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Metadynamics simulations
leveraged by statistical analyses
and artificial intelligence-based
tools to inform the discovery
of G protein-coupled
receptor ligands

Leslie Salas-Estrada †, Bianca Fiorillo † and Marta Filizola*

Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York,
NY, United States
G Protein-Coupled Receptors (GPCRs) are a large family of membrane proteins

with pluridimensional signaling profiles. They undergo ligand-specific

conformational changes, which in turn lead to the differential activation of

intracellular signaling proteins and the consequent triggering of a variety of

biological responses. This conformational plasticity directly impacts our

understanding of GPCR signaling and therapeutic implications, as do ligand-

specific kinetic differences in GPCR-induced transducer activation/coupling or

GPCR-transducer complex stability. High-resolution experimental structures

of ligand-bound GPCRs in the presence or absence of interacting transducers

provide important, yet limited, insights into the highly dynamic process of

ligand-induced activation or inhibition of these receptors. We and others have

complemented these studies with computational strategies aimed at

characterizing increasingly accurate metastable conformations of GPCRs

using a combination of metadynamics simulations, state-of-the-art

algorithms for statistical analyses of simulation data, and artificial

intelligence-based tools. This minireview provides an overview of these

approaches as well as lessons learned from them towards the identification

of conformational states that may be difficult or even impossible to

characterize experimentally and yet important to discover new GPCR ligands.

KEYWORDS

GPCRs (G protein-coupled receptors), metadynamics, molecular dynamics
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Introduction

G Protein-Coupled Receptors (GPCRs) are important drug

targets consisting of seven membrane-spanning helices

connected by alternating intracellular and extracellular loops,

and known for transducing extracellular signals across the cell

membrane. Evidence accumulated over the past decade has

suggested a pluridimensional functionality of these receptors

induced by ligands with different efficacies. Specifically, ligands

as diverse as photons, small molecules, and peptides can stabilize

different receptor conformations which, in turn, can trigger the

activation of different effectors, such as several subtypes of

heterotrimeric G proteins, b-arrestins, and G protein-coupled

receptor kinases (1). This differential engagement of transducer

subtypes with varying signal magnitudes is a phenomenon

known as “functional selectivity” or “biased agonism” (2–7),

and is a prerequisite for triggering therapeutic or unwanted

biological effects of GPCRs via activation of different

downstream signaling pathways. However, it is not the only

element at play. Temporal analyses of ligand binding to GPCRs,

as well as GPCR-induced G protein activation/coupling and b-
arrestin recruitment evoked by ligands with different efficacies,

demonstrate the existence of another dimension of functional

bias by GPCRs that directly impacts our understanding of GPCR

signaling and therapeutic implications, thus suggesting the

importance of incorporating quantifications of ligand binding

and signaling kinetics in modern drug discovery efforts (8–10).

The mechanistic and kinetic bases of GPCR-mediated

functional selectivity are poorly understood, notwithstanding the

past decade’s technological advances in GPCR functional and

structural biology. Among them are the availability of genetically-

encoded biosensors for the optical detection of signals from a

variety of transduction molecules in several cell types, tissues, and

whole organisms (11), as well as revolutionary methodological

developments in X-ray crystallography and cryogenic electron

microscopy (cryo-EM). The latter have allowed to solve high-

resolution experimental structures for 140 unique GPCRs, 520

unique ligand-GPCR complexes, 95 unique GPCRs in complex

with heterotrimeric G proteins, 6 unique GPCRs in complex with

arrestins, and 1 unique GPCR in complex with G protein-coupled

receptor kinases (data retrieved from GPCRdb (12) and the
Frontiers in Endocrinology 02
Protein Data Bank (13) on 11/4/2022). Although these

structures have provided important insights into ligand-GPCR

and GPCR-transducer interactions, they are heavily engineered

static snapshots. Thus, inferences of long-distance conformational

changes propagating from the ligand binding site in the receptor

to its cellular signaling partners, and eventually translating into

specific physiological cell responses, remain highly speculative.

To probe the conformational heterogeneity of GPCRs and

GPCR complexes and extend information from high-

resolution structural methods, researchers have resorted to

biophysical techniques such as nuclear magnetic resonance

(14–21), double electron-electron resonance spectroscopy (22),

hydrogen/deuterium exchange mass spectroscopy (23, 24), and

single-molecule fluorescence resonance energy transfer (25–

27). However, current technical challenges prevent these

techniques from achieving atomic-level precision for the

entire GPCR alone or in complex with their natural cellular

signaling partners. Although molecular dynamics (MD)

simulations can provide a critical bridge between the atomic-

level insight from high-resolution structural methods and

molecular motions (28), standard MD algorithms limit

dynamic explorations to timescales that are shorter than

most biological processes notwithstanding their use of

massively-parallel high-performance computing platforms.

Several enhanced conformational sampling methods have

been put forward to overcome these limitations (29), and our

group pioneered the use of one of them, i.e., metadynamics

(MetaD) [see Box 1 and (30)], for more efficient studies of the

conformational plasticity of liganded or unliganded GPCRs

embedded in a lipid mimetic environment. The underlying

principles of MetaD are that (a) the process to be investigated

can be described by a small number of reaction coordinates

(collective variables, CVs) and (b) the sum of destabilizing

Gaussian potentials that are added to penalize sampled

conformational states for faster simulation convergence is the

mirror image of the free-energy profile of said process.

Although MetaD’s main problem remains that of identifying

the right CVs to efficiently study the dynamic process of

interest, MetaD-based strategies are increasingly utilized

nowadays to study GPCR ligand binding, conformational

dynamics, and kinetics (see Figure 1 for illustrations of
BOX 1

Metadynamics is a powerful enhanced sampling method introduced by Alessandro Laio and Michele Parrinello in 2002 to efficiently study the slow dynamics of
complex systems. It extends the utility of classical molecular dynamics simulations by adding a time-dependent bias potential to the system’s Hamiltonian to enable
the exploration of larger portions of its phase space within a given amount of simulation time. This bias potential is constructed over time as a sum of local repulsive
potential terms (e.g., Gaussian functions) centered at the sampled values of reaction coordinates (or collective variables) that are appropriately chosen to describe the
system’s slow dynamics. As a result, the system is encouraged to sample unexplored regions of its phase space, yielding faster convergence and a thorough free energy
landscape that can be reconstructed from the bias. Although identifying effective collective variables remains a challenging problem, several variants of the original
algorithm were developed over the past two decades to address some of its main limitations and are increasingly utilized nowadays to study slow processes of complex
biological systems, including GPCR ligand binding, conformational dynamics, and kinetics.
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selected strategies), thus offering an outlet where one could

exploit uniquely characterized metastable states of GPCRs as

targets for the discovery of functionally selective ligands.

This minireview provides a general overview of MetaD

strategies used alone or in combination with algorithms for

statistical analyses of simulation data [e.g., Markov State Models

(MSMs) (32, 33), information theory-based methods (34), and

transfer entropy approaches (35)] and machine learning/

artificial intelligence (AI)-based tools (36) to not only

characterize ligand-specific conformational states of GPCRs

that are difficult to resolve experimentally but also to derive
Frontiers in Endocrinology 03
information that can help expedite the GPCR drug discovery

process. This includes structural determinants of allosteric

communications from the causality of correlated motions, as

well as ligand-specific kinetic elements of activation [e.g., (37,

38)]. The computational strategies and applications discussed

herein are not exhaustive but include representative examples

that have affirmed the power of MetaD in the study of various

GPCR processes, including ligand binding, receptor activation,

and related kinetics. The different simulation setups and

protocols of the studies reported in this minireview are

summarized in Table 1.
D

A B

C

FIGURE 1

Examples of output information from MetaD-based strategies adapted to GPCRs. (A) Illustration of output information (free-energy surface and
low-energy conformational states) from a MetaD-based strategy aimed at efficiently exploring molecular mechanisms of GPCR ligand
recognition. Specifically, the free-energy surface is reconstructed as a function of the distance of the ligand’s center of mass (CV1) and of the
distance of the extracellular loop 2’s center of mass (CV2) from the center of mass of the receptor binding pocket. Relevant states along the
binding pathway are labeled A, B1, B2, and C The red solid line refers to the proposed entry path of the ligand. Also represented are images of A,
B1, B2, and C metastable states of the receptor cut along their TM4 face as well as the position of the ligand (black spheres) in the
corresponding states. Reprinted with permission from Provasi, D., Bortolato, A., Filizola, M. “Exploring Molecular Mechanisms of Ligand
Recognition by Opioid Receptors with Metadynamics” Biochemistry (2009), 48(42): 10020–10029, Copyright © 2009, American Chemical
Society (31); (B) Illustration of the combined adiabatic biased MD and path-sampling MetaD strategy used to characterize GPCR activation
energy landscapes. The free energy between inactive and active conformations is reconstructed as a function of the position along the path (s)
and the distance (z) from it. (C) Example of ligand-induced modulation of the free-energy landscape of a GPCR as a function of the position (s)
along the activation pathway. (D) Illustration of thermodynamic and kinetic information derived from a combination of path collective variables
MetaD simulations and the maximum caliber principle.
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TABLE 1 Summary of the simulation setups and protocols of the MetaD studies reported in the main text.

GPCR MetaD
Variant

CVs
(#, type)

System setup Size
(#

atoms)

Simul.
time
(ms)

Force field Ref.

Ligand Binding b2AR
MOR
M2R
V1AR
V2R

FM,
MW-,
WT-
MetaD

1, Trp6.48-ligand
distance

ANT/AGO+b2AR
(2RH1/3SN6)-Gas/none, AGO+MOR
(5C1M)-Nb/Gai/none, AGO+M2R
(4MQS)-Nb/Gai/none, ANT/PART
AGO+V1AR
(model), ANT/PART AGO+V2R
(model)
DOPC

NR 0.5-2.2 AMBERff99SB-
ILDN/GAFF/
AM1-BCC

(39)

b2AR
H1R

FM,
MW-,
WT-
MetaD

1, Trp6.48-ligand
distance

ANT/AGO+b2AR(4LDO), AGO+
H1R(3RZE)
DOPC

~98K 1.5 AMBERff99SB/
GAFF/AM1-
BCC

(40)

DOR MW-,
WT-
MetaD

2, ligand- and EL2-
binding pocket
distance

ANT+DOR(model)
DPPC/CHOL (8:2)

~47K 0.5 OPLS-AA/
Berger united-
atom lipid
parameters

(31)

DOR MW-
MetaD

2, receptor-ligand
distance and #
contacts

PAM+DOR(4N6H)-AGO
POPC/CHOL (9:1)

~78K ~3.6 CHARMM36m/
CGenFF

(41)

MOR MW-,
WT-
MetaD

2, receptor-ligand
distance and #
contacts

AGO+MOR(4DKL)
POPC/CHOL (9:1)

~58K 6.5-7.0 CHARMM36/
CGenFF

(42)

MOR BPMD 1, ligand RMSD w.r.t.
docked pose

AGO+MOR(5C1M)
POPC

NR 0.1 OPLS3e/Force
Field Builder

(43)

MOR BPMD 1, ligand RMSD w.r.t.
docked pose

AGO+MOR(5C1M)-Nb
POPC/CHOL (9:1)

~61K 0.1 CHARMM36/
CGenFF

(44)

Receptor
Activation and
Ligand-Specific
Conformations

5-HT1BR
5-HT2AR
5-HT2CR
a2AAR
b2AR
A1R
A2AR
CB1
CCR5
D2R
DOR
KOR
MOR
M1R
M3R

MW-,
WT-
MetaD

2, TM3-TM6
distances
2, TM3- and TM7-
TM6 distances
2, distances in GP
2, TM3-TM6 and GP
distances
3, GP, TM3- and
TM7-TM6 distances
3, TM3/TM6/TM5-
GP distances
3, TM3/TM6-GP
distances and TM3-
TM6 distance
3, TM3-GP distances
and TM3-TM6
distance
3, distances in GP

5-HT2AR(6WH4/ 6WHA)- INV
AGO/PART AGO/ FULL AGO/none-
G(model)/Gaq peptide,
5-HT1BR(5V54)-Go(6G79),
5-HT2CR(6BQH)-Gq(6WHA),
a2AAR(6KUX)-Gq(model),
b2AR(2RH1)-T4L/Gs(3SN6)/none,
A1R(5UEN)-Gi2(6D9H),
A2AR(6GDG/3EML)-AGO/none-Gs
(3SN6),
CB1(5TGZ)-Gi1(6N4B),
CCR5(5UIW)-Gi1(6DDF),
D2R(6LUQ)-Go(6VMS),
DOR(4N6H)-Gi1(6DDF), KOR
(4DJH)-Gi1(GDDF),
MOR-Gi1,
M1R(6WJC)-G11(6OIJ), M3R(5ZHP)-
Gq(model)
POPC or POPC:CHOL (4:1) for
A2AR-AGO-Gs

49K-
230K

0.2-2.5 CHARMM36m/
CGenFF

(45)

b2AR PS-, WT-
MetaD

2, position along and
distance from
ABMD-derived
activation pathway

b2AR(2RH1)-INV AGO/ANT/PART
AGO/FULL AGO/none
POPC/CHOL (9:1)

~50K 0.3 OPLS-AA/
Berger united-
atom lipid
parameters

(46)

b2AR FM, WT-
MetaD

1, Trp6.48-ligand
distance
1, TM3-TM6 distance
1, TM3-Gs/b-arrestin
distance

b2AR(2RH1/3SN6)-INV AGO/ANT/
AGO-Gs(3SN6)/b-arrestin (4JQI/
4ZWJ)/none
DOPC

NR 2.0-7.0 AMBERff99SB-
ILDN/
GAFF/AM1-
BCC

(47)

(Continued)
F
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MetaD-based strategies for the
prediction of GPCR-ligand
binding modes

To the best of our knowledge, the very first application of

MetaD to GPCRs was published by our group more than a decade

ago (31) and aimed at efficiently exploring the molecular

mechanisms of GPCR ligand recognition (see Figure 1A for an

example of output information). Specifically, we studied the free

binding of the antagonist naloxone from the water environment to

a homology model of the d-opioid receptor (DOR) based on the

X-ray crystal structure of the b2-adrenergic receptor (b2AR) as
Frontiers in Endocrinology 05
there were no available crystal structures of opioid receptors at the

time (see Table 1 for details of system setup and simulations).

Although one would have ideally used a single CV to contain the

computational cost, which scales exponentially with the number

of CVs (55), we could not achieve simulation convergence for this

system with less than two CVs and a half microsecond of well-

tempered (WT) MetaD simulations using multiple walkers (MW)

(56). These simulations revealed, for the first time, unprecedented

details of the free binding of a ligand to a GPCR, including the

various intermediate energetic states visited by the ligand and their

corresponding ligand-receptor interactions. Moreover, by

restricting ligand sampling in the bulk region using an approach
TABLE 1 Continued

GPCR MetaD
Variant

CVs
(#, type)

System setup Size
(#

atoms)

Simul.
time
(ms)

Force field Ref.

A2AR WT-
MetaD

2, Trp6.48 side chain
dihedrals

A2AR(2YDO/2YDV/3QAK/3EML/
3PWH/3REY/3RFM)-INV AGO/
AGO/none
POPC

~65K 0.1 CHARMM36-
lipids/
CHARMM27-
cmap
CGenFF

(48)

GABABR WT-
MetaD

1, TM3-Gi distance
1, TM4-TM5 distance
1, distance in Gi

GABABR(7C7Q/7EB2/6UO9/SF from
7EB2 system)-AGO-Gi(model)/none
POPC/CHOL (37:1)

220K-
490K

~0.2 CHARMM36m/
CGenFF

(49)

GCGR PT-,
MW-,
WT-
MetaD

2, RMSDGLP-1R* ±
RMSDGCGR of TM6
Cas
1, receptor-Gas
distance

GCGR(5YQZ)-PART AGO-Gas
(6EG8)/none
DOPC

NR 4.0-12.7 AMBER14SB/
LipidBook

(50)

MOR PS-, WT-
MetaD

2, position along and
distance from
ABMD-derived
activation pathway

MOR(4DKL/5C1M)-AGO
POPC/CHOL (9:1)

~54K 3.0 CHARMM36/
CGenFF

(38)

RHO PS-, WT-
MetaD

2, position along and
distance from
ABMD-derived
activation pathway

RHO(2I37)-AGO
POPC

~45K 0.24 OPLS-AA/
Berger united-
atom lipid
parameters

(51)

Binding and
Activation
Kinetics

A2AR SuMetaD 2, position and
distance along
binding pathway

ANT+A2AR(4EIY/3REY)
DMPC

NR 0.01 AMBER99SB/
GAFF/AM1-
BCC

(52)

MOR In-, WT-
MetaD

2, ligand hydration
and ML-optimized
RC

AGO+MOR(5C1M)
POPC/CHOL (9:1)

NR ~15 CHARMM36/
CGenFF

(37)

MOR WT-
MetaD

2, receptor-ligand
distance and #
contacts

AGO+MOR(5C1M/most populated
conf. from (53))
POPC/CHOL

~79K 2.0-4.0 CHARMM36m/
CGenFF

(54)

5-HT1BR, 5-hydroxytryptamine receptor 1B; 5-HT2AR, 5-hydroxytryptamine receptor 2A; 5-HT2CR, 5-hydroxytryptamine receptor 2C; a2AAR, a2A-adrenergic receptor; b2AR, b2-
adrenergic receptor; A1R, adenosine A1 receptor; A2AR, adenosine A2A receptor; ABMD, adiabatic biased molecular dynamics; BE-MetaD, bias-exchange metadynamics; AGO, agonist;
ANT, antagonist; BPMD, binding pose metadynamics; CB1, CB1 cannabinoid receptor; CCR5, CC-chemokine receptor 5; CGenFF, CHARMMGeneral Force Field; CHOL, cholesterol;
COM, center of mass; CVs, collective variables; DOR, d-opioid receptor; D2R, dopamine D2 receptor; DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine; DOPC, 1,2-Dioleoyl-sn-
glycero-3-phosphocholine; DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; EL2, extracellular loop 2; FM, funnel-metadynamics; FMAP, funnel-metadynamics advanced
protocol; FULL AGO, full agonist; GABABR, g-aminobutyric acid(B) receptor; GAFF, generalized AMBER force field; GCGR, glucagon receptor; GLP1R, glucagon-like peptide 1
receptor; GP, G protein; H1R, histamine H1 receptor; In-MetaD, infrequent metadynamics; INV AGO, inverse agonist; KOR, k-opioid receptor; MOR, m-opioid receptor; M1R,
muscarinic M1 receptor; M3R, muscarinic M3 receptor; MW-MetaD, multiple-walker metadynamics; Nb, nanobody; NR, not reported; PAM, positive allosteric modulator; PART AGO,
partial agonist; PS-MetaD, path-sampling metadynamics; PT-MetaD, parallel tempering metadynamics; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; RC, reaction
coordinate; RHO, rhodopsin; RMSD, root mean squared deviation; SF, simulation frame; SuMetaD, supervised metadynamics; T4L, T4 lysozyme; TM, transmembrane.
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that allowed the ligand to only move in a conical region centered

at the center of mass (COM) of the binding pocket (57), and

applying the appropriate correction to the calculated free energy,

we could derive ligand binding affinity estimates that were close to

experimental values (58–61).

Subsequent applications by our group focused on predicting

optimal ligand binding modes for atypical opioid ligands (42), as

well as opioid allosteric modulators (41), which would be

targeting regions on the receptor that are not conserved and

highly flexible. Ligand binding in these studies was described by

CVs accounting for the relative position and orientation of the

ligands, as well as the number of interactions they established

with the receptor. Although these simulations allowed for a

thorough and efficient exploration of the dynamic process of

ligand-GPCR binding at either orthosteric or allosteric sites (62,

63), they were computationally quite expensive as they required

up to 7 ms of simulation time to reach convergence (42).

To ensure faster simulation convergence, a universal single

CV that uses the highly conserved Trp6.48 [superscript refers to the

Ballesteros-Weinstein numbering scheme for GPCRs (64)] at the

base of the orthosteric binding pocket and the orientation of the

receptor in the membrane was proposed for ligand binding/

unbinding to/from class A GPCRs using WT-MetaD and a

funnel restraint (65) that limits the conformational sampling of

the ligand in the bulk water (39) (Table 1). Funnel MetaD (FM)

has been successfully applied to a number of GPCR systems (62),

and its use made more easily accessible by a recently reported

graphical user interface (GUI)-based protocol termed FM

Advanced Protocol (FMAP) (66). Also interesting is a protocol

that has recently enabled the successful prediction of preferential

binding modes of different GPCR systems using conformational

ensembles derived from the clustering of MW-MetaD simulations

(40). These strategies, however, are still not amenable for high-

throughput given their computational cost. If estimates of protein-

ligand binding free energies are not required but the goal is

focused on assessing the relative stability of binding mode

predictions, a reasonable alternative we and others have used in

applications to GPCRs [e.g., (43) for a recent example from our

lab] is a combination of induced-fit docking and MetaD (67).

Based on these growing examples and the ready accessibility of

these strategies via user-friendly graphical interfaces, we expect

that MetaD-based approaches will become a standard tool for the

prediction of GPCR ligand binding in the future, and will make a

real impact on drug discovery.
MetaD-based strategies to probe
the activation landscape of GPCRs

We also were the first to study the activation pathway of a

GPCR, specifically rhodopsin (RHO), using a combination of

MetaD with adiabatic biased MD simulations (51). In particular,
Frontiers in Endocrinology 06
we used the MetaD variant known as path-sampling MetaD (PS-

MetaD) to reconstruct the system’s free-energy landscape along

predetermined transition trajectories between receptor inactive

and active states as a function of the position along the path (s)

and the distance (z) from it (Figure 1B). Our results suggested

that at least four metastable macrostates containing receptor

conformations with a different amplitude of the outward

movement of transmembrane (TM) helix 6 are sampled by

RHO in the transition from inactive to active conformations

and these are connected by at least two different pathways (51).

The conformations of two of these macrostates were very close

to the available inactive and active experimental structures of

RHO, whereas the other two macrostates contained

conformations representing intermediate states. Notably,

subsequent MetaD simulations we carried out on the b2AR
(46) (see section below for additional details and Table 1)

confirmed the presence of one different inactive-like and one

different active-like macrostates in addition to those whose

conformations closely resembled the experimentally known

inactive and active structures of the receptor. This finding was

interesting since standard MD simulations of the b2AR at the

time had only been able to identify one intermediate state in

terms of TM3-TM6 separation (68). Similar results were also

obtained for the m-opioid receptor (MOR) by carrying out

adiabatic biased MD simulations and PS-MetaD simulations

(38), as well as more expensive adaptive-sampling MD

simulations (44). In contrast, only one intermediate state

between fully inactive and active conformations was identified

for the class B glucagon receptor (GCGR) (50), using parallel

tempering WT-MetaD and CVs representing two linear

combinations of the alpha-carbon root mean square deviation

(RMSD) of TM6 to the inactive conformation of GCGR and to

the active, closely related, glucagon-like peptide 1 receptor (69,

70). An interesting observation of this study based on a

comparison between the computed conformational free-energy

landscape associated with the activation of the receptor-agonist

complex and that of the receptor-agonist-G protein complex was

that the agonist stabilizes the receptor in a preactivated complex

before its full activation is achieved by G protein binding (50).

MetaD was also recently used to propose the activation

mechanisms of several prototypic class A (45) and class C (49)

receptors. These mechanisms were class-specific and revealed an

active role of the G protein in promoting conformational

changes of the receptor.
MetaD-based strategies for the
characterization of ligand-specific
GPCR conformations

Being able to predict the receptor conformations a drug can

stabilize is considered the “holy grail” in the drug discovery field
frontiersin.org

https://doi.org/10.3389/fendo.2022.1099715
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Salas-Estrada et al. 10.3389/fendo.2022.1099715
as it might inform the drug’s biological outcome. With this in

mind, we developed a computational strategy to study the

ligand-induced modulation of the free-energy landscape of

GPCRs (46) (see Figure 1C for an example of output

information). Specifically, we used WT-MetaD (56) to

identify ligand-specific metastable states of the b2AR, along
pre-determined activation pathways between its high-

resolution inactive and active structures using adiabatic biased

MD (Table 1). The results confirmed a tendency of ligands to

stabilize an inactive or active conformation of the receptor

depending on their efficacy (46).

That ligands with different efficacies shift the equilibrium

between inactive and active states was recently also reported for

the human adenosine A2A receptor using MetaD (48). Specific

conformational rearrangements of key structural elements were

responsible for this shift, including rotameric changes of the

conserved Trp6.48 residue. This movement can be induced by

agonists but not inverse agonists, and appears to correlate with

the opening of the G protein binding site via disruption of

hydrophobic packing which causes TM6 and TM5 to move away

from TM3.

MetaD was also recently used to study the interplay between

GPCR ligand binding and the coupling of arrestins or G proteins

(47). In addition to estimate the binding free energies of ligands

with different efficacies at the b2AR in the presence or absence of

Gs or b-arrestin, a combination of WT-MetaD and FM was used

to study the free energy landscape of activation and transducer

coupling as a function of the distance between the receptor alpha-

carbons of Arg3.50 and Leu6.34 and the distance between Arg3.50

and the alpha-carbons of Gas Glu392 or b-arrestin Val71. This

setup (Table 1) allowed to quantify the ligand/transducer

cooperative effects on the activation of the b2AR, thus providing
a simple way to predict the functional bias of a ligand (47).
MetaD-based strategies for the
prediction of ligand binding and
activation kinetics

Knowledge of GPCR ligand binding kinetics, and especially

drug-target residence times and involvedmolecular determinants, is

highly desirable because it can serve as an effective guiding principle

to select candidate molecules for clinical development (10).

However, this collective information is difficult to obtain because

on and off rates depend on the height of the highest energy barrier

of the transition state between bound and unbound conformations,

and this height is difficult to estimate both experimentally and

computationally. MD simulations can help study ligand binding at

the active site, but binding is a rare event on microscopic timescales,

and as such, it is difficult to sample. Although microsecond-scale

MD simulations allow to obtain multiple binding events at a GPCR

embedded in an explicit lipid-water environment, from which it is

possible to derive kon estimates (71), much longer timescales would
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be required for the dissociation of the ligand from a GPCR

orthosteric site, making it very difficult to derive koff estimates

from unbiased, standardMD simulations. To attemptmore efficient

predictions of dissociation rates from a GPCR, we recently designed

a computational strategy that combines machine learning and

infrequent MetaD (37). Specifically, the strategy used the

automatic mutual information noise omission (AMINO)

algorithm (72) to enable the robust and automated selection of

non-redundant molecular features from unbiased MD simulations

that can then be used in the reweighted autoencoded variational

Bayes for enhanced sampling (RAVE) method (73, 74) to learn

optimal CVs. These CVs were used in infrequent MetaD

simulations and allowed to efficiently study the unbinding

kinetics of two opioid drugs with very different residence times

(morphine and buprenorphine) and to predict dissociation rates for

these drugs from theMOR that were within one order of magnitude

from experimental values (75). The simulations also gave structural

information about rate-limiting transition states and metastable

poses that can in principle be used in the design of drugs with a

desired kinetic profile. One important lesson from these simulations

was that accurate rate estimates require consideration of ligand

solvation, as also concluded by others (52, 65).

Recently, MetaD was also used to investigate the dissociation of

a potent drug targeting the MOR, specifically fentanyl, from the

receptor (54). Not only did these simulations provide information

about fentanyl’s binding kinetics and mechanism, but they

suggested a role for the protonation state of the conserved residue

His6.52 in modulating fentanyl’s affinity and binding pose. While a

recent study (76) reporting cryo-EM structures of the MOR bound

to fentanyl showed that a His(6.52)Ala mutation reduced fentanyl-

induced MOR activation of G protein and b-arrestin signaling, it

did not support the predicted binding poses of fentanyl using

MetaD or other computational methods (53, 54, 77).

Ligand binding kinetics is however not the only temporal

aspect that is important to understand GPCR signaling. To

tackle the kinetics of GPCR activation, we designed a

computational strategy that uses a combination of PS-MetaD

and the maximum caliber principle to not only thoroughly

characterize the conformational space sampled by the receptor

along its activation path, but also to derive unbiased kinetic rates

from simulations with transitions accelerated by a bias potential

(38) (Figure 1D). We showed that the approach could efficiently

sample conformational transitions between the crystal structures

of inactive and active GPCRs, specifically the MOR, at a ∼2
orders of magnitude computational cost reduction with respect

to a more expensive high-throughput MD adaptive sampling

protocol run on distributed computational resources. We also

demonstrated that the strategy yielded thermodynamic and

kinetic properties of MOR activation, as well as information

about ligand-induced allosteric communications across the

receptor when combined with n-body information theory (34),

that were in agreement with those obtained by more

computationally expensive adaptive sampling protocols.
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Conclusions

Identifying the molecular determinants that underlie the

different dynamic and kinetic behaviors of GPCRs is likely to

provide fundamental information for drug discovery, and is

therefore the focus of much research. However, obtaining this

information is not a trivial undertaking, either experimentally or

computationally. While strategies combining different variants

of MetaD with state-of-the-art algorithms for statistical analyses

of simulation data and/or AI-based tools have made strides in

the study of GPCR ligand binding, activation, and related

kinetics, the majority of studies published to date are limited

to the receptors alone, although recent studies are focusing more

and more on receptor complexes and the combined effect of

ligand and transducer on the dynamic behavior of the receptor.

To better understand the underlying principles of GPCR biased

signaling, attention will probably need to be shifted more

towards the appropriate characterization of the dynamic

behavior of interacting signaling proteins, thus providing

important insight into receptor-transducer complex stability

and/or receptor-transducer activation kinetics. These studies

will most likely require developing more sophisticated MetaD

strategies or hybrid approaches and a community effort to

disseminate best practices for MetaD simulations, as well as

system setups, parameters, protocols, etc. to more expeditiously

advance knowledge of GPCR dynamics and their relation to

functional selectivity.
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