have demonstrated that the ability of SIRT1
deacetylation is critical to control the function of the
transcription factor NF-kB, as SIRT1 modulates various
biological responses by deacetylating NF-kB, including
TABLE 1 | Cellular model of diabetic nephropathy used to study SIRT1-SIRT7.

Name Species Model

Podocytes Human/Rat/Mouse HG, AGE, ADR

Mesangial cells GMCs (Glomerular mesangial cells) Rat HG, AGE
HBZY-1 Rat HG
HMCs (Human mesangial cells) Human TGF-b, HG
HRMCs (Human renal mesangial cells) Human HG
Mouse mesangial cells Mouse HG
mRMCs (Renal mesangial cells) Mouse HG
NMS2 Rat HG
Raw264.7 Mouse HG
SV40 MES 13 Mouse \

Renal tubule BUMPT cells (Proximal tubule-derived cell line) Mouse HG
HK-2 (Proximal tubule epithelial cell) Human TGF-b, HG
mProx (Proximal tubular cells) Murine H2O2

NRK-52E (Renal tubular epithelial cells) Rat HG, AGE
RPTCs (Renal proximal tubule epithelial cells) Human HG

Others HGECs (Human glomerular endothelial cells) Human HG
HUVECs (Human umbilical vein endothelial cells) Human HG, AGE
LLC-PK1 (Renal epithelial cell line) Porcine HG
May 2022 | Volume 13
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inflammation and autophagy (78, 79). In DKD models,
isoliquiritigenin (ISLQ), baicalin, astragaloside IV, ligustilide,
nicotinamide mononucleotide (NMN), and Tangshen formula
have been shown to increase or activate SIRT1 through the
SIRT1/NF-kB signaling pathway to improve inflammation,
decrease apoptosis, and enhance autophagy (80–86). Moreover,
in STZ-induced mouse models, BF175 decreased albuminuria
and glomerular disease via the transcription factor NF-kB and
p53 pathways (87). Additionally, panax notoginseng saponins
(PNS) and baicalin have been found to up-regulate SIRT1 to
inhibit inflammation, reactivate autophagy, and alleviate fibrosis
via the NF-kB and TGF-b pathways in DKD models (88, 89).
Furthermore, in HG-induced HK-2 cells, Na2S4 has been shown
to directly sulfhydrate two conserved domains of SIRT1, leading
to dephosphorylation and deacetylation of NF-kB and STAT3,
which improves oxidative stress, apoptosis, and the
inflammatory response (90). Thus, SIRT1 also has a protective
effect on renal function by regulating downstream of NF-kB in
DKD (Table 4).

5.4 Sirtuins and the TGF-b1/Smad3
Pathway
TGF-b superfamily members are critical in regulating fibrosis
in most chronic kidney diseases, and the inhibition of TGF-b1
Frontiers in Endocrinology | www.frontiersin.org 5
or its downstream signaling (e.g. Smad) has been shown to
decrease renal fibrosis (91–94). It has also been reported that
the reduction of miR-34a-5p targets the 3’UTR of SIRT1, which
inhibits fibrosis by regulating TGF-b1 signaling in HG-induced
HK-2 cells (95). Moreover, in AGE stimulated NRK-52E cells,
oligo-fucoidan has been shown to improve renal fibrosis via
restraint of the pro-fibrosis process caused by TGF-b1
activation (96). Additionally, tetrahydroxystilbene glucoside
(TSG) restored SIRT1 expression to alleviate oxidative stress
by targeting SIRT1 and TGF-b1 signaling both in vivo and in
vitro (97). Moreover, the inhibition of miRNA−135a−5p
increased SIRT1 expression and inhibited fibrosis by targeting
the TGF-b1/Smad3 pathway in TGF-b1-induced HK-2 and
HMC cells (98). As a unique example, FOXO3a binds to the
SIRT6 promoter and promoted SIRT6 expression to reduce
EMT and fibrosis through FOXO3a-mediated SIRT6/Smad3
pathway in DKD models (99). The above summary highlights
the vital function of the TGF-b1/Smad3 pathway in the
regulation of renal fibrosis by sirtuins in DKD (Table 5).

5.5 PI3K/AKT/FOXO Pathway
The PI3K/AKT pathway plays a crucial role in cell physiology,
which participates in glucose homeostasis, lipid metabolism,
protein synthesis, and cell proliferation and survival (100, 101).
FOXO1 and FOXO3a, as important substrates of AKT, are
regulated by the PI3K/AKT pathway (102). Researchers have
found that resveratrol restored SIRT1 expression to attenuate
oxidative stress damage in STZ-induced rat models through the
SIRT1/FOXO3a or SIRT1/FOXO1 pathway (103–105).
Furthermore, fucoxanthin and angiotensin 1–7 restored SIRT1
expression in response to antioxidative stress via the AKT/
SIRT1/FOXO3a and SIRT1/FOXO1/ATGL signaling pathways
in DKD models, separately (106, 107). Moreover, in STZ- and
HFD-induced mouse models, purinergic receptor (P2Y2R)
deficiency enhanced autophagy and the expression of SIRT1 by
AKT/FOXO3a and SIRT1 signaling pathways (108).
Additionally, pyrroloquinoline quinine increased the
expression of SIRT3 to antagonize oxidative stress and
apoptosis in HG-induced HK-2 cells via the PI3K/AKT/
FOXO3a signaling pathway (109). Moreover, it has been
reported that progranulin (PGRN) restored both SIRT1 and
SIRT3 to maintain mitochondrial biogenesis and mitophagy
via SIRT1/PGC-1a/FOXO1 signaling in HG-treated podocytes
(110). These findings suggest that the PI3K/AKT/FOXO
pathway performs important biological functions in improving
DKD by targeting sirtuins (Table 6).

5.6 Keap1/Nrf2/ARE Pathway
Dysregulation of Nrf2 transcriptional activity has been described
in the pathogenesis of various diseases, and the Nrf2/Keap1 axis
is a key regulator of cell homeostasis (111). It has been reported
that formononetin, resveratrol, and polydatin up-regulate the
expression of SIRT1 to anti-oxidative stress and fibrosis by
activating the Nrf2/ARE pathway in HG/AGE-induced GMCs
(112–114). Investigators have also found that SRT2104 (SIRT1
activators) protect against oxidative stress, inflammation, and
fibrosis via the SIRT1/p53/Nrf2 pathway in DKD models (115).
FIGURE 1 | Biological role of SIRT1–SIRT7 in different DKD cell models.
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TABLE 2 | DKD studies on AMPK/sirtuins/PGC-1a pathway.

Reference Drug/Target Sirtuins Model Mechanism of protection Pathway

(21) SIRT1
Deficiency

SIRT1
Knockdown

SIRT1RNAi
transgenic mouse
STZ-induced mouse
ADR-induced
nephropathy
murine podocytes

Enhance mitochondrial damage SIRT1 signaling

(27) SIRT3 OE SIRT3 HG-induced HUVEC Sustain redox balance and
alleviate vascular inflammation

Increased SIRT3-activated AMPK pathway

(29) SIRT6 OE Up-regulate
SIRT6

STZ induced male
C57BL/6 mice
HG-induced
podocyte

Attenuate mitochondrial
dysfunction and apoptosis

Activate AMPK pathway

(40) Pro-renin
receptor shRNA

Restore SIRT1 STZ C57BL/6 mouse
HG-mouse renal
mesangial cells
(mRMCs)

Restore mitochondrial
biogenesis and function

AMPK/SIRT1/PGC-1a signaling pathway

(41) Resveratrol Restore SIRT1
expression

db/db mice
HG-induced NMS2
mesangial cells

Anti-apoptosis and oxidative
stress

AMPK/SIRT1/PGC-1a axis

(42) OP Increase
expression of
SIRT1

HFD and STZ-
induced mice

Suppress apoptosis and
oxidative stress

Activate AMPK/SIRT1/PGC-1a signaling axis

(43) CL316,243 Reverse the
decrease of
SIRT1

STZ and HFD treated
mouse

Improve renal fibrosis,
inflammation, and oxidative
stress, and enhance BAT
activity

AMPK/SIRT1/PGC-1a signaling pathway

(44) Glycyrrhizic acid Restore SIRT1 Male diabetic db/db
mouse

Inhibit ROS Activate AMPK/SIRT1/PGC-1 signaling

(45) Resveratrol Restore SIRT1
expression

db/db diabetic
mouse
HG-induced HGECs

Inhibit oxidative stress and
apoptosis

By activating the AMPK/SIRT1/PGC-1a axis

(46) GSPB2 Restore SIRT1
expression

HG−induced
podocyte

Reduce mitochondrial
dysfunction and apoptosis

Via the AMPK/SIRT1/PGC-1a axis

(47) Grape seed
procyanidin B2
(GSPB2)

Restore SIRT1
expression

High-dose
glucosamine
rat mesangial cells

Ameliorate mitochondrial
dysfunction and inhibit
apoptosis

The activation of the AMPK/SIRT1/PGC-1a axis

(48) FGF21 Increase SIRT1
levels

OVE26 transgenic
mouse as a T1DM
nephropathy model

Anti-apoptosis, antioxidative
stress, anti-inflammatory

AMPK/SIRT1 pathway

(49) Metformin Increase SIRT1
protein
expression

HG-induced primary
rat podocytes

Improve the insulin resistance Dependent on AMPK and SIRT1 activity

(50) Salidroside Restore SIRT1
expression

STZ-induced Wistar
male rat as T1DM
model
HG-induced rat
mesangial cells

Anti-apoptosis and oxidative
stress

Activate AMPK/SIRT1 signaling pathway

(51) Roflumilast Restore SIRT1
expression

STZ-induced SD rat Anti-apoptosis AMPK/SIRT1 pathway

(52) Catalpol Increase SIRT1
level

HFD/STZ-induced
mice, HG-induced
podocyte model

Inhibit oxidative stress and
inflammation accompanied with
pyroptosis

Activate AMPK/SIRT1/NF-kB pathway

(53) Geniposide (GE) Up-regulate
protein
expression of
SIRT1

HFD/STZ-induced
mice
HG-induced
podocyte model

Antioxidative stress, anti-
inflammatory

APMK/SIRT1/NF-kB pathway

(54) Stanniocalcin-1 Restore SIRT3
protein
expression

Male C57BL/6J db/
db mice, HG-treated
BUMPT cells

Antioxidant and anti-apoptotic
activities

AMPK/SIRT3 pathway

(55) Metformin Restore SIRT1 HFD and low dose
STZ rats
HG-induced RMCs

Alleviate oxidative stress and
enhance autophagy

AMPK/SIRT1/FOXO1 pathway

(56) Cocoa Restore SIRT1 Zucker diabetic fatty
(ZDF) rats

Antioxidant, stimulate
autophagy and suppress
apoptosis

Activation of stress related key proteins (ERK/MAPKs and
NOX-4), cytoprotective-related proteins (AMPK, SIRT1 and

mTOR), autophagy and apoptosis pathways

(Continued)
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Moreover, in HG-induced NRK-52E cells, ISLQ treatment
reduced inflammation and oxidative stress by inhibiting
MAPK activation and the induction of Nrf2 signaling (116).
These findings demonstrate that SIRT1 regulates the
transcription factor Nrf2 in DKD models (Table 7).
Frontiers in Endocrinology | www.frontiersin.org 7
5.7 STAT and HIF-1a-Related Pathway
It has been reported that connexin 43, LincRNA 1700020I14Rik,
and silencing of miR-217 restrain inflammation and fibrosis in
both in vivo and in vitro DKD models through SIRT1/HIF-1a
signaling (117–119). Additionally, in AGE-induced human
TABLE 2 | Continued

Reference Drug/Target Sirtuins Model Mechanism of protection Pathway

(57) Probucol Restore SIRT1
expression

STZ-induced mouse
HG-induced HK-2

Attenuate oxidative stress and
fibrosis

Suppress p66Shc expression via the AMPK/SIRT1/AcH3
pathway

(58) Glycyrrhizic acid Restore SIRT1
expression

HG-induced NRK-
52E

Anti-cell proliferation and
oxidative stress

Increase AMPK, SIRT1 and Mn-SOD expression

(59) Resveratrol No change on
SIRT1
expression

Male db/db mouse
H2O2 exposed
murine proximal
tubular cells (mProx)

Improve oxidative stress and
enhance mitochondrial
biogenesis

Via AMPK/SIRT1-independent
pathway

(60) Theobromine SIRT1
activation

STZ-induced male
spontaneously
hypertensive rats
HG-induced iHMCs

Reduce kidney ECM
accumulation

AMPK activation

(61) Honokiol Activation of
SIRT3

BTBR ob/ob mice
with T2DM

Preserve mitochondrial
wellness

Through the activation of SOD2 and the restoration of PGC-
1a expression

(62) Resveratrol Restore SIRT1
expression

STZ induced CD-1
mouse
HG-induced mouse
podocytes

Attenuate mitochondrial
oxidative stress

Via SIRT1/PGC‐1a pathway

(63) Salidroside Restore SIRT1
expression

STZ induced male
C57BL/6J mouse

Inhibit fibrosis SIRT1/PGC-1a axis

(64) BF175 (SIRT1
agonist)

Increase SIRT1
activity

OVE26 mouse
HG induced human
podocytes

Reduce podocyte loss and
oxidative stress

Deacetylation of PGC-1a and activation of PPARg

(65) Formononetin Increase SIRT1
expression

HFD and low dose of
STZ induced rat

Anti-oxidative stress Increase SIRT1 expression

(66) Glucagon−like
peptide−1

Restore SIRT1 HG-induced mouse
podocytes

Reduce apoptosis, ROS, and
proinflammatory cytokine

Activation of SIRT1

(67) Resveratrol Enhance
SIRT1
expression

STZ-induced T2DM
rat
HG-induced NRK-
52E cells

Suppress apoptosis through
promoting autophagy activity

SIRT1 activation

(68) lncRNA GAS5
OE

Enhance the
expression
level of SIRT1

HG induced
mesangial cells
(RAW264.7)

Inhibit cell proliferation and
fibrosis

By sponging miR-221 and modulating SIRT1 expression

(69) LncRNA
SOX2OT OE

Increase SIRT1
expression

HG-induced human
podocytes cells
(HPCs)

Induce autophagy miR-9/SIRT1 axis

(70) Downregulation
of miR-138

Bind the 3'-
UTR of SIRT1

HG-induced mice
podocytes
db/db mice kidney
tissues

Anti-inflammatory The regulatory axis of miR-138/SIRT1/p38/TTP

(142) Olmesartan Restore SIRT1
expression

db/db mouse
HG-induced
podocytes

Inhibit podocyte apoptosis Through inhibiting angiotensin II/p38/SIRT1

(143) Selenium
nanoparticles

Up-regulate
SIRT1

STZ induced SD
male rat

Anti-oxidative stress and lower
apoptosis

Activate HSP-70/SIRT1 axis

(144) hnRNP F OE Increase SIRT1
expression

db/db hnRNP F-Tg
mouse
HG-induced rat
IRPTCs

Against oxidative stress,
tubulointerstitial fibrosis, and
RPTC apoptosis

Via stimulation of SIRT1 expression and signaling

(145) KD miR-133b
and miR-199b

Upregulate
SIRT1

Old male OLETF rat
(spontaneous T2DM)
TGF-b1-treated HK-2

Attenuate EMT and renal
fibrosis

By targeting SIRT1

(146) Inhibiting
PARP1

Upregulate the
expression of
SIRT1

db/db mice
HG-induces
mesangial cells

Decrease kidney ECM
accumulation

AMPK/PGC-1a signaling pathway
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podocytes, PYR as an AGE inhibitor, restored SIRT1 expression
to reduce kidney injury by decreasing p65 and STAT3
acetylation (120). In one study in HFD-diet DM rats, EX-527,
as a SIRT1 inhibitor, reduced SIRT1 expression and increased
SIRT3 expression to lessen fibrosis and inflammation by
blocking the phosphorylation of EGFR and PDGFR, blocking
STAT3 signaling (121). In another study, glucagon-like
peptide-1 decreased SIRT1 expression to improve the
inflammatory changes in db/db mice by inhibiting JAK/STAT
signaling (122). Thus, STAT and HIF-1a-related pathways
Frontiers in Endocrinology | www.frontiersin.org 8
reduce negative effects in DKD models by targeting
sirtuins (Table 8).

5.8 Other Pathways Involved in the
Regulation of Sirtuins in DKD
5.8.1 Pathways Associated With SIRT1 in DKD
Researchers have shown that both 1a, 25-Dihydroxyvitamin D3
and puerarin activate and increase SIRT1 expression to achieve
anti-oxidative effects by suppressing NOX4 expression in DKD
models (123, 124). Carnosine upregulated SIRT1 expression
TABLE 3 | DKD studies on SITR1/p53 pathway.

Reference Drug/Target Sirtuins Model Mechanism of protection Pathway

(73) Inhibition
miR-155-5p

Binding to the
SIRT1 3'UTR region

HG-induced HK-2 Promote autophagy A signaling loop p53/miR-
155-5p/SIRT1

(74) Silencing of
miR-150-5p

Targeted the 3'-UTR
of SIRT1

HG-induced podocyte injury
STZ-induced diabetic nephropathy in mice

Activate AMPK-dependent
autophagy

Targeting SIRT1/p53/
AMPK Pathway

(75) H2S Upregulate SIRT1 STZ induced male rat Suppress oxidative stress and
apoptosis

SIRT1, SOD, caspase-3,
p53, MDA

(76) Resveratrol Restore SIRT1
expression

STZ-induced Wistar rat
HG-induced HK-2

Inhibit apoptosis SIRT1/p53 axis

(77) Calcium
dobesilate

Enhance SIRT1
signaling

Renal interstitial fibrosis induced by unilateral
ureteral obstruction (UUO) mouse model
HUVECs

Suppress EMT progression and
promote anti-apoptotic

Via activating the SIRT1/
p53 signaling pathway
May 2022 |
TABLE 4 | DKD studies on SIRT1/NF-kB related pathway.

Reference Drug/Target Sirtuins Model Mechanism of protection Pathway

(23) —— SIRT1 STZ-induced Wistar
rat
HG-induced HK-2

Inhibit renal tubular injury Via SIRT1/NF-kB/microR-29/Keap1
signal pathway

(80) Baicalin Increase the
expression of
SIRT1

HG-induced podocyte Decrease apoptosis of high glucose induced podocyte SIRT1/NF-kB signaling pathway

(81) ISLQ Restore SIRT1 Male rat by STZ Antioxidant, anti-inflammatory, and reduce collagen
accumulation

Normalize the SIRT1/NF-kB balance,
control NLRP3 expression

(82) Astragaloside
IV

Increase SIRT1
expression

Polygenic KK-Ay mice
models HG induced
podocyte

Inhibit EMT and enhance autophagy SIRT1/NF-kB pathway

(83) Tangshen
formula

Activate SIRT1 STZ+HFD induced SD
rat

Improve inflammation Through SIRT1/NF-kB pathway

(84) NMN Restore SIRT1
expression

STZ induced SD male
rat
HG induced HBZY-1

Alleviate inflammatory−fibrosis Nampt/NF-kB p65 and SIRT1
signaling pathway

(85) Astragaloside
IV

Restore SIRT1
expression

HFD-induced KK-Ay
mouse
Mesangial cell (SV40
MES 13)

Enhance autophagy SIRT1/NF-kB
pathway

(86) Ligustilide Promote SIRT1
protein
expression

STZ combined with a
HFD rat

Attenuate podocyte injury Suppressing the SIRT1/NF-kB
signaling pathways

(87) BF175 Increase SIRT1 STZ mice Reduce albuminuria and glomerular disease NF-kB and p53 signaling pathways
(88) Baicalin Enhance level

of SIRT1
STZ rats Inhibit inflammation, inhibit extracellular matrix

accumulation, regulate cell proliferation, reactivate
autophagy, alleviate renal fibrosis

NF-kB signaling pathway, TGF-b/
Smad3 pathway, IGF-1/IGF-1R/p38
MAPK pathway

(89) PNS Up-regulate
SIRT1

Alloxan-induced SD rat
HG-induced RMCs

Inhibit inflammation and antioxidant Through decreasing the NF-kB-
mediated induction
of inflammatory cytokines and TGF-
b1

(90) Na2S4 Sulfhydrating
SIRT1

HG-induced HK-2 cells
STZ mice

Restrain the overproduction of inflammation cytokine
and ROS

Suppressing phosphorylation and
acetylation of p65 NF-kB and STAT3
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TABLE 6 | DKD studied on PI3K/AKT/FOXO3 pathway.

Reference Drug/Target Sirtuins Model Mechanism of protection Pathway

(25) SIRT3 OE SIRT3 HG-induced HK-2 Antagonize high glucose-induced
apoptosis

AKT/FoxO signaling pathway

(103) Resveratrol and
rosuvastatin

Restore SIRT1 mRNA
expression

STZ-induced Wistar rat Attenuate oxidative stress
damage

Through increasing
FOXO1/SIRT1 dependent
antioxidant defenses

(104) Resveratrol Restore SIRT1
expression

STZ-induced Wistar rat
HG-induced HK-2

Reduce oxidative stress damage SIRT1/FOXO3a pathway

(105) Resveratrol Restore SIRT1
expression

STZ-induced SD rat Anti-oxidative stress SIRT1/FOXO1 pathway

(106) Fucoxanthin Restore SIRT1 GMCs cultured in HG Antioxidative stress and anti-
fibrosis

AKT/SIRT1/FOXO3a
signaling

(107) Angiotensin 1–7 Increase SIRT1
expression

db/db mouse T2DM model Reduce oxidative stress,
inflammation, and lipotoxicity

SIRT1/FOXO1/ATGL
pathway

(108) P2Y2R deficiency Increased SIRT1
expression

HFD and STZ mouse Enhance autophagy response AKT/FOXO3a and SIRT1
signaling pathways

(109) Pyrroloquinoline
quinine

Upregulate SIRT3
expression

HG-induced HK-2 Anti-oxidative stress and
apoptosis

PI3K/AKT/FOXO3a pathway

(110) PGRN Restore SIRT1 and
SIRT3

STZ-induced mice and patients with DKD,
HG-treated podocytes

Maintain mitochondrial biogenesis
and mitophagy

Via PGRN/SIRT1/PGC-1a/
FOXO1 signaling

(147) Reduce LncRNA
MALAT1

Restore SIRT1
expression

HG induced HK-2 Renal protective effect MALAT1/FOXO1/SIRT1
signaling
TABLE 5 | DKD studied on sirtuins and TGF-b1/Smad3 pathway.

Reference Drug/Target Sirtuins Model Mechanism of protection Pathway

(95) Reduce miR-
34a-5p

Targeting the 3'UTR of
SIRT1

HFD/STZ induced C57BL/6
mouse
HG induced HK-2

Inhibit fibrosis TGF-b1 signaling

(96) Oligo-Fucoidan Restore SIRT1
expression

AGE stimulated NRK-52E
cells
STZ and nicotinamide
combined with a HFD
mouse

Improve kidney disease
caused by excessive fibrosis

Suppress the HMGB1/RAGE/NF-kB/TGF-b1/
TGF-b1R/FN pathway and HIF-1a activation

(97) TSG Restore SIRT1
expression

STZ-induced SD rat
HG-induced HBZY-1

Alleviate oxidative stress SIRT1 and TGF-b1 pathway

(98) Inhibition of
miRNA−135a
−5p

Target SIRT1 3'UTR TGF-b-induced HK-2 and
HMCs

Inhibit renal fibrosis Target SIRT1 and inactivating Smad3 signaling

(99) FOXO3a Bind to the
SIRT6 promoter and
promote SIRT6
expression

db/db T2DM mouse
HG-induced HK-2

Reduce EMT and fibrosis FOXO3a-mediated SIRT6/Smad3 signaling
pathways
TABLE 7 | DKD studied on Keap1/Nrf2/ARE pathway.

Reference Drug/Target Sirtuins Model Mechanism of protection Pathway

(22) SIRT1 OE SIRT1 AGEs-treated rat
primary GMCs

Inhibit ROS production and anti-
fibrosis

Enhanced the activity of Keap1/
Nrf2/ARE pathway

(112) Polydatin Reverse the downregulation of SIRT1
protein expression and deacetylase activity

AGEs-induced
GMCs

Anti-oxidative stress and fibrosis Activation of
SIRT1/Nrf2/ARE pathway

(113) Formononetin Up-regulated the expression of SIRT1 GMCs exposed to
HG

Antioxidative stress, prevent the
progression of renal fibrosis

Nrf2/ARE signaling pathway

(114) Resveratrol
(SIRT1
activator)

Restore SIRT1 expression STZ-induced SD
rat
AGEs-induced SD
rat primary GMCs

Antioxidative and fibrosis By activating the Nrf2/ARE
pathway

(115) SRT2104 Enhance SIRT1 expression and activity STZ induced
C57BL/6 mouse

Protection against the oxidative
stress, inflammation, fibrosis

SIRT1/p53/Nrf2 pathway

(116) ISLQ SIRT1 binds to ISL directly STZ-induced T1DM
HG-induced NRK-
52E cells

Reduce inflammation and
oxidative stress

Inhibition of MAPK activation, and
the induction of Nrf2 signaling
3
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to decrease glycative and lipoperoxidative stress in HG-induced
podocytes via the Hsp70/HO-1 pathway. Another report showed
that anserine revealed anti-oxidant and glycative stress in HG-
induced HK-2 cells via the Hsp70/HO-1 defense system, but did
not affect SIRT1 expression (125, 126). Several other studies have
shown that aerobic exercise training, inhibition of HIC1, INT-
767 (FXR/TGR5 dual agonist), and SGLT2 restored SIRT1
expression under DKD animal and cell models, which improve
mitochondrial function, reduce ROS, anti-inflammation, and
prevent glucose entry (127–130). These results suggest that
SIRT1 largely exhibits anti-inflammatory and anti-oxidant
effects through different signaling pathways in DKD models.

5.8.2 Pathways Associated With SIRT3 in DKD
Apigenin (CD38 inhibitor) and empagliflozin (SGLT2 inhibitor)
have been shown to increase SIRT3 levels in HG-induced HK-2
cells to relieve mitochondrial oxidative stress and restore aberrant
functions; this is mediated by restoring the NAD+/NADH ratio
and inhibiting glucose uptake into the proximal tubules,
respectively (131, 132). Liraglutide (glucagon−like peptide−1
agonist) has also been shown to increase SIRT3 expression to
prevent the activation of mitochondrial apoptosis by activating the
ERK−Yap signaling pathway in HG-induced HRMCs (133). It has
been reported that INT-777 (TGR5-agonist) increased the activity
of both SIRT1 and SIRT3 to improve mitochondrial biogenesis,
and reduce oxidative stress and fibrosis via the TGR5 pathway in
db/db diabetic mice (134). Moreover, in the C57BL/KsJ db/db
mouse model, the overexpression of SIRT3 reduced apoptosis and
fibrosis through modulation of mitophagy (135). It can be seen
from the above results that high expression of SIRT3 reduced
mitochondrial stress response, including oxidative stress
and apoptosis.

5.8.3 Pathways Associated With SIRT6 in DKD
SIRT6-knockout male mice have been shown to exhibit an
enhanced fibrotic phenotype, which was controlled by the
Nampt-SIRT6 axis to regulate extracellular matrix remodeling,
and the authors found that SIRT1 is not the controller of SIRT6
Frontiers in Endocrinology | www.frontiersin.org 10
expression (136). The results of this article show that SIRT6 plays
an important regulatory role in ECM remodeling.

5.8.4 Pathways Associated With SIRT7 in DKD
In HG-treated podocytes, the increase in SIRT7 has been shown
to inhibit podocyte apoptosis, while the suppression of
microRNA-20b promotes SIRT7 expression to decrease
apoptosis (137) (Table 9). This research demonstrated that
increasing the expression of SIRT7 reduced the occurrence of
apoptosis in podocytes.

5.9 Summary of SIRT1–SIRT7
SIRT1 was the first sirtuin discovered in mammals, and remains the
most extensively and deeply studied so far (138). Resveratrol is the
most recognized and studied activator of SIRT1 (139). SIRT1hasbeen
extensively studied in DKD models, including podocytes, mesangial
cells, and tubular cells. SIRT2 is the only cytoplasmic sirtuin, but its
role in treating DKD has not been reported yet so far, nor has that of
SIRT5. SIRT3 is normally located in the mitochondria, but under
cellular stress, it can translocate into the nucleus (140). Some studies
have reported that increasedexpressionofSIRT3 isbeneficial toDKD,
mainly through AMPK or PI3K pathways (25, 27, 54, 109, 110).
However,we foundonearticle that reported that theoverexpressionof
SIRT4 reduced inflammatory effects, and inhibited ROS production
and apoptosis in HG-induced podocytes (28). SIRT6 is a nuclear
HDAC that plays an important role in the pathological processes of
inflammation, aging, cancer, and neurodegenerative diseases (141).
However, only a few studies on SIRT6 have been reported, mainly in
podocyte and tubular cell models of DKD. Additionally, the catalytic
activity of SIRT7 is weak, and a previous report indicated that the
suppression of microRNA-20b increased SIRT7 expression and
reduced HG-induced podocyte apoptosis (137) (Figure 2).
6 CONCLUSIONS AND PERSPECTIVES

Many researchers are working to investigate the etiology of DKD
and explore new treatment methods. In our conventional view,
TABLE 8 | DKD studied on STAT and HIF-1a pathway.

Reference Drug/Target Sirtuins Model Mechanism of protection Pathway

(26) SIRT3 high
expression

SIRT3 STZ-induced mice model (fibrotic
model: CD-1, less fibrotic model:
C57Bl6

Inhibit aberrant glycolysis
and combat fibrosis

By activation of PKM2 dimer formation
and HIF-1a accumulation

(117) Silencing of
miR-217

Restore SIRT1 expression HG-induced RMCs Restrain inflammation and
fibrosis

Through SIRT1/HIF-1a signaling
pathway

(118) LincRNA
1700020I14Rik

SIRT1 C57BL/KsJ db/db mouse
HG induced mouse mesangial cells

Alleviate cell proliferation
and fibrosis

miR-34a-5p/SIRT1/HIF-1a signaling

(119) Connexin 43 Increase SIRT1 levels db/db mice
HG-induced NRK-52E cells

Inhibit the EMT progress
and renal tubulointerstitial
fibrosis

SIRT1/HIF-1a signaling pathway

(120) PYR Restore SIRT1 expression db/db mouse
AGE-induced human podocytes

Reduce kidney injury Reduced p65 and STAT3 acetylation

(121) EX-527 Reduce SIRT1
expression, increase
SIRT3 expression

HFD-induced diabetic rats Anti-fibrosis and anti-
inflammation

Block the phosphorylation level of EGFR
and PDGFR, blockade of STAT3
signaling

(122) Glucagon-like
peptide-1

Decrease SIRT1
expression

db/db mouse
AGEs and HG induced HUVECs

Improve the inflammatory
changes

Inhibit the JAK/STAT pathway
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sirtuins are a class of HDACs involved in the regulation of
longevity and maintaining the stability of nucleosomes by
balancing with histone acetylases (13). However, in addition to
deacetylate histones, we discovered that sirtuins also regulate
many transcription factors, including FOXO1, FOXO3a, STAT3,
Smad2/3, NF-kB, p53, and Nrf-2. These transcription factors are
Frontiers in Endocrinology | www.frontiersin.org 11
involved in regulating many biological processes, including
autophagy, oxidative stress, apoptosis, inflammation, EMT,
and fibrosis (Figure 3). We found that in DKD studies, the
high expression of SIRT1–SIRT7 alleviated or reduced kidney
injury through different mechanisms or molecular pathways, of
which SIRT1 is the most widely explored. However, an
TABLE 9 | DKD studied on other pathways.

Reference Drug/Target Sirtuins Model Mechanism of protection Pathway

(24) SIRT3 Reduction of
SIRT3 activity

ZDF rat T2DM model
HG-induced HK-2

Enhance mitochondrial oxidative stress CD38 OE, intracellular NAD+/NADH ratio

(28) SIRT4 OE SIRT4 HG-induced mouse
podocytes

Attenuate inflammatory response, prevent
apoptosis and ROS production

Inhibit apoptosis via the mitochondrial
pathway

(30) SIRT6 OE Increase SIRT6
expression

STZ rats
Mouse podocyte MPC-5

Promote M2 macrophage transformation,
alleviate renal injury

Upregulate the expression of Bcl−2 and
CD206, and decrease expression of Bax
and CD86

(31) SIRT6 OE Increase SIRT6
expression

STZ-induced C57BL/6
mouse, db/db mouse
AGE/HG induced
human podocytes

Anti-apoptosis and -inflammation by
increasing autophagic flux

Through inhibition of the Notch pathway

(123) 1a,25-
Dihydroxyvitamin
D3

Activate SIRT1 ZDF rats Antioxidant PARP1/SIRT1/ NOX4 pathway

(124) Puerarin Increase SIRT1
expression

STZ-induced eNOS-null
C57BL/6 male mouse
HG-induced murine
podocytes

Anti-oxidative Through the suppression of NOX4
expression

(125) Carnosine Upregulation of
SIRT1

HG-induced podocyte Reduce glycative and lipoperoxidative stress. Hsp70, SIRT1, Trx, g-GCS, HO-1

(126) Anserine No effect on
SIRT1

db/db mouse
HG-induced HK-2

Anti-oxidant and glycative stress Hsp70/HO-1 defense system

(127) Inhibition of HIC1 Rescue SIRT1
expression

HG-induced HK-2 Reduce ROS accumulation Target the HIC1/EZH2/DNMT1 axis

(128) INT-767 Restore SIRT1
expression

STZ-induced DBA/2J
mouse, db/db mice with
T2DM

Prevent inflammation, oxidative stress,
endoplasmic reticulum stress, and
tubulointerstitial fibrosis

Induce mitochondrial biogenesis pathway,
prevents activation of pofibrotic signaling
pathways

(129) SGLT2 inhibition Restore SIRT1 Male C57BL/6 db/db
mouse
HG-cultured porcine
LLC-PK1 cells

Prevent intracellular glucose entry from the
apical side into the proximal tubular cells

GLUT2/importin-a1/HNF-1a pathway

(130) Aerobic exercise
training

Restore SIRT1
expression

STZ induced C57BL/6
mouse T1DM

Improve mitochondrial function MMP, ATP, superoxide production

(131) Apigenin Increase SIRT3
activity

Male diabetic fatty rats
HG-induced HK-2 cells

Relieve mitochondrial oxidative stress Restore the intracellular NAD+/NADH ratio
and SIRT3 activity

(132) Empagliflozin Restore SIRT3
levels

STZ mice
HG-induced HK-2

Suppress the EMT, with restoration of all
aberrant functions

Inhibiting glucose uptake into the proximal
tubule

(133) Liraglutide Upregulate
SIRT3
expression

HG induced HRMCs Prevent activation of mitochondrial apoptosis Activate ERK/Yap signaling pathway

(134) INT-777 Increase activity
of SIRT1 and
SIRT3

db/db diabetic mouse Increase mitochondrial biogenesis, decrease
oxidative stress and fibrosis

TGR5 signaling

(135) AFSCs
transplantation

SIRT3 OE in
AFSCs

C57BL/KsJ db/db
mouse

Reduce apoptosis and fibrosis By modulation of mitophagy

(136) Nampt SIRT6 STZ induced male
mouse
HK-2

Reduce fibrogenic extracellular matrix
remodeling

Nampt/SIRT6 axis

(137) Suppression of
microRNA-20b

SIRT7 OE HG−induced podocyte Inhibit the podocyte apoptosis By targeting SIRT7

(148) AGEs-RAGE
system

Down-regulate
SIRT1

AGEs-induced GMCs Diabetic renal fibrosis Through the ubiquitin-proteasome
pathway

(149) Resveratrol Restore SIRT1
expression

STZ-induced SD rat as
a T1DM model
HG-induced mouse
podocytes

Modulate angiogenesis, reduce GBM
thickness and fibrosis

Via modulating the angiogenic factors
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exception was found in db/db mice, which showed that
treatment with glucagon-like peptide-1 reduced SIRT1
expression, while in HUVEC cells, glucagon-like peptide-1
had no significant effect on the SIRT1 expression level. The
authors explained that the in vivo results were due to a reduced
inflammatory environment that did not stimulate SIRT1, while
the in vitro results were due to SIRT1 only participating in
transcriptional responses (122). Resveratrol is a recognized
Frontiers in Endocrinology | www.frontiersin.org 12
activator of SIRT1, but in db/db mice, treatment with
resveratrol failed to cause changes in SIRT1 expression, and it
still improved oxidative stress and enhanced mitochondrial
biogenesis in the AMPK/SIRT1-independent pathway (59).
Furthermore, the expression of SIRT1, SIRT2, SIRT3, and
SIRT6 was higher than SIRT4, SIRT5, and SIRT7 in the
kidney; therefore, the study of SIRT1, SIRT2, SIRT3, and
SIRT6 in DKD models is both reasonable and credible (136).
FIGURE 2 | Basic structure of nephron and glomerulus and different cell models for sirtuins studies.
FIGURE 3 | The targets and signaling pathways of different drugs or compounds regulated by sirtuins were summarized.
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In light of the above, to better illuminate the roles of SIRT1–
SIRT7 in DKD and the research progress, we have summarized
the therapeutics, targets, and signaling pathways involved in in
vitro and in vivo models of DKD (Figure 3). Our aim is that this
review will serve as a valuable reference for future studies of
sirtuins and DKD, and provide a theoretical foundation for
delaying the pathological process of DKD in the clinic.
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