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P2-type purinergic signaling
in the regulation of pancreatic
b-cell functional plasticity as a
promising novel therapeutic
approach for the treatment
of type 2 diabetes?

Nour Mesto, Jamileh Movassat and Cécile Tourrel-Cuzin*

Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Team
“Biologie et Pathologie du Pancréas Endocrine”, Paris, France
Diabetes Mellitus is a metabolic disorder characterized by a chronic

hyperglycemia due to an impaired insulin secretion and a decreased in

peripheral insulin sensitivity. This disease is a major public health problem

due to it sharp prevalence. Therefore, it is crucial to readapt therapeutic

approaches for the treatment of this pathology. One of the strategies would

be through P2-type purinergic receptors pathway via ATP binding. In addition

to its well-known role as an intracellular energy intermediary in numerous

biochemical and physiological processes, ATP is also an important extracellular

signaling molecule. ATP mediates its effects by binding and activating two

classes of P2 purinoreceptors: P2X receptors that are ligand-gated ion channel

receptors, existing in seven isoforms (P2X 1 to 7) and P2Y receptors that are G-

protein coupled receptors, existing in eight isoforms (P2Y 1/2/4/6/11/12/13/14).

These receptors are ubiquitously distributed and involved in numerous

physiological processes in several tissues. The concept of purinergic

signaling, originally formulated by Geoffrey Burnstock (1929-2020), was also

found to mediate various responses in the pancreas. Several studies have

shown that P2 receptors are expressed in the endocrine pancreas, notably in

b cells, where ATP could modulate their function but also their plasticity and

thus play a physiological role in stimulating insulin secretion to face some

metabolic demands. In this review, we provide a historical perspective and

summarize current knowledge on P2-type purinergic signaling in the

regulation of pancreatic b-cell functional plasticity, which would be a

promising novel therapeutic approach for the treatment of type 2 diabetes.
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1 Introduction on purinergic signaling

The intracellular adenosine triphosphate (ATP) was first

known for its role as an energy molecule involved in the storage,

transport and energy regulation of cellular metabolism. In

pancreatic b-cells, intracellular ATP plays a major role in

stimulating insulin secretion and maintaining glucose

homeostasis. ATP, generated by glycolysis and oxidative

phosphorylation, causes the closure of ATP-dependent

potassium channels (K+-ATP), leading to an accumulation of

intracellular potassium (1, 2) and to membrane depolarization.

This will induce the opening of voltage-gated calcium channels

(VDCC) and an influx of Ca2+, resulting in an increase in the

concentration of intracellular calcium (3). The important influx

of calcium is the main trigger of insulin granule exocytosis (4–8).

In addition to its intracellular role, ATP with ADP and

adenosine has also been recognized as an extracellular signaling

molecule that can stimulate signaling pathways by binding to

purinergic receptors. This concept was originally proposed and

formulated by Geoffrey Burnstock in 1972 (9, 10). Extracellular

ATP can be released by various systems (exocytosis of secretory

granules, vesicular transports and membrane channels such as

connexin, pannexin hemi-channels and voltage-gated anion

channels) and stimulate purinergic receptors. Nevertheless, ATP

can also be released from damaged cells (11). The increase in ATP
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levels in the extracellular space activates ectonucleotidases

(ectonucleoside triphosphate diphosphohydrolases type I or

NTPDases) which will rapidly degrade ATP into ADP and

adenosine which can also activate some purinergic receptors (12).

Purinergic signaling is the result from the binding of

extracellular ATP and its metabolites to purinergic receptors: P1

receptors which have a high affinity for adenosine, a degradation

product of ATP by ectonucleotidases and P2 receptors that are

activated mainly by ATP, but also by ADP, UTP and UDP and

divided into two subgroups P2X and P2Y receptors.

P2X receptors are ionotropic, ligand-gated ion channel

receptors which are permeable to Na+, K+ and Ca2+ ions after

activation by ATP (Figure 1). To date, seven subunits (P2X

1!7) has been identified in many cells of various species,

including humans (hP2XR), rats (rP2XR), mice (mP2XR) and

zebrafish (zP2X4.1R), where they contribute to the control of

many physiological functions (13–19). The structural properties

and pharmacology on this class of receptors have been well

described in a recent review in 2021 (20).

P2Y receptors are metabotropic receptors from the large

family of G protein-coupled receptors. To date, eight receptor

subtypes have been identified and functionally defined (P2Y1, 2,

4,6, 11, 12, 13, 14) (21–24). These eight subtypes have been

subdivided into two P2Y receptor subfamilies based on their

associated signaling pathways (23, 25) (Figure 1). The first group
FIGURE 1

P2 purinergic receptors signaling and their possible involvement in insulin secretion. P2X receptors are ionotropic, ligand-gated ion channel
receptors which are permeable to Na+, K+ and Ca2+ ions after activation by ATP. To date, seven subunits (P2X1!7) has been identified. Their
impact on insulin secretion is quite controversial, with stimulatory and/or inhibitory effects described. P2Y receptors are metabotropic receptors
from the large family of G protein-coupled receptors. They can activated by ATP but also by ADP, UTP and UDP. Eight receptor subtypes have
been identified and subdivided into two P2Y receptor subfamilies: P2Y1, 2, 4 and 6 which are mainly coupled to Gq proteins and activate
phospholipase C b pathway (PLCb). P2Y11 can also be coupled to Gs proteins and thus stimulate adenylate cyclase (AC) and the synthesis of the
second messenger, cAMP. The second group includes the P2Y12, 13 and 14 isoforms and are mainly coupled to Gi proteins and inhibit
adenylate cyclase and cAMP synthesis. A study done by our team has showed that P2Y activation can stimulate glucose-induced insulin
secretion by acting on the distal steps of insulin exocytosis including the subcortical actin network and insulin granules exocytosis. However, the
mechanisms involved in this stimulation remains unknown.
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consists of isoforms P2Y1, 2, 4, 6 and 11. These subtypes are

mainly coupled to Gq/G11 proteins which activate phospholipase

C (PLC), thus inducing the synthesis of two second messengers:

IP3, which mobilizes calcium from the endoplasmic reticulum,

and diacylglycerol (DAG) which stimulates the protein kinase C

pathway. P2Y11 can also be coupled to Gs proteins and thus

stimulate adenylate cyclase and the synthesis of the second

messenger, cAMP. The second group includes the P2Y12, 13

and 14 isoforms and are mainly coupled to Gi/o proteins and

inhibit adenylate cyclase and cAMP synthesis. The structural

properties and pharmacology of these receptors have been well

described in the recent review of Jacobson et al. (26).

P2-Purinergic receptors are widely distributed in all tissues

and involved in many biological activities such as exocrine and

endocrine secretions, platelet aggregation, vascular tone,

nociception, neuromodulation but also in cell proliferation,

migration, differentiation, inflammation and cell death (16, 27,

28). Their ubiquitous expression in metabolic tissues, notably in

the pancreas, have also suggested quite early a role for these

receptors in the regulation of the metabolic state and glucose

metabolism. In exocrine pancreas, several studies have shown

the expression of P2X and P2Y subtypes in acinar and ductal

cells in many species (rat, mouse and human) and their roles in

modulating cell proliferation and exocrine secretion (29, 30). In

a-cells, there is little and controversial information on the role of

purinergic signalling in these cells. Some reports have shown

that ATP, by activating P2Y receptors, can stimulate glucagon

secretion in mouse islets (31) while others have shown an

inhibitory effect of P2Y-signaling (32). Thus, the role of

purinergic signaling in glucagon secretion needs to be further

investigated in order to better understand its involvement in

a-cells.
The aim of this review is to gather, at best, the studies carried

out to better understand the involvement of P2 purinergic

signaling in the endocrine pancreas, most notably in pancreatic

b-cells and the possible therapeutic potential that these receptors

may present for the treatment of diabetes pathogenesis.
2 Extracellular ATP in regulation of
pancreatic ß-cell function

2.1 Modulation of insulin release by
P2R signaling

The first study on the role of purinergic signaling in insulin

secretion was first carried out by Rodrigue-Candela et al. in 1963.

They have shown that ATP stimulates insulin secretion from b-
cells of rabbit pancreas (33). These observations were later

confirmed on primate pancreas (34). The stimulatory effect of

ATP on insulin secretion was then demonstrated in isolated and

perfused rat pancreases (35–37) and on hamster pancreases (38).

The use of more potent agonists, in particular, ADP and its
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analogues (a-b-methylene, ADPbS or ADPgS) have made it

possible to show greater stimulation of insulin secretion but

which requires stimulating concentrations of glucose (8.3mM)

(39–42) while the use of a P2 receptor antagonist abolishes the

stimulatory effect of ATP on insulin secretion (37). Stimulation

by glucose or by potassium channel inhibitors such as

glibenclamide has made it possible to demonstrate the

presence of ATP in the secretory granules and in particular in

the insulin granules (43–45). ATP was also shown to be co-

secreted with insulin during granule exocytosis and amplified

glucose-induced insulin secretion by stimulating P2 receptors

(46–48) and modulating the biphasic response insulin secretion

in a dose-dependent manner (49, 50). Furthermore, the study by

Fernandez-Alvarez et al. showed that P2Y receptor agonists (a,
b-methylene ATP or ADPbS) amplify insulin secretion from

human islets (51).

Interestingly, it has been reported that ATP can be released

during the process of “kiss and run” exocytosis without insulin

being secreted (48) suggesting that ATP can act as an autocrine

regulator of insulin secretion. ATP can also be released from

nerve endings and play a role in the neuronal control of insulin

secretion (52). Studies have shown that ATP can be stored and

co-secreted with acetylcholine and act synergistically on insulin

secretion, particularly in the cephalic phase (pre-prandial

period) (53). It was shown that ATP, by binding to P2X or

P2Y receptors activates various intracellular pathways, including

the K+/ATP-dependent pathway or the Ca2+ pathway.

Consequently, it increases b-cell insulin secretion from many

models including human b-cells (54, 55).
At the opposite, it has been shown that ATP can also exert an

inhibitory effect on insulin secretion. Contrary to what has been

observed on the stimulatory effect of ATP in rats, a decrease in

insulin secretion in response to ATP has been shown in mice

(39). This inhibition was later confirmed by two studies which

showed, using membrane capacitance and calcium flux

measurement techniques, on MIN6 b-cells, that ATP reduces

by 60% the exocytosis induced by depolarization, by interfering

with the exocytosis machinery (56). The ATP inhibitory effect

observed in mice does not seem to be due to the differences in

the expression profile of these receptors between the different

species since a study reported that the use of P2 receptor

antagonist amplifies the insulin secretion of rat islets in

response to stimulating concentrations of glucose (57).
2.2 P2X signaling in pancreatic b-cells

Using various approaches, numerous studies, including ours,

have identified the presence of the seven subtypes of P2X

receptors (1 to 7) in rat and mouse islet b-cells and the INS1

b-cell line but their role remains so contradictory (42, 58, 59).

Electrophysiological, RT-PCR and immunocytochemical studies

showed that P2X1, P2X3 and P2X4 are expressed in adult rats
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and mice b-cells (60–62) and that P2X1 and P2X3 can be rapidly

desensitized, suggesting that the paracrine or neuronal activation

of these receptors would contribute to maintain insulin secretion

induced by high-glucose or acetylcholine (62). The expression of

P2X3 and P2X5 has also been reported in human b-cells and it

was shown that P2X3 isoform could have an amplifying effect on

insulin secretion (55). However, in the rat b-cell line, P2X3
receptors appear to negatively regulate insulin secretion

independently of extracellular glucose concentrations (59). As

for the P2X7 receptors, several studies have shown that P2X7

receptors are expressed in mouse islets and b-cell lines (MIN6).

These same studies have reported that P2X7 is downregulated in

b-cells from type 2 diabetic patients but highly expressed in

obese patients and may be involved in the secretion of pro-

inflammatory cytokines such as interleukin-1b (63, 64). In INS-

1E b-cell line, the activation of P2X7 receptors regulates ATP

secretion and intracellular calcium signaling and consequently

regulates insulin secretion (29). However, it was reported that

activation of P2X7 inhibits insulin secretion in response to

glucose (65). Studies carried out on knockout mice for the

P2X7 receptor showed the impact of these receptors on

glucose homeostasis (63). P2X7-/- mice exhibit hyperglycemia,

glucose intolerance, and impaired b-cell function when fed a

high-fat diet and are unable to increase b-cell mass in response

to increased nutrient load. The islets from these mice also show

increased b-cell apoptosis (63). Several studies have also linked

the P2X7 isoform to the pathogenesis of type 1 diabetes (T1D).

Indeed, knockout of the P2X7 receptor prevents streptozotocin-

induced T1D in mice (66) and inhibition of this receptor by

oxidized ATP delays islet graft rejection (67).
2.3 P2Y signaling in pancreatic b-cells

Numerous studies have reported the impact of P2Y receptors

in modulating insulin secretion in the pancreatic b-cells.
Bertrand et al. showed for the first time that P2Y receptors

can modulate the biphasic response of insulin secretion in rat

pancreas (49). This same team later reported that ADPbS, a
preferential agonist of P2Y1 receptors, activates insulin secretion

from perfused pancreas and isolated rat islets (41, 50, 68).

Fischer et al. also showed that the use of a potent P2Y1

agonist significantly amplifies the insulin secretion in response

to glucose from isolated islets and perfused rat pancreases (69).

More recently, the activation of P2Ys, with more specific

agonists than previously used, including 2Me(S)ATP-a-b, has
been shown to potentiate insulin secretion in response to glucose

from rat islets (70). A study by Léon et al. on P2Y1-/- mice shows

that these mice develop hyperglycemia as well as a tendency

towards glucose intolerance and increased insulin secretion

compared to WT mice. These results indicate that P2Y1

receptor play an important role in maintaining glucose
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homeostasis (71). Nevertheless, the study by Ohtani et al.

shows that activation of P2Y1 and P2Y6 decreases glucose-

induced insulin secretion from mouse islets (72). Later, this

same team showed that extracellular ATP increased insulin

secretion from mouse islets, but that exposure to high

concentrations of ATP counteracted this increase, probably via

the P2Y1 and P2X4 receptors (73).

We and others have subsequently shown, using RT-PCR and

western blot approaches, that the b-cell line derived from rat

insulinoma, INS-1, expresses the six isoforms of P2Y (P2Y1, 2, 4,

6, 12 and 13) (59, 74, 75). P2Y1, P2Y6 and P2Y13 are also

expressed in mouse b-TC6 cells and in mouse b cells and islets

(31, 72). In humans, the P2Y2, 4, 11 and 12 isoforms have been

cloned and characterized in the human pancreas (76, 77). In fact,

our study carried out in type 2 diabetic rat model, the Goto-

Kakizaki rat and in Wistar healthy rats showed that the level of

expression of P2Y receptors varies significantly according to

glucose environment. We found that P2Y1 was significantly

downregulated compared to Wistar rats but the level of

expression of P2Y4 was not modified. However, the level of

expression of P2Y12 and P2Y13 was significantly increased in

Goto-Kakizaki diabetic islets (75). Interestingly, in that same

study, we showed that the activation of P2Y receptors in rat b-
cell line, INS-1 832/13 b-cells, with impaired insulin secretion

following exposure to elevated glucose levels, restores glucose-

stimulated insulin secretion (GSIS) competence through the

distal steps of insulin exocytosis, by increasing insulin granules

exocytosis and the reorganization of the subcortical actin

network (Figure 1). The activation of P2Y receptors with 2Me

(S)ATP also amplified GSIS of healthy Wistar rat islets and,

more interesting, partially restored the altered GSIS of diabetic

islets from the type 2 diabetic Goto-Kakizaki (GK) rats. Our

results emphasize the beneficial effects of the activation of P2Y

receptors in insulin secretion on pancreatic b-cells especially in a

diabetic context (75). In addition, we showed that the injection

of glucose with 2Me(S)ATP decreases significantly the blood

glucose levels in the type 2 diabetic GK rats compared to

untreated GK rats and this by increasing the glucose-induced

insulin secretion and blood glucose clearance by peripheral

tissues. Thus, our results show that acute injection of 2Me(S)

ATP restores partially the diabetic state of this diabetic rats (75).

Our study, along with those cited above, suggests that P2-

purinergic signaling may be a good candidate for the

treatment of metabolic diseases such as obesity and diabetes.
3 P2 receptors in regulation of
ß-cell survival

In addition to all these studies showing the important role of

purinergic P2 signaling on the insulin secretory function of b-
cells, the presence of numerous isoforms of P2 receptors in
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pancreatic islets has also raised interest in their role in other

processes such as their possible involvement in inflammatory,

proliferative and apoptotic pathways (Figure 2).

Numerous studies have shown that ATP and its analogues

could be involved in tissue remodeling, in particular in the

regulation and regeneration of tissues such as the nervous

system or the liver (78). A study in the brain have shown that

the stimulation of purinergic receptors induces the proliferation

of astrocytes indicating the role of these receptors in the

remodeling and in the proliferation of neuronal cells (79, 80).

Another study carried out on P2X4-/- mice showed that the P2X4

receptor contributes to hepatic regeneration after hepatectomy,

suggesting the role of this isoform in the protection and

proliferation of hepatocytes (81). In the pancreas, it was

shown that the activation of P2Y6 isoform protects b-cells
from cell death induced by the pro-inflammatory cytokine,

TNF-a (Tumor Necrosis Factor-a) while the activation of

P2Y13 in mouse b-cell line, MIN6C4, stimulates caspase-3

activity and reduces cell proliferation (82). These effects were

abolished using P2Y13 antagonist, MRS2211 (82). ATP-induced

apoptosis was also shown in the HIT-T15 hamster b cell line

(83). Moreover, in b-TC6 cells, proliferation was inhibited by

micromolar concentrations of ATP, probably via the activation

of P2X4 receptor. A reduction in the viability of these cells has

also been noted, but the results do not support the involvement

of a specific P2 receptor subtype (73). Moreover, hyperglycemia

in type 2 diabetes pathogenesis promotes extracellular ATP
Frontiers in Endocrinology 05
release activating P2X7 receptors and leading to the release of

proinflammatory cytokines and b-cell apoptosis (19).
The low-grade chronic inflammation observed in type 2

diabetic patients constitutes a stimulus inducing migration and

infiltration of macrophages and immune cells in many tissues

including the endocrine pancreas (84, 85). The consequence of

this inflammation is an increased dysfunction of the islets of

Langerhans which aggravates the decrease in insulin secretion

and induces apoptosis of the b cells thus reducing the b-cell
mass. Therefore, the reconstitution of a new pool of functional b-
cells constitutes a promising therapeutic approach for the

treatment of this pathology. Thus, based on the data cited

previously, it would be interesting to deepen our knowledge

and study the impact of P2-purinergic receptors in the induction

of inflammatory and pro-apoptotic processes as well as their

potential trophic effect in pancreatic b-cells, notably in

diabetic models.
4 Conclusions

Since the first cloning of the P2X and P2Y receptors in the

1990s, many subtypes have been identified and their roles in large

systems, tissues and cells are better characterized. The therapeutic

hopes raised in the field of diabetic pathologies are an

encouragement to continue efforts in this direction and to extend

the field of investigation to the field of functional plasticity of
FIGURE 2

Regulation of b-cell survival by P2R signaling. Under physiological conditions, extracellular ATP concentration [eATP] is in the nanomolar range.
Thus, eATP by activating P2 receptors can stimulate b-cell proliferation and survival and inhibit the release of proinflammatory cytokines
preventing b-cell death. However, at the inflammation sites or tissue damage, eATP concentrations increases and reaches micromolar ranges
activating P2 receptors thus inhibiting b-cell proliferation and inducing the release of proinflammatory cytokines leading to b-cell death.
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pancreatic b-cells in which ATP and its purinergic receptors seem

to have a physiological and/or physiopathological action.
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