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Hypoxia signaling pathway:
A central mediator in
endocrine tumors

Deepika Watts †, Mangesh T. Jaykar †,
Nicole Bechmann and Ben Wielockx*

Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden,
Dresden, Germany
Adequate oxygen levels are essential for the functioning and maintenance of

biological processes in virtually every cell, albeit based on specific need. Thus,

any change in oxygen pressure leads to modulated activation of the hypoxia

pathway, which affects numerous physiological and pathological processes,

including hematopoiesis, inflammation, and tumor development. The Hypoxia

Inducible Factors (HIFs) are essential transcription factors and the driving force

of the hypoxia pathway; whereas, their inhibitors, HIF prolyl hydroxylase

domain (PHDs) proteins are the true oxygen sensors that critically regulate

this response. Recently, we and others have described the central role of the

PHD/HIF axis in various compartments of the adrenal gland and its potential

influence in associated tumors, including pheochromocytomas and

paragangliomas. Here, we provide an overview of the most recent findings

on the hypoxia signaling pathway in vivo, including its role in the endocrine

system, especially in adrenal tumors.
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Hypoxia inducible factors: Overview of structure,
function, and regulation

Oxygen is essential for the functioning and survival of cells and tissues because it is

required for cellular energy production and as a cofactor/substrate for various enzymes;

thus, the absence of sufficient oxygen pressure results in hypoxia. However, the term

hypoxia is relative and should be used in the correct context as normal oxygen levels vary

among tissues, e.g., from ~13% in arterial blood to ~4% in the brain (1). At the molecular

level, mechanisms of cellular adaptation to hypoxia involve the hypoxia-inducible factors

(HIF-1a, HIF-2a and HIF-3a), which are transcription factors that regulate the

expression of hundreds of genes involved in adaptation processes and cell survival.

ChIP-seq analysis and genome-wide chromatin immunoprecipitation, combined with
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DNAmicroarrays (ChIP-on-chip), have revealed that more than

800 genes regulated by HIFs are involved in various biological

functions (2, 3). Furthermore, HIFs also regulate many

microRNAs (4) and chromatin-modifying enzymes (5).

Structurally, each functional HIF transcription factor is a

heterodimer of two subunits, an oxygen- sensitive HIF-a
subunit and a constitutively expressed HIF-1b subunit, and

both these subunits belong to the basic helix–loop-helix

(HLH)-PER-ARNT-SIM (bHLH-PAS) protein family (6, 7).

The b subunit is also called the aryl hydrocarbon receptor

nuclear translocator, ARNT. In the presence of adequate

oxygen, HIF prolyl hydroxylases (PHDs) hydroxylate the HIF-

a subunit at conserved proline residues located in its oxygen-

dependent degradation domain (8, 9). Subsequently, an E3

ubiquitin ligase, von Hippel Lindau (VHL), binds to the

hydroxylated HIF-a, leading to its ubiquitination and

proteasomal degradation (Figure 1) (10, 11). The PHD

enzymes belong to the 2-oxoglutarate-dependent oxygenase

superfamily and are dependent on oxygen, iron, and ascorbate

for their activity (12); hence, in hypoxic cells, neither HIF-1a nor

HIF-2a is hydroxylated by the PHDs, which halts HIFs

degradation. This results in the accumulation of HIF-1a or

HIF-2a in the cell and their consequent binding to the HIF-1b
subunit, leading to the formation of the functional HIF

heterodimer that then translocates to the nucleus along with

its co-activators (p300 and CBP) to form the transcriptional

complex. Specifically, the HIF transcription factor binds to

hypoxia-responsive elements (A/GCGTG consensus motif) in

the promoter region of several genes that regulate various

processes such as erythropoiesis, angiogenesis, metabolism,

apoptosis, cellular differentiation, and metastasis (Figure 1)

(13–15).

Another oxygen-dependent mechanism of HIF regulation

involves Factor inhibiting HIF-1 (FIH1), an asparaginyl

hydroxylase, which hydroxylates the HIF-a subunit at the

asparagine in the C-terminal activation domain (N-803 in

human HIF-1a) under normoxia and mild hypoxia. Such

hydroxylation prevents activation of HIF as it inhibits

interactions between HIF-1a and its co-activators p300/CBP

(16). FIH1 also acts as a safety net because it is less sensitive to a

reduction in oxygen pressure compared to PHDs and remains

active even under mild hypoxia to block HIF-a activation that

has escaped PHD-mediated degradation (17).

While the above pertained to oxygen-dependent regulation of

HIFs, various tumor suppressor and oncogenic pathways (such as

MAPK/ERK and PI3K/AKT) non-specifically regulate HIFs in an

oxygen-independent manner. Tumor suppressors such as p53 and

GSK3b decrease HIF-1a stability or transcriptional activity and

thereby interfere with HIF function (18); in contrast, PI3K/AKT

pathway activation has been shown to increase HIF-1a mRNA

translation and production (19, 20). Another important

mechanism of regulation is phosphorylation, which affects both

HIF-1a stability and its transcriptional activity. Here, the tumor
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suppressor GSK3b phosphorylates HIF-1a at three serine residues

within the human HIF-1a N-terminal transactivation domain

(21, 22), which results in the Fbw7 and USP28-mediated HIF-1a
ubiquitination and VHL-independent proteasomal degradation

(23). Similarly, HIF-1a is also destabilized by PLK3, which

phosphorylates two serine residues (24). Contrarily, HIF-1a
phosphorylation can also lead to stabilization because it has

been shown that HIF-1a stabi l i ty increases upon

phosphorylation at Ser-696 by ataxia-telangiectasia mutated

(ATM) protein kinase (25). Further, ERK1 phosphorylates HIF-

1a in its C-terminal activation domain, increasing its

transcriptional activity, but not its stability (26).

Notably, even though both HIF-1a and HIF-2a contain

similar binding and dimerization domains, they have different

transactivation domains (27). Therefore, despite the presence of

several common target genes, they can also individually

modulate a unique sets of genes (28). Interestingly, these

differentially regulated unique target genes can have opposing

effects, as recently demonstrated in endothelial cells (29).
Hypoxia and HIFs in cancers and tumors

Solid tumors are characterized by hypoxic or even anoxic

regions within the tumor mass because existing blood vessels fail

to meet the oxygen requirements of the rapidly proliferating

cancer cells (30). The consequent up-regulation of angiogenic

factors, i.e., in response to tumor hypoxia, leads to the formation

of non-functional blood vessels with structural and functional

abnormalities (31) and this aberrant tumor vasculature severely

restrains oxygen supply in the tumor microenvironment

resulting in acute hypoxia (32). The involvement of tumor

hypoxia in chemo- and radio-resistance is well established (33,

34), and new data suggests its involvement in resistance to

immunotherapy as well (35). As the cellular response to

hypoxia is controlled by HIF transcription factors that regulate

several genes related to adaptation and progression of cancer

cells, tumor hypoxia and HIFs govern many attributes of cancer

cells, such as proliferation, metabolism, apoptosis, genomic

instabilities, vascularization, immune responses, and invasion

and metastasis. Typically, sustained hypoxia activates cell

apoptosis; however, in tumors, it directs the selection of tumor

cells that are resistant to apoptosis, and thereby, contributes to

the malignant phenotype (36–38). Understandably, anticancer

agents that target rapidly dividing cells are less effective against

hypoxic cells that are more distant from vasculature and have

reduced rates of proliferation. Moreover, cancer stem-like cells

(CSCs) are a rare population of tumor cells that have self-

renewal capacity and contribute to treatment resistance. As

CSCs reside in the more hypoxic niches of the tumor, they

escape chemo- and radiotherapy-induced DNA damage and

thereby not only survive treatment but also repopulate the

tumor with their progeny (39).
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Hypoxia signaling pathway in
endocrine tumors

Endocrine tumors can originate in any of the hormone-

producing endocrine organs— thyroid, pituitary glands, pancreas,

and adrenal gland, and their nomenclature reflects both origin and

location. Thyroid cancer is considered the most common
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malignancy among all endocrine tumors and anaplastic thyroid

carcinomas (ATCs) are predominantly aggressive tumors with an

average survival of 3–4 months (40, 41). On the other hand,

pheochromocytoma (PCC) and non-secretory pancreatic islet cell

cancers are caused by mutations in the VHL tumor suppressor and

are characterized by marked interfamilial variations in frequency,

significant morbidity and, sometimes, even mortality.
FIGURE 1

Schematic overview of the hypoxia pathway in normoxia, hypoxia and VHL-disease. In the presence of oxygen, the hypoxia-inducible factors
(HIF)-a subunits are synthesized, hydroxylated by HIF prolyl hydroxylase domain (PHDs) proteins in the presence of oxygen, leading to the
subsequent binding to von Hippel–Lindau (VHL) tumor suppressor protein. VHL mediated ubiquitination of hydroxylated HIFs, results in
proteasomal degradation under normoxia. However, the hydroxylation of the alpha subunits is repressed under hypoxia due to inactivation of
PHDs, thus stabilizing the HIF-a subunits. The stabilized alpha subunits bind to the beta subunit and translocate to the nucleus. The HIFs,
together with other cofactors, bind to the hypoxia response elements (HREs), promoting the transcription of genes essentially involved in
erythropoiesis, angiogenesis and other genes regulated by hypoxia pathway proteins. However, in the VHL disease, even in the presence of
oxygen, HIFs are stabilized due to inactivity of the VHL resulting in increased tumorigenesis. This occurs directly by upregulation of tumor-
associated genes or is facilitated by suppression of apoptosis and increase in angiogenesis. VHL mediated tumor development can also occur in
an HIF-independent manner by upregulation of tumorigenesis. Additional information can be found in the text.
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Processes and factors such as signaling pathways, metabolic

reprogramming, extracellular matrix remodeling, and epigenetic

changes regulate the development and propagation of endocrine

tumors (42, 43). As endocrine cancers, like most solid tumors,

frequently exhibit major hypoxic areas, hypoxia signaling

pathway genes have been associated with endocrine tumor

development as well (14, 44–47). Further, given that the

hypoxia pathway is one of the major drivers of endocrine

tumors, identifying the exact molecular mechanisms of these

dysregulated processes could help in the discovery of key

therapeutic targets (Figure 1).
Pheochromocytoma and paraganglioma

Pheochromocytomas (PCCs) and paragangliomas (PGLs;

together termed as PPGLs) are unique neuroendocrine tumors

that make up less than 1% of all endocrine neoplasia. PCCs arise

from chromaffin cells of the adrenal medulla whereas PGLs are

extra-adrenal, neural crest-derived, neuroendocrine tumors

(NETs) of the sympathetic and parasympathetic ganglia (48,

49). PGLs arising from parasympathetic paraganglia are mostly

found in the head and neck region, including in the carotid body,

due to the presence of neuroendocrine chief cells in the vagus

and the glossopharyngeal nerves (50). PCCs and PGLs of

sympathetic origin often secrete catecholamines, leading to

systemic cardiometabolic effects (51) such as palpitations,

tachycardia, hypertension, headaches, diaphoresis, heat

intolerance, and anxiety. Even though PCCs and PGLs are

typically benign, malignancy can occur in 10–15% of the cases

with metastasis to bone, liver, lungs, and lymph nodes (52).

Mutations associated with PCCs and PGLs
Approximately 35–40% of PCCs and PGLs have a hereditary

predisposition that is attributable to germline pathogenic

variants (PVs) in over twenty susceptibility genes (53–55).

Rates of predisposition to such germline PVs range between

25–30% in PCC, up to 40% in PGL, and about 50% in metastatic

disease (56). Tumors with germline PVs are broadly categorized

in two clusters, viz., Cluster 1 (pseudohypoxia) and Cluster 2

(kinase signaling). Cluster 1 includes PV mutations in SDH,

VHL, fumarate hydratase (FH) and EPAS1, whereas cluster 2

PPGLs bears mutations in NF1, rearranged during transfection

(RET) proto-oncogene, TMEM127, and MAX. While cluster 1

PPGLs are characterized by an immature catecholamine

phenotype (noradrenerg ic phenotype) and higher

aggressiveness, cluster 2 PPGLs have more mature phenotype

(adrenergic phenotype) and are mostly non-metastatic (57, 58).

However, in recent years, mRNA expression analysis for The

Cancer Genome Atlas (TCGA) has found an additional cluster

for PCC/PGL, namely, the WNT-altered cluster 3, which is

associated with increased expression of genes in the WNT

signaling pathway (58). Many WNT tumors are driven by
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novel somatic alterations in CSDE1 (Cold Shock Domain

Containing E1) and recurrent fusions involving MAML3 and a

cortical admixture subtype (58). CSDE1 is a tumor suppressor

gene that encodes the CSDE1 factor, which is involved in

development, messenger RNA stability, internal initiation of

translation, cell-type-specificapoptosis, and neuronal

differentiation (59). It has been found that the CSDE1 is

significantly mutated in PCCs/PGLs and that these mutations

result in the downregulation of the apoptosis protease activator

protein 1 (APAF1), which is required for controlling apoptosis in

PCC cells (60, 61).

Germline and somatic mutations in major susceptibility

genes associated with hypoxia signaling involved in the PCC

development, include the tumor suppressors such as VHL1, the

SDH complex (genes encoding the four subunits, A,B,C,D) and

occasionally, the egl-9 family hypoxia-inducible factor 1/Prolyl

hydroxylase domain 2 protein (EGLN1/PHD2) (62, 63).

Recently, ten new genes have been added to this list and those

associated with the hypoxia pathway include HIF-2a
(endothelial PAS domain containing protein 1, EPAS1) (64,

65), FH (66), and PHD1 (egl nine homolog 2, EGLN2) (67),

suggesting that a mutation in any of these major genes involved

in the VHL-HIF axis can lead to PCC or PGL development.

Von Hippel-Lindau disease
Von Hippel-Lindau (VHL) disease is an autosomal

dominant neoplastic disorder that is characterized by multiple

benign and malignant tumors, including cysts, that develop in

the central nervous system and visceral organs (68). Various

mutations in VHL have been found to cause diverse clinical

symptoms; sometimes even the same mutation yields different

phenotypes (69, 70). As pVHL has multiple functional domains,

one of the potential explanations for this phenomenon is that a

specific mutation causes a particular dysfunction. Specifically,

mutations in the VHL gene on chromosome 3 affect the

functionality of pVHL, i.e., as pVHL is incapable of

recognizing hydroxylated HIFs, their greater stability leads to

HIF-mediated transcription of genes and consequent

development of VHL disease (Figure 1) (71, 72). The role of

VHL in disease development has been described in detail

elsewhere by Hudler and colleagues (71).

PCC is a hallmark of VHL disease and its absence or

presence defines phenotypic classification as VHL type - 1

(protein-truncating mutations) or type - 2, which is linked to

missense mutations (68). About 20% of patients with VHL

disease will develop either unilateral or bilateral intra-adrenal

PCC; however, the incidence of extra adrenal PGLs is rare and

they occur only in type 2 disease with about 5% of the cases

showing metastasis (73, 74). Type 2 disease is further divided

into 3 subgroups - 2A, 2B, which correspond to low and high-

risk clear cell renal cell carcinoma (ccRCC), respectively, and 2C

with only PGL. Interestingly, there is a correlation between

degree of HIF dysregulation and mutant VHL alleles in types
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1, 2A, 2B, and 2C; specifically, highest HIF dysregulation is seen

in type 1 while lowest is seen in type 2C (75, 76). Additionally,

existing literature points towards Chuvash polycythemia being a

type 3 VHL disease (77, 78). Nevertheless, type 2 VHL disease

related PCCs/PGLs show overexpression of several genes

involved in angiogenesis, glucose metabolism, and cell

proliferation, with the hypoxic pathway particularly associated

with stabilization of HIF-2a (Figure 1), i.e., the main isoform

expressed in catecholamine-producing cells (79, 80). As PCC/

PGL-l inked biochemical test ing is corre lated with

norepinephrine/normetanephrine predominance, as

established from plasma levels, this phenotype is caused by the

silencing of the norepinephrine-to-epinephrine converting

enzyme Phenylethanolamine-N-Methyl-Transferase (PNMT)

in the adrenal medulla (45, 81–83). Interestingly, this

characteristic is similar to the immature phenotype seen in

tumors with VHL mutations, i.e., a phenomenon that is

associated with HIF-2a overexpression and stabilization. HIF-

2a accumulation, rather than HIF-1a, is a major phenomenon

in VHL tumors and it results in the overexpression of hypoxia-

induced angiogenic genes, such as vascular endothelial growth

factor (VEGF), erythropoietin (EPO) and EPO-receptor, cyclin

D1 (CCND1), and other genes involved in extracellular matrix

reorganization that facilitate tumor development (45, 84).

Nonetheless, other HIF-independent proteins and pathways

can also be dysregulated in VHL-mutated tumors, e.g., the

developmental neuronal apoptosis pathway, p53-related

networks, and glucose metabolism. Likewise, the HIF-

independent defective apoptosis pathway (for example in type

2C VHL disease) cannot induce apoptosis in chromaffin cells

due to greater stability of p53 (85), and some of the type 2C

mutations interfere with the regulation of transcription factor

AP-1 (JUN)-induced apoptosis due to a VHL-mediated

reduction in Jun-B and EGLN3/PHD3 levels (71, 86, 87).

SDH gene mutations
PCC/PGL development is not only directly associated with

mutations in the hypoxia pathway but also correlated to

modifications in other genes responsible for HIF stabilization,

included in cluster 1. One such example is the succinate

dehydrogenase (SDHx) family comprising of 4 SDH subunits

(A, B, C, D) (47, 88). Mutation in one of the SDHx genes

promotes accumulation of the oncometabolite succinate, which

inhibits the 2-oxogluarate-dependent PHDs and subsequently

leading to stabilization and accumulation of HIF-2a (Figure 2).

Additionally, metastatic SDHx-related PCC/PGL overexpress

heat shock protein 90 (HSP90), a molecular chaperone that

facilitates binding to HIF-2a by promoting its stability and

preventing ubiquitination and proteasomal degradation (89–91).

SDHx-mediated HIF stability is one of the major drivers of

PCC/PGL development as it activates genes associated with

pseudohypoxia, angiogenesis, protein transport, energy

metabolism regulation, and proliferation. Moreover, we and
Frontiers in Endocrinology 05
others have previously demonstrated that increased

stabilization of HIF-2a is directly associated with a

neuroendocrine to mesenchymal transition in these cells,

contributing to a more pro-metastatic state of these cluster 1

PPGLs (57, 92). SDHx-associated PCCs/PGLs also have a

norepinephrine/normetanephrine predominant profile (81)

and, like VHL-associated tumors, are associated with PNMT

gene silencing. Specifically, SDHB mutations are predominantly

associated with multiple tumors, and although heterozygous

SDHA pathogenic variants account for less than 1% of all

PCC/PGL, SDHB mutations account for most common

mutation associated with malignant PCCs (93, 94). SDHA

pathogenic carriers can develop PCC/PGL at any location in

the body, including head and neck PGLs and patients who

develop SDHA mutation related PCC/PGL report to have high

rates of metastatic disease (12%) (89, 95). Further, PCC patients

with SDHB or SDHD mutations present overexpression of HIF-

2a and its transcriptional target VEGF.

PHD mutations
The PHD family consists of PHD1, PHD2, and PHD3; and

PHD2, encoded by EGLN1, is a crucial oxygen sensor that

regulates HIFa levels (96). PHD2 dysregulation in the hypoxia

pathway results in HIF-2a stabilization and consequent

accumulation, leading to a pseudohypoxic state that may

underlie the pathologic conditions encountered in PCC/PGL

(96). Various mutations in EGLN1 have been associated with

HIF-2 stabilization, e.g., a heterozygous germline mutation at

H374 predisposes to instability and loss of PHD2 activity,

leading to upregulation of HIF-2a due to greater stability (96).

The H374R mutation is also associated with recurrent PGL,

suggesting a crucial role for PHD2/EGLN1 as a tumor suppressor

gene that is similar to VHL missense mutations seen in type 2

VHL disease, i.e., high risk of PCC/PGL (97). Moreover, Yang

and colleagues have demonstrated that a germline mutation in

PHD1 and a novel germline PHD2 mutation are associated with

PCC/PGL and polycythemia (67). Additionally, a unique

association between polycythemia and mildly elevated

erythropoietin (EPO) levels has been observed in patients,

which was linked to inappropriate hypersensitivity of erythroid

progenitors to EPO, indicating increased EPOR expression/

activity (67). Contrastingly, Provenzano and colleagues have

recently described a novel germline EGLN1 gene variant in a

patient with metastatic PCC and chronic myeloid leukemia

(CML) in the absence of polycythemia (98). Recently, Eckardt

and colleagues have reported that inactivation of PHD2 in the

adrenal medulla, using a (Tyrosine Hydroxylase) TH-restricted

Cre mouse line, resembles a combination of pseudohypoxic PGL

and a PNMT negative noradrenergic phenotype (99). This TH:

cre specific deletion of PHD2 was associated with morphological

abnormalities in adrenal development, including ectopic TH+

cells (Figure 2) (99). Thus, these findings collectively establish

that mutations in PHDs are associated with susceptibility to
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pheochromocytomas and paragangliomas (PPGLs), with or

without polycythemia. However, compared to VHL, mutations

in PHDs are relatively rare with an incidence of less than 2% in

patients with PPGLs (58, 100, 101).

HIF stabilization
As mentioned above, upregulation and stabilization of HIFs

is widely associated with angiogenesis, tumor progression, and

immune evasion in various tumors (46, 102–104), and HIFs are

crucial for mediating the tumorigenic effects of mutated VHL,

SDHx, and EGLN1 in PCC and PGL (105). The role of HIFs in

catecholamine synthesis has been extensively studied, and

tyrosine hydroxylase (TH), the rate-limiting enzyme in this

process that is responsible for the conversion of tyrosine to L-

dihydroxyphenylalanine (L-DOPA), can be induced by hypoxia

(106). Importantly, both HIFs can bind to the TH promoter and

thereby increase TH expression (107). While HIF-2a
Frontiers in Endocrinology 06
knockdown has no effect on Th mRNA expression in a rodent

adrenomedullary chromaffin cell line (108), it seems to be more

important for the proper development of differentiated adrenal

chromaffin cells. Further, HIF-2a upregulation and

accumulation is associated with an immature chromaffin cell

phenotype due to reduced PNMT expression and epinephrine

synthesis (109). Thus, a noradrenergic phenotype with no

epinephrine production is seen upon HIF accumulation during

aggressive PGL development (84, 110, 111).

The role of direct mutations in HIFs leading to abnormal

stabilization has also been studied in the development of PCC/

PGLs, and recently, a transgenic mouse line with whole body

HIF-2a gain-of-function mutation showed reduced PNMT in

the adrenal glands (64). Moreover, compared to HIF-1a in

VHL-related PCC and PGL, HIF-2a stabilization and

accumulation is a major phenomenon, and multiple studies

have described the oncogenic role of somatic mutations in
FIGURE 2

Mutations associated with hypoxia pathway proteins and their role in endocrine tumor development. VHL disease leads to the stabilization of
HIFs, which is frequently associated with endocrine tumors – specifically pheochromocytomas (PCCs) and paragangliomas (PGLs). Not only
does HIF upregulation result in tumorigenesis directly, it also results in reduced apoptosis of endocrine tumor cells. It was shown that HIF-1a
repression induces apoptosis by downregulation of the expression of WW domain containing E3 ubiquitin protein ligase (WWP9, WWP2),
promoting tumor cell apoptosis. Furthermore, HIF-1a and HIF-2a stabilization leads to changes in tumor-associated microRNAs. The HIF-
associated increase or decrease in micro-RNAs correlated with upregulation of oncogenes and thus tumorigenesis. Likewise, the mutations in
the genes such as EPAS1 or EGLN1 directly affects the stabilization of the HIFs resulting in tumor development and reduced apoptosis of
endocrine tumor cells. SDHx mutations in PCCs and PGLs result in the overexpression of the heat shock protein 90 (HSP-90) resulting in the
stabilization of HIF-2a. TH : Cre mediated medullar deletion of PHD2/EGLN1 in the mice resulted in the growth of aberrant structures from the
adrenal medulla. Next to the direct effect of HIF stabilization on the tumor development, it also affects angiogenesis by upregulation of VEGF
and VEGFR or miR-15/16 repression initiating angiogenesis. Furthermore, stabilization of HIFs, results in a shift from oxidative phosphorylation to
glycolysis, converting pyruvate to lactate in the TCA cycle often mentioned as Warburg effect in the tumors, including endocrine tumors.
Additional information can be found in the text.
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EPAS1 in PCC/PGL (105, 112, 113). Consequently, HIF-2a/
EPAS1 has been added to the pool of genes associated with PCC/

PGL in the past few years (Figure 2) (114). Zhang and colleagues

have reported two gain-of-function somatic mutations in exon

12 of HIF2a (c.1588G>A, p.Ala530Thr and c.1589C>T,

p.Ala530Val) that result in PGL and polycythemia, respectively

(112, 115). Furthermore, two other somatic mutations in HIF2a
(c.1595A>G p.Y532C and c.1586T>C p.L529P) in patients with

congenital polycythemia, multiple recurrent PPGLs, or

somatostatinoma have also been reported (65).

Germline mutations in HIF-2a have also been reported to be

associated with PCC/PGL development; nonetheless, as certain

germline mutations in HIF-2a only lead to polycythemias and

not tumors (115, 116), it is thought that such gain-of-function

mutations alone are not sufficient for tumorigenesis, and that,

presumably, simultaneous loss-of-function or somatic mutations

in other genes may also be necessary (115–117). Another

scenario involves gain-of-function mutations in HIF-2a
(c.1589C>T) leading to concurrent PPGL and polycythemia

(118), as seen in the case of the germline mutation in exon 9

(c.1121T>A, p.F374Y), which predisposes patients to

polycythemia and PGL development (119). Further, tumors

have been associated with EPAS1 mutations, either in the

absence or presence of polycythemia, and polycythemia alone

is seen in cases with mosaic mutations in EPAS1. Likewise, Buffet

and colleagues have reported the presence of mosaic mutations

in two patients with HIF-2a-related polycythemia/PGL

syndrome (120). In summary, PHD2 mutations result in a

norepinephrine/normetanephrine immature cell phenotype

that is caused by silencing of the norepinephrine-to-

epinephrine converting enzyme (PNMT) in the chromaffin

cells of the adrenal medulla and is related to aggressive PCC

development in the presence of mosaic mutations (114,

120, 121).
Adrenal cortical tumors

Adrenocortical carcinoma (ACC) represent a rare,

aggressive, and heterogeneous tumors that arises from the

cortex of the adrenal gland. The 5-year survival rate for ACC

ranges from 16% to 47% (122). As mentioned above, hypoxia

and HIFs are a common feature of many endocrine tumors

because these lesions are characterized by rapid proliferation

that is associated with metastasis, immune evasion, resistance to

therapy, and increased mortality (123). Even though advances

over the past few decades in several biomarkers associated with

metastasis, prognosis, and survival in ACC patients have led to a

better understanding of its molecular genetics, the specific effects

of HIF-1 activity in ACC and hypoxia signatures for predicting

ACC prognosis have not been established (124). However, a case

study of a very rare erythropoietin-producing adrenocortical

carcinoma accompanied by lung and liver metastases has been
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reported (125). Tumor associated hypoxia could be one of the

players of erythropoietin production in tumor cells. Recently, a

bioinformatic study has reported that a hypoxia-related gene

signature could predict prognosis and reflect the immune

microenvironment in ACC (126). Specifically, based on

hypoxia-related gene expression, ACC patients in the TCGA

database were divided into three molecular subtypes (C1, C2,

and C3), each with different clinical outcomes with C3 having

reported of shortest survival (127).

On the other hand, aldosterone producing adenomas

(APAs) are benign aldosterone producing tumors associated

with Primary aldosteronism (PA) causing secondary

hypertension (128). These are characterized by autonomous

production of aldosterone from the adrenal glands leading to

low-renin levels and thus hypertension. Most APAs (~ 90%)

harbor somatic pathogenic variants in genes encoding ion

channels or transporters such as KCNJ5, ATP1A1, ATP2B3,

CACNA1D, CACNA1H, CLCN2, and CTNNB1 (128, 129).

However, no correlation to hypoxia signaling has been

described in the aldosterone producing adenomas until now.

Mixed corticomedullary tumor
Mixed corticomedullary tumor (MCT), an extremely rare

condition with unclear tumorigenesis, is an adrenal tumor with

cortical and medullary cells. Adrenal MCT was first described by

Mathison andWater-House in 1969 and only 30 cases have been

reported to date. Adrenal tumors, including MCTs, exhibit

different stemness expression (130), e.g., a patient with MCT

displayed typical Cushing’s syndrome and hypertension, and

hence, MCT tumorigenesis is thought to involve the two-hit

hypothesis. Pathway enrichment analysis from exosome

sequencing of MCT has identified enriched pathways,

including the hypoxia-inducible factor-1 (HIF-1) signaling

pathway (hsa04066; 1.3%), and some of the germline

mutations were involved in stemness regulation, the first hit of

which may drive adrenocortical adenoma (ACA) and PCC

formation. Additional mutations affecting different pathways,

including the HIF-1 signaling pathway, may accelerate tumor

growth and intimately mix ACA and PCC (131).
Additional endocrine tumors

Thyroid cancer
As with many types of solid tumors, hypoxia due to

inadequate vascular izat ion is a prominent micro-

environmental component in thyroid cancer (133).

Differentiated thyroid cancer (DTC), which includes papillary

cancer (PTC) and follicular cancer (FTC), accounts for >90% of

all thyroid cancer cases (132). As angiogenesis is an important

factor in the development, growth, and metastasis of cancers, the

proangiogenic factor VEGF is a significant mediator of

angiogenesis in the thyroid gland. Notably, this makes HIF-1
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mediated regulation of VEGF a key factor in the development of

thyroid tumors (44, 133, 134). Several studies have reported

greater expression of HIF-1a and HIF-2a in thyroid cancer

compared to normal thyroid tissue or benign lesions (135–137),

and a strong correlation has been observed between HIF-2a
expression and tumor size. Specifically, tumors with more

intense HIF-1a and HIF-2a staining had a higher TNM stage

(137), and overexpression of both HIF-1a and HIF-2a was

associated with capsular invasion and lymph node metastasis.

Hyperactive PI3K signaling leads to stabilization of HIF-1a
not only in normoxia but also in many cancers, including

thyroid cancer and is predominantly involved in the metastasis

of PTC and FTC (138, 139). Moreover, Ding and colleagues have

reported that silencing of HIF-1a represses cell invasion and

induces apoptosis by downregulating the expression of WW

domain containing E3 ubiquitin protein ligase (WWP9,

WWP2), VEGF, and VEGFR2 in thyroid cancer (44) as

depicted in Figure 2. Thus, HIF-1a represents a potential

therapeutic target for the treatment of thyroid cancer (140).

Pancreatic neuroendocrine tumors
Pancreatic cancer is a highly fatal malignancy and the lesion

is predominantly characterized by severe hypoxic regions

because its median partial oxygen pressure (pO2) is 0–

5.3 mmHg (0–0.7%); in contrast, the pO2 of the adjacent

normal pancreatic tissue is 24.3–92.7 mmHg (3.2–12.3%)

(141). Thus, pancreatic cancer cells have developed effective

adaptive metabolic responses to satisfy oxygen demand for

biosynthesis and energy. For example, a major adaptation is

the metabolic shift from oxidative phosphorylation to glycolysis,

i.e., converting pyruvate to lactate instead of oxidation through

the tricarboxylic acid (TCA) cycle (142). More significantly, 5–

10% of VHL patients develop pancreatic tumors, which are most

commonly non-secretory islet cell tumors known as pancreatic

neuro-endocrine tumors (pNET) (143). Patients with missense

mutations (type 2 VHL) exhibit a higher prevalence of

pancreatic tumors and a hotspot on codons 161/67 in exon 3

is associated with higher risk of metastases compared to

truncating mutations or large deletions (type 1 VHL) (144).

In addition to the above, Wnt signaling plays a crucial role in

pancreatic tumor development and also alters cell metabolic

plasticity to support immediate requirements (145). The

transcription factor 7-like2/transcription factor 4 (TCF7L2/

TCF4) plays a vital role in the Wnt/b-catenin signaling

pathway, is responsible for PHD1 (EGLN2) silencing, leads to

upregulation of HIF-1a, and affects glycolysis reprogramming

(146). There is positive-feedback regulation between HIF-2a
and b-catenin in that the HIF-2a/b-catenin complex can not

only upregulate the activity of b-catenin but also stabilize and

increase transcriptional activity of HIF-2a, which then promotes

the metabolic shift to aerobic glycolysis in PC cells (147). VEGF

stimulation is also known to promote angiogenesis and it can

enhance glycolysis in pancreatic cancer by upregulating HIF-1a
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(148). Targeting the hypoxic tumor environment and the

hypoxia pathway in pancreatic tumors has been described in

detail elsewhere by Tao et al. (142) (Figure 2).
Micro-RNAs/HIF axis in endocrine
tumors

MicroRNAs (MiR) are noncoding, about 20–22 nucleotides

in length, and regulate gene expression by binding to 3′ UTRs of
their related parental mRNAs. MiRNAs have been shown to

control many physiological and pathophysiological processes,

such as proliferation, differentiation, metabolism, and apoptosis

by modulating target gene expression. Altered miRNA

expression has been identified in several endocrine diseases,

including tumors. For example, the 14q32 miRNA cluster is

frequently dysregulated in human diseases and has been

implicated in tumorigenesis of multiple endocrine glands

(149). These 14q32 miRNAs may be oncogenic or tumor

suppressing depending on cell type and are associated with

downregulation of almost all miRNAs encoded by the 14q32

cluster in PCC (149). miR-382, a 14q32.2 miRNA cluster

member, is upregulated in PPGLs associated with VHL and

SDHB (150), is reported to be an angiogenic miRNA that is

upregulated by HIF-1a, and acts as an angiogenic oncogene by

repressing PTEN (151).

Several miRNA expression profiling studies have been

performed on different endocrine tumors including PCC/PGL,

and repression of 2 miRs, namely, miR-15a and miR-16, has

been reported in pituitary adenomas and prostate cancer (152).

Furthermore, several groups have also studied miRNA

expression signatures in benign and metastatic PCC and have

reported that miR-15a and miR-16 are indeed under-expressed,

and that miR-483-5p, miR-183, and miR-101 are overexpressed

in malignant PCC (152). For instance, pre-miR-15a and pre-

miR-16 induce cell death and inhibit proliferation in rat PC12

cells but under-expression of miR-15a and miR-16 is associated

with malignant tumors rather than benign PGLs. Thus, these

miRNAs represent diagnostic and prognostic markers for

malignant PCC (152). HIF-2a-induced repression of miR-15

and miR-16 enhances the stability of the c-Myc/Max

heterodimer and thereby enhances tumor angiogenesis and

metastasis (153). Dysregulation of miR-193b/365 (on

chromosome 16p13.12) and miR-183/96 (on chromosome

7q32.2) has been associated with all PCC/PGL and SDHB-

mutated tumors, respectively (150). Increased miR-21-3p is

associated with a general increase in the expression of

mesenchymal markers, whereas miR-183-5p decreases the

expression of neuroendocrine genes (154). Moreover,

compared to benign tumors, miR-101 expression is higher in

SDHD-mutant malignant PCC tissues (155), and miR-375 is

emerging as a new epigenetic alteration that is involved in

neuroendocrine tumorigenesis because its overexpression in
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MTC has been demonstrated both by Hudson et al., and Manso

et al. (156, 157).

MiR-210, a recent discovery in the field of hypoxia, is the

most consistently and predominantly upregulated miRNA in

response to hypoxia. Functional studies have demonstrated that

miR-210 is a central gene that regulates many aspects of the

hypoxia pathway, both under physiological and malignant

conditions (158). MiR-210 is upregulated during hypoxia by

HIF-1a (159); hence, it may promote tumorigenesis by

activating important oncogenic genes linked to the hypoxia

pathway (Figure 2) (159). Additionally, Tsang and colleagues

have observed that miR-210 is overexpressed in PPGLs

associated with VHL and SDHB germline mutations (159).

However, miR-210 overexpression in head and neck PGLs has

been reported to be independent of SDHx germline mutations,

indicating that the HIF-1a/miR-210/SDHB axis may play a role

in the pathogenesis of PGLs (160). Indeed, further studies are

required to better understand the functional interplay between

HIFa and miR-210, and its significance in the pathogenesis of

PCC/PGLs (Figure 2). The role of microRNAs as potential

biomarkers and therapeutic targets in PCC/PGL has been

described elsewhere by Turai and colleagues (161) (Figure 2).
HIFs inhibitors in cancers/endocrine
tumors

Targeting tumor hypoxia and HIFs is an extremely

interesting therapeutic approach as tumor hypoxia mediates

the aggressive, the metastatic, and the resistant phenotypes.

Different approaches have been developed to target hypoxic

cancer cells, such as gene therapy, hypoxia-activated prodrugs,

recombinant anaerobic bacteria, pathways important in hypoxic

cells like mTOR and UPR, and specific targeting of HIFs (162–

165). However, HIF targeting is extremely difficult due to the

complexity of the HIF pathway and the interconnected signaling

cascades involved. Therefore, HIF transcription factors were

considered un-druggable; nevertheless, recently, two HIF-2a-
inhibitors, PT2385 and PT2399 have been successfully

discovered based on the structure of HIF-2a (166–168). These

compounds inhibit the growth of ccRCC, both in vitro and in

vivo (169) and a phase I clinical trial yielded complete response,

partial response, and stable disease in 2%, 12%, and 52% of the

patients, respectively (170).

HIF-2a inhibitors are thought to possess great prospects for

the treatment of advanced PPGL (171) and these promising

initial results could potentially lead to preclinical and clinical

studies to evaluate their efficiency in other types of tumors.

Indeed, compound PT2385 is in Phase II clinical trials to assess

its effectiveness in advanced cancers with VHL germline

mutations. Another inhibitor of HIF-2a, PT2977, was found to

have increased potency and better pharmacokinetic profile than

PT2385 and PT1977 (172). Previous studies have shown that,
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compared to HIF-1a, HIF-2a is overexpressed in pseudohypoxic

PPGLs (92, 173) and contribute to a more aggressive phenotype

in these tumors (174). Thus, HIF-2a inhibitors are potentially

more promising compared to HIF-1a inhibitors for the treatment

of endocrine tumors, especially PCCs and PGLs.
Summary

Taken together, this review underlines that the hypoxia

pathway proteins are essential contributors in the development

and progression of endocrine tumors. Even though several

mutations such as VHL, SDHx, EPAS1 and EGLN1 are

associated with endocrine tumor initiation, many of these

mutations directly or indirectly lead to stabilization of HIFs

and consequently triggering the hypoxia pathway. This

contributes to tumor development either by upregulation of

oncogenes or genes facilitating tumor progression such as

angiogenesis, skewed glycolysis or suppression of apoptosis in

tumor cells. Therefore, considering the essential role of hypoxia

signaling in endocrine tumors, the development of HIF

inhibitors as therapeutic agents would be a potential anti-

tumor strategy. Considering the upregulation of HIF-2a in

many PCC/PGLs, HIF-2a inhibitors are potentially most

promising, although more research is certainly warranted.
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