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Grifola frondosa may play an
anti-obesity role by affecting
intestinal microbiota to increase
the production of short-chain
fatty acids

Ruxiao Hu*

Edible Fungus Institute of Hunan Province, Changsha, China
Background: Grifola frondosa (G. frondosa) is a fungus with good economic

exploitation prospects of food and medicine homologation. This study aims to

investigate the effects of G. frondosa powder suspension (GFPS) on the intestinal

contents microbiota and the indexes related to oxidative stress and energy

metabolism in mice, to provide new ideas for developing G. frondosa weight

loss products.

Methods: Twenty Kunming mice were randomly divided into control (CC), low-

dose GFPS (CL), medium-dose GFPS (CM), and high-dose GFPS (CH) groups. The

mice in CL, CM, and CH groups were intragastrically administered with 1.425 g/

(kg·d), 2.85 g/(kg·d), and 5.735 g/(kg·d) GFPS, respectively. The mice in CC group

were given the same dose of sterile water. After 8 weeks, liver and muscle related

oxidative stress and energy metabolism indicators were detected, and the

intestinal content microbiota of the mice was detected by 16S rRNA high-

throughput sequencing.

Results: After eight weeks of GFPS intervention, all mice lost weight. Compared

with the CC group, lactate dehydrogenase (LDH) and malondialdehyde (MDA)

contents in CL, CM, and CH groups were increased, while Succinate

dehydrogenase (SDH) and Superoxide Dismutase (SOD) contents in the liver

were decreased. The change trends of LDH and SDH in muscle were consistent

with those in the liver. Among the above indexes, the change in CH is the most

significant. The Chao1, ACE, Shannon, and Simpson index in CL, CM, and CH

groups were increased. In the taxonomic composition, after the intervention with

GFPS, the short-chain fatty acid (SCFA)-producing bacteria such as unclassified

Muribaculaceae, Alloprevotella, and unclassified Lachnospiraceae increased. In

linear discriminant analysis effect size (LEfSe) analysis, the characteristic bacteria

in CC, CL, CM, and CH groups showed significant differences. In addition, some

characteristic bacteria significantly correlated with related energy metabolism

indicators.
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Conclusion: The preventive effect of G. frondosa on obesity is related to changing

the structure of intestinal content microbiota and promoting the growth of SCFAs.

While excessive intake of G. frondosa may not be conducive to the antioxidant

capacity and energy metabolism.
KEYWORDS

Grifola frondosa, intestinal contents, microbial diversity, short-chain fatty acid,
anti-obesity
Introduction

G. frondosa [Grifola frondosa (Dicks.) Gray], also known as

maitake, belongs to Basidiomycota, Hymenomycetes, Polyporales,

Meruliaceae, and Ramalina. G. frondosa is a rare edible and

medicinal fungus with effects of anti-obesity, anti-tumor, and

regulating immune function, at the same time, it is rich in various

bioactive components including polysaccharides, steroids and

polyphenols (1). It has a long history of medicinal use in Oriental

medicine in China, Japan, and India (2). In addition, G. frondosa has a

delicious taste and is a good source of dietary fiber, protein, and

carbohydrates (3).

The intestinal microbiota is a dynamic flora composed of 100 trillion

microorganisms that inhabit the host’s intestinal tract (4). They play an

irreplaceable role in various physiological activities, such as maintaining

immune function, resisting colonization by pathogenic microorganisms,

and assisting in nutrient absorption (5, 6). By secreting rich differential

enzymes, some pharmaceutical components that do not have

pharmacological activity can also be converted by the intestinal

microbiota to form new active metabolites, which in turn have

different biological effects on the body (7–9). More and more reports

also indicated that intestinal microbiota might play a good intermediary

role in the beneficial mechanism ofG. frondosa (10). For example, Li et al.

(11) reported that G. frondosa heteropolysaccharide could prevent non-

alcoholic fatty liver disease by increasing the number of beneficial

bacteria Allobaculum, Bacteroides, and Bifidobacterium. Chen et al. (12)

reported that a new polysaccharide (GFP-N) extracted from G. frondosa

could improve the intestinal microbiota of diabetic mice by increasing the

abundance of Akkermansia, Lactobacillus, and Turicibacter. In addition,

plant dietary fiber can be utilized and decomposed by the intestinal

microbiota, partially absorbed by the microbiota itself, and partially

converted into beneficial substances such as SCFAs (13). It has been

reported that SCFAs can alleviate obesity, regulate intestinal pH, promote

intestinal mucus production, and provide energy for epithelial cells (14–

16). Among them, acetate, propionate, and butyrate are the intestines’

major SCFAs (14). Pan et al. (17) reported that the ethanol extract of G.

frondosa can reduce the weight of rats fed with high-fat diet and increase

the number of beneficial bacteria Intestinimonas and Butyricimonas,

which are important producers of butyrate.

In daily life, people usually eat G. frondosa after simple decocting,

or grind the G. frondosa into powder and use it as a flavoring agent

(3). At the same time, the components of glycoprotein, ergosterol and

pyrrolefronine in G. frondosa also have pharmacological effects of

anti-obesity, anti-tumor or anti-diabetes (18–20). However, at
02
present, most studies are on the polysaccharide components and

their functions in G. frondosa, and there is little research on the effect

of direct intervention of G. frondosa on intestinal microbiota. SOD

and MDA are usually one of the important indicators to measure the

body’s ability to remove oxygen free radicals and the level of oxidative

damage (21). Some reports have shown that G. frondosa

polysaccharides and polyphenols have the effect of anti-oxidative

stress (22–24). LDH is a regulatory enzyme produced by glycolysis of

sugars in the body in the absence of oxygen, which converts pyruvic

acid into lactic acid, with reversibility (25, 26). SDH is a marker

enzyme reflecting mitochondrial function, which can provide

electrons for cell mitochondria and the aerobic and productive

respiratory chain (27). In his master’s degree thesis, Li BG (28)

reported the good potential role of G. frondosa fermentation broth

in anti-fatigue and promoting energy cycle. Therefore, this study

intervened the mice with different doses of GFPS to explore its effects

on intestinal content microbiota, body weight, energy metabolism or

oxidative stress-related indicators of liver and muscle in mice. Aiming

to provide new ideas for the development of G. frondosa weight loss

products and suggestions for people’s daily consumption.
Material and methods

Animals and feeding environment

In order to eliminate the gender influence (29), this study selected 20

SPF-grade male Kunming mice (20 ± 2 g), purchased from Hunan Slaccas

Jingda Laboratory Animal Company (Hunan, China). The animals were

raised at a temperature 23-25°C and humidity of 47-53% in the Experimental

Animal Center of the Hunan University of Chinese Medicine.
Medicine

G. frondosa is produced in Qingyun County, Lishui City, Zhejiang

Province, and is the first fruiting mushroom product of G. frondosa

stick cultivation (30). Take a certain amount of G. frondosa, dry it in

an oven at 105-110°C to constant weight, grind it into powder, and

pass it through a 60-mesh sieve to obtain G. frondosa powder. A

proper amount of G. frondosa powder was heated with distilled water,

and boiled for 5 min. Then, concentrated into low, medium and high

dose GFPS of 0.053 g/ml, 0.106 g/ml and 0.215 g/ml, respectively. The

solutions were cooled and stored in a refrigerator at 4 °C for standby.
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Animal grouping and feeding

After 3 days of adaptive feeding, the mices were randomly divided

into control group (CC), low-dose GFPS group (CL), medium-dose

GFPS group (CM) and high-dose GFPS group (CH). The LD, MD and

HD groups were given 0.4 mL low, medium and high dose GFPS by

gavage, and CC Group was given the same frequency of sterile water by

gavage, twice a day for 8 weeks. During this period, each mouse was

weighed and recorded every week. The experimental procedures are

shown in Figure 1. All animal experimental procedures were in the

animal experimental protocol approved by the Institutional Animal Care

and Use Committee of the Hunan University of Chinese Medicine.
Biochemical indicators detection

At the end of the 8 weeks intervention, the mice were sacrificed on

a sterile operating platform using cervical dislocation, and then the

liver and muscles were taken out. According to the instructions of

ELISA kits, the levels of SOD, MDA, LDH and SDH in the liver, and

the levels of LDH and SDH in the muscle were detected using Rayto

RT-6100 enzyme labeling analyzer. The kits were provided by

Quanzhou kenuodi Biotechnology Co., LTD.
Intestinal content sample collection

Under sterile conditions, the intestinal tissues from jejunum to

ileum were longitudinally cut, and the intestinal contents were

collected with forceps and stored at -80 °C for subsequent use (31).
Extraction of total DNA, PCR amplification
and high-throughput sequencing

The total microbial genomic DNA of the samples was extracted

using a DNA extraction kit (MN NucleoSpin 96 So) through the steps

of sample lysis, impurity removal by precipitation, inhibitor removal

by filtration, DNA binding, membrane washing, drying, elution, etc.

Using the extracted DNA as a template, the V3+V4 variable region of

bacterial 16S rDNA was amplified with primers 338F (5’-
Frontiers in Endocrinology 03
AC TCCTACGGGAGGCAGCA - 3 ’ ) a n d 8 0 6 R ( 5 ’ -

GGACTACHVGGGTWTCTAAT-3’). The amplification reaction

system consisted of 50 ng genomic DNA, 0.3 mL Vn F, 0.3 mL Vn

R, 5 mL KOD FX Neo Buffer, 2 mL dNTP (2 mM each), and 0.2 mL
KOD FX Neo, which were finally supplemented to 10 ml with ddH2O.

Amplification conditions: denaturation at 95 °C for 5 min, rapid

cooling to 50 °C, heating to 72 °C for 30 s, reacting for 40 s, then

reacting at 72 °C for 7 min, and storing at 4 °C for 25 cycles. The

amplified PCR products were purified, quantified, and homogenized.

After the samples were mixed, they were subjected to column

purification using OMEGA DNA purification column, and detected

by 1.8% agarose gel electrophoresis. Use Monarch DNA glue recovery

kit to cut glue and recover PCR products. The PCR products were

sequenced by the Illumina Novaseq 6000 sequencing platform. All

samples were processed by Beijing Biomarker Technologies Co, LTD.
Bioinformatics

The obtained data were filtered by Trimmom (V0.33) (32),

spliced by Usearch (v10.0) (33), and chimerism was removed by

dada2 method (34) in QIIME2 (v2020.6) (35). Then effective

sequences with similarity above 97% are clustered into an

operational taxonomic unit (OTU), and the representative

sequences of OTU are defined by classification. This study assessed

the Alpha diversity of sample communities using ACE, Chao1,

Simpson, and Shannon indices. The Beta diversity of sample

communities was assessed using non-metric multidimensional

scaling (NMDS) based on the unweighted unifrac distance. At the

same time, the marked difference species in each group were screened

by LEfSe, and the above visualization was completed with R v3.6.3.
Correlation analysis

The correlation between the two variables can be expressed by the

correlation coefficient. The closer the correlation coefficient is to 1, the

greater the correlation between two elements, and the closer the correlation

coefficient is to 0, indicating that the two elements aremore independent. R

version 3.6.3 is used to calculate Spearman rank correlation coefficient and

draw heat map, network map, and scatter map.
FIGURE 1

Experimental design and general conditions of the animals.
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Statistical analysis

Experimental data were expressed as mean ± standard deviation.

All the data were statistically analyzed by SPSS 21.0 statistical

software. For comparison among multiple groups, the one-way

analysis of variance was used to analyze the data that conformed to

the normal distribution and homogeneity of variance, otherwise, the

Kruskal-Wallis rank sum test was used. Pairwise comparison among

multiple groups was performed using the LSD test. p < 0.05 indicated

that the difference had statistical significance.
Results

Effects of GFPS on body weight

As shown in Figure 2, the body weight gain of mice after GFPS

intervention was lower than that of CC group, and the CH and CM

groups were significantly lower than CC group (pCH < 0.01, pCM <

0.05). Meanwhile, the trend of body weight gain in the CH group was

the lowest among all GFPS intervention groups and significantly

lower than that in the CL group (p < 0.05). This indicated that low,

medium, and high doses of GFPS intervention had the effects of

weight loss and lipid reduction, and the effect of high-dose of GFPS

was the most significant.
Effects of GFPS on LDH, SDH, SOD and MDA
content in liver

LDH represented the anaerobic metabolism to some extent,

while the up-regulation of SDH activity represented the acceleration

of the tricarboxylic acid cycle and increase of Adenosine

Triphosphate (25, 26). As shown in Figure 3A, LDH content in

liver of different doses of GFPS intervention was significantly higher

than that in CC group (p < 0.01). Meanwhile, LDH content in liver

of CH group was significantly higher compared with the CL and CM

groups. In terms of liver SDH content (Figure 3B), the SDH content

after different doses of GFPS intervention was lower than that in the

CC group, and the SDH content in the liver of the CM and CH
Frontiers in Endocrinology 04
groups was significantly lower than that in the CC group (p < 0.05).

This indicated that the intervention of GFPS had an inhibitory effect

on the energy metabolism level of liver cells in mice, and the

intervention of high-dose of GFPS was the most effective. MDA is

the final metabolite of lipid peroxidation, reflecting the body’s

ability to be damaged by oxidation, while SOD indirectly reflects

the body’s ability to remove oxygen free radicals (21). By comparing

the levels of MDA and SOD activities, we could assess the effect of

GFPS intervention on the antioxidant capacity of the liver in mice.

As shown in Figures 3C, D, the MDA content in the CH group was

significantly higher than that in other groups (pCC < 0.01, pCL < 0.01,

pCM < 0.01), and SOD content was significantly lower than that in

the CC group (p < 0.01). It indicated that a high-dose of GFPS

intervention might not have a beneficial effect on the antioxidant

capacity of the liver in mice.
Effects of GFPS on LDH and SDH content in
muscle

Figure 4 shows that SDH content in the muscle of mice decreases

with the increase of GFPS dose. At the same time, the LDH content in

different mouse groups ranked CC < CL < CM < CH. Among them,

the CC group had significant differences with CM and CH groups

(pCL < 0.05, pCH < 0.01), and CH group had significant differences

with CL and CM groups (pCL < 0.01, pCM < 0.05). This is consistent

with the changing trend of LDH and SDH in mouse liver after

different doses of GFPS. It indicated that the intervention of GFPS

inhibited the energy metabolism of muscle cells in mice, and the

inhibition was enhanced with the increase of dose.
Effects of GFPS on intestinal content
microbiota of mice

Effects of different concentrations of GFPS on the
OTUs number of intestinal microbiota in mice

As shown in Figure 5A, the numbers of OTUs obtained in CC,

CL, CM, and CH groups were 821, 913, 862, and 898, respectively.

The unique OTU numbers of CC, CL, CM and CH groups are 58, 61,
FIGURE 2

Weight changes of mice. CC: control group, CL: low-dose GFPS group, CM: medium-dose GFPS group, CH: high-dose GFPS group.
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54 and 57 respectively. The dilution curve was used to assess whether

sequencing was sufficient to cover all taxa and indirectly reflect the

abundance of species in the sample. When the curve flattens out, it

can be considered that the sequencing depth has covered almost all

the species in the sample (36). As can be seen from Figure 5B, the

dilution curve sequences of the four groups of samples tended to be

gentle when the number was 10000. It shows that the amount of

sequencing data is enough for the next analysis.
Frontiers in Endocrinology 05
Effect of GFPS on the structure of intestinal
microbiota in mice

In Alpha diversity analysis, Chao 1, ACE, Simpson, and Shannon

are often used to evaluate richness and diversity (37). It can be seen

from Table 1 that the ACE, Chao 1, Simpson, and Shannon indexes of

GFPS treated mice are slightly higher than CC group mice. The ACE

and Chao 1 indexes of the CL group are higher than the CC, CM and

CH groups, but there is no statistical significance. This result was
A B

FIGURE 4

muscle SDH and LDH content. (A) SDH content. (B) LDH content. CC: control group, CL: low-dose GFPS group, CM: medium-dose GFPS group, CH:
high-dose GFPS group. (*p < 0.05, **p < 0.01).
A B

DC

FIGURE 3

LDH, SDH, SOD, and MDA content in liver. (A) LDH content. (B) SDH content. (C) MDA content. (D) SOD content. CC: control group, CL: low-dose GFPS
group, CM: medium-dose GFPS group, CH: high-dose GFPS group. (*p < 0.05, **p < 0.01).
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consistent with the quantitative result of OTU, suggesting that the

intervention of GFPS played a role in promoting the diversity and

richness of intestinal content microbiota.

In Beta diversity analysis, the nonlinear NMDS model can better

reflect the nonlinear structure of ecological data (38). As shown in

Figure 6, the distribution of samples in the CC and CH groups was

relatively centralized, while that in CL and CM groups was relatively

discrete. At the same time, the samples of the CC group are relatively

separated from those of other groups, which indicated that the

intervention of GFPS changed the community structure of the

bacteria in the intestinal contents of mice.

Effect of GFPS on the structure and composition
of intestinal contents microbiota in mice

At the phylum level (Figure 7A), the intestinal microbiota in the

CC group consisted mainly of Bacteroidota (53.94%), Firmicutes

(44.11%), Actinobacteriota (0.48%), Desulfobacterota (0.55%), and

other low abundance proportion taxa. The abundance of Firmicutes

(44.11% vs 51.99%, 60.68%, 50.17%) and Actinobacteriota (0.48% vs

2.23%, 1.41%, 3.86%) was higher in the CL, CM, and CH groups

compared with the CC group. The abundance of Firmicutes (44.11%

vs 51.99%, 60.68%, 50.17%) and Actinobacteriota (0.48% vs 2.23%,

1.41%, 3.86%) was higher in the CL, CM, and CH groups compared

with the CC group. Meanwhile, the abundance of Bacteroidota

(53.94% vs 42.73%, 35.60%, 44.45%) is lower.

At the genus level (Figure 7B), the dominant bacteria in CC, CL,

CM, and CH groups were unclassifiedMuribaculaceae, accounting for

20.51%, 14.70%, 22.17%, and 22.27%, respectively. Alloprevotella was
Frontiers in Endocrinology 06
the second most common type, accounting for 10.84%, 11.00%,

10.92% and 6.68% respectively, while unclassified Lachnospiraceae

accounted for 6.18%, 12.33%, 7.84% and 8.39% respectively.

Effect of GFPS on characteristic bacteria of
intestinal contents in mice

In order to further identify the characteristic microbiota of GFPS

intervention, LEfSe analysis was performed on the community

composition at each taxonomic level in different treatment groups.

Figure 8A shows the characteristic bacteria when the logarithmic

LDA threshold is 2, and the characteristic bacteria in CC group

include Frisingicoccus, Dorea, unclassified Butyricicoccaceae, Bacillus,

Fusicatenibacter, Sellimonas. The characteristic bacterium in the CL

group was Lachnospira. The characteristic bacteria in the CM group

were unclassified UCG 010 and Caldicoprobacter. The characteristic

bacterium in the CH group was Faecalibaculum. The above results

could explain that different doses of GFPS could change the intestinal

content microbiota. In different classification systems (Figure 8B), the

characterist ic bacteria among the four groups showed

significant differences.
Correlation analysis of intestinal contents
microbiota with liver and muscle index

This study selected characteristic bacteria with logarithmic LDA

threshold of 3 for correlation analysis between indicators. Figure 9A

shows the correlation heat map between characteristic bacteria and
TABLE 1 Effect of GFPS on Alpha diversity index of intestinal content microbiota in mice.

Group ACE Chao 1 Simpson Shannon

CC 361.078 ± 51.137 361.400 ± 51.247 0.976 ± 0.008 6.809 ± 0.411

CL 400.523 ± 19.347 400.700 ± 19245 0.981 ± 0.009 7.121 ± 0.214

CM 384.229 ± 39.146 384.200 ± 39.163 0.983 ± 0.004 7.103 ± 0.181

CH 382.732 ± 23.644 382.800 ± 23.760 0.981 ± 0.009 7.043 ± 0.336

All data are expressed as mean ± standard deviation. CC: control group, CL: low-dose GFPS group, CM: medium-dose GFPS group, CH: high-dose GFPS group.
f

A B

FIGURE 5

OTUs number and dilution curve of intestinal microbiota of mice. (A) OTUs number. (B) dilution curve. CC: control group, CL: low-dose GFPS group,
CM: medium-dose GFPS group, CH: high-dose GFPS group.
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FIGURE 6

The beta diversity of mice intestinal mucosal bacteria. Each point represents a sample, and samples of different groups are represented by different
colors. The closer the distance between two points is, the higher the similarity is between two samples, and the smaller the difference is. CC: control
group, CL: low-dose GFPS group, CM: medium-dose GFPS group, CH: high-dose GFPS group.
A

B

FIGURE 7

Relative abundance of bacteria in intestinal contents of mice after intervention with GFPS. (A) Level of phylum. (B) Level of genus. CC: control group, CL:
low-dose GFPS group, CM: medium-dose GFPS group, CH: high-dose GFPS group.
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liver indexes. LDH had a significant positive correlation with

Faecalibaculum (p < 0.05) and a significant negative correlation

with unclassified Butyricicoccaceae (p < 0.05). SDH was

significantly positively correlated with Frisingicoccus, unclassified

Butyricicoccaceae, Fusicatenibacter, Sellimonas, Dorea (p < 0.05).

MDA was significantly negatively correlated with Sellimonas (p <

0.05). SOD had a significant positive correlation with unclassified

Butyricicoccaceae (p < 0.05), and a significant negative correlation

with Faecalibaculum and unclassified UCG 010 (p < 0.05). It could be

seen from Figures 9B–F that LDH in muscle had a significant positive

correlation with Faecalibaculum and Caldicoprobacter (p < 0.05).

Muscle SDH significantly negatively correlated with Caldicoprobacter

and Faecalibaculum (p < 0.05).
Discussion

With the improvement of l iving standards and the

strengthening of the concept of a healthy diet, people’s demand

for healthy and functional foods is growing. Considering the side

effects of some synthetic chemicals, multi-target and multi-channel

natural plant products have broad application prospects in the

development of functional foods and auxiliary drugs (39). Here,

this study discussed the effects of GFPS intervention on oxidative

stress, energy metabolism indicators, and intestinal microbiota

in mice.
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In the results of the liver oxidative stress index, the SOD contents

decreased and MDA contents increased after the intervention with

GFPS. Among them, the intervention of high-dose GFPS showed the

most obvious change. This indicates that GFPS can inhibit the

antioxidation of mouse liver. Notably, this differs from previous

studies on the antioxidant effect of G. frondosa. For example, Men

et al. (22) intervened the mice with acute liver injury with the

polysaccharide extracted from the fruiting body of G. frondosa.

They found that these G. frondosa polysaccharides not only had a

protective effect on liver injury, but also decreased MDA content and

increased SOD content in the liver. Another study (23) also found

that G. frondosa polysaccharide intervention could significantly

increase the liver antioxidant level of rats with hepatic fibrosis. We

speculate that multiple complex components in G. frondosa may be

the reason for this difference. It has been reported that

Faecalibaculum has a negative correlation with SOD content, and

can be used as a marker bacterium for intestinal oxidative stress (40).

Oxidative stress improves cell permeability and causes LDH efflux

from cells, thus leading to increased LDH activity (41). In

experimental results, this was confirmed by increased LDH content

in muscle and liver, which is also consistent with the significant

positive correlation between Faecalibaculum and LDH in correlation

analysis. and the contents of these enzymes in liver and muscle tissues

have the LDH and SDH are representative enzymes of anaerobic

respiration and aerobic respiration, respectively (42), same trend. This

means that GFPS intervention reduced the energy metabolism of
A

B

FIGURE 8

Characteristic bacteria of mice with GFPS intervention. (A) LDA score plots. (B) LEfSe analysis.
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muscle and liver in mice to varying degrees, promoted anaerobic

respiration, and had a certain dose dependence.

The diversity of intestinal microbiota is generally positively correlated

with the quality of diet (43). The Alpha index and OTU results in this

experiment showed that GFPS intervention promoted the diversity and

richness of the intestinal content microbiota inmice. Meanwhile, the Beta

analysis also showed that GFPS intervention changed the structure of

intestinal microbiota. By further comparing the changes in the bacterial

abundance of the intestinal contents among the four experimental

groups, we could understand how GFPS affects the intestinal microbial

environment. As the two largest taxonomic phylum in the intestinal

microbiota, the increase in the ratio of Firmicutes to Bacteroidetes (F/B)

is generally considered to be related to obesity (44). Two recent reports

have shown that either G. frondosa polysaccharide or direct feeding G.

frondosa can regulate lipid metabolism, reduce body weight, and is

related to the TLR4/NF-kB signaling pathway (45, 46). In this

research, the weight growth trend of mice after low, middle, and high

doses of GFPS intervention decreased, which also proved this point. But

interestingly, compared with the CC group, the F/B value of mouse

microbiota in CL, CM, and CH groups increased.

From the perspective of taxonomic composition, the weight loss

and intestinal health improvement effects of G. frondosa may be

related to the promotion of the growth of SCFAs-producing bacteria,

which can convert dietary fibers not absorbed by the body into

metabolites SCFAs (47). SCFAs have been proved to stimulate

energy consumption by promoting lipid oxidation, and the increase

in SCFAs production can stimulate a large number of hormones and
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neural signals in different organs and tissue sites, thereby

cumulatively inhibiting short-term appetite and energy intake (48,

49). In addition, SCFAs can also prevent diet-induced obesity by

inhibiting the activity of Histone Deacetylase 3 in intestinal epithelial

cells (15). Studies have shown that unclassified Muribacullaceae (50),

unclassified lachnospiraceae (51), and Alloprevotella (52) are all

intestinal SCFAs-producing bacteria. At the same time, compared

to the CC group, the abundance of unclassified Muribaculaceae was

increased in the CM and CH groups, and that of Alloprevotella was

increased in the CL and CM groups. The abundance of unclassified

Lachnospiraceae was increased after GFPS intervention. On the

contrary, after high-dose intervention with GFPS, the abundance of

Alloprevotella was decreased, but the characteristic bacterium

Faecalibaculum in the CH group was also the producer of SCFAs

(53). Studies have shown that Faecalibaculum has the effect of

inhibiting the development of metabolic diseases (54). Combined

with the results of oxidative stress, the MDA content of the CH group

was significantly increased (p < 0.01), while the increased MDA

content might damage the intestinal barrier (55), reduce the

absorption of nutrients, and thus reduce body weight. This was also

demonstrated by the lowest body weight in the CH group among the

four groups (Figure 2). Furthermore, Lachnospira was a characteristic

bacterium in the CL group, while Lachnospira could produce lactic

acid and acetate, and lactic acid could become a metabolic substrate

for bacteria to produce butyrate or propionate (56). The characteristic

bacteria in LM group are Caldicoprobacter and unclassified UCG 010.

Caldicoprobacter is a kind of bacteria that can degrade complex
A B
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FIGURE 9

Correlation between characteristic bacteria of intestinal contents and indexes in mice. (A) Correlation heat map between characteristic bacteria and liver
indexes. (B) Association network diagram of pathogenic bacteria and muscle indexes. (C) Scatter diagram of muscle LDH and Caldicoprobacter. (D)
Scatter diagram of muscle LDH and Faecalibaculum. (E) Scatter diagram of muscle SDH and Caldicoprobacter. (F) Scatter diagram of muscle SHD and
Faecalibaculum. CC: control group, CL: low-dose GFPS group, CM: medium-dose GFPS group, CH: high-dose GFPS group.
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carbohydrates and ferment hemicellulose into lactic acid, ethanol, and

hydrogen. Meanwhile, these products can be transformed into

butyrate for colon cells to supply energy (57, 58).

In addition, there were some limitations in this study, such as the

small sample size and the emphasis on the integrity and naturalness of

G. frondosa in the experiment, and no specific discussion on the role

of a component in G. frondosa. The intestinal microbiota is closely

related to our health. In the future, metagenomic functional gene

analysis will be used to further explore the relationship between G.

frondosa and intestinal microbiota.

Conclusion

In summary, G. frondosa can promote health and prevent obesity by

changing the structure of intestinal content microbiota, promoting

microbiota diversity and richness, and increasing the beneficial bacteria

producing SCFAs. However, excessive intake of G. frondosamay promote

oxidative stress response in mice and inhibit energy metabolism in muscle

and liver tissue. Therefore, low-dose (1.425 g/kg·d) ofG. frondosamay be a

good choice for further experiment or product development.
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