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Algorithm-enabled patient prioritization and remote patient monitoring (RPM)

have been used to improve clinical workflows at Stanford and have been

associated with improved glucose time-in-range in newly diagnosed youth

with type 1 diabetes (T1D). This novel algorithm-enabled care model currently

integrates continuous glucose monitoring (CGM) data to prioritize patients for

weekly reviews by the clinical diabetes team. The use of additional data may

help clinical teams make more informed decisions around T1D management.

Regular exercise and physical activity are essential to increasing cardiovascular

fitness, increasing insulin sensitivity, and improving overall well-being of youth

and adults with T1D. However, exercise can lead to fluctuations in glycemia

during and after the activity. Future iterations of the care model will integrate

physical activity metrics (e.g., heart rate and step count) and physical activity

flags to help identify patients whose needs are not fully captured by CGM data.

Our aim is to help healthcare professionals improve patient care with a better

integration of CGM and physical activity data. We hypothesize that
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incorporating exercise data into the current CGM-based care model will

produce specific, clinically relevant information such as identifying whether

patients are meeting exercise guidelines. This work provides an overview of the

essential steps of integrating exercise data into an RPM program and the most

promising opportunities for the use of these data.
KEYWORDS

type 1 diabetes, algorithm-support, exercise, continuous glucose monitoring (CGM),
remote monitoring
Introduction

The Diabetes Control and Complications Trial (DCCT) and

the Epidemiology of Diabetes Interventions and Complications

(EDIC) follow-up study have established the importance of

intensive diabetes management in decreasing the development

and progression of microvascular and neurologic complications

(1, 2). In addition to intensive insulin therapy, increased levels of

physical activity are shown to improve cardiovascular fitness and

strength, increase insulin sensitivity, improve blood lipid

profiles, and overall well-being in individuals with type 1

diabetes (T1D) (3). Maintaining glycemia in a targeted glucose

range during and after exercise can be challenging for many

individuals with T1D. Numerous factors need to be taken into

consideration prior to engaging in physical activity such as the

timing, duration, and intensity of exercise, insulin adjustments,

nutrition, and the amount of active insulin present at the onset

of exercise. If these factors are ignored and not managed

accordingly, there is an increased risk of developing

hypoglycemia or hyperglycemia during and after exercise. In

fact, fear of hypoglycemia and the lack of knowledge on how to

exercise safely are some of the leading barriers to exercise in

adults and youth with T1D (4–6).

Exercise consensus guidelines recommend that children and

adolescents should aim to achieve at least 60 minutes of daily

physical activity (7–9). However, research has demonstrated that

around 2/3 of youth with T1D were not participating in even 30

minutes of daily physical activity (10). In addition, young

children with T1D were also found to be less active and

engage in fewer minutes of moderate-intensity physical activity

compared to their counterparts without T1D (11). This may be

due to exercise increasing the likelihood of glucose excursions,

particularly hypoglycemia, and the practical difficulties around

glucose monitoring. In overcoming some of these patient-facing

challenges with exercise and diabetes management, healthcare

professionals need to actively promote physical activity and offer

guidance around safe exercise.

Healthcare professionals, however, have also identified

numerous barriers to physical activity promotion including
02
competing demands at work, lack of confidence in physical

activity knowledge, and accessibility to exercise guidelines and

resources (12, 13).

Physical activity metrics (e.g., wearable activity tracker data)

are not commonly integrated into standard of care clinical

diabetes visits to help with physical activity promotion. Our

aim is to integrate wearable physical activity tracker data (e.g.,

heart rate, step count, etc.) into an existing algorithm-enabled

decision-support tool to help promote physical activity in newly

diagnosed youth with T1D and improve clinical outcomes.
Current TIDE care model and the
4T study

An open-source algorithm-enabled care model providing

patient prioritization, called Timely Interventions for Diabetes

Excellence (TIDE), was developed at Stanford to support

clinicians and Certified Diabetes Care and Education

Specialists (CDCES) at Stanford Children’s Pediatric diabetes

clinic (14–16). The current TIDE care model facilitates

population-level algorithm-enabled remote patient monitoring

(RPM) based on continuous glucose monitoring (CGM) data

(15). TIDE is being used as a part of the larger R18-funded

pragmatic research study called the Teamwork, Targets,

Technology, and Tight Control 4T Study (17–21). Based on

feedback from CDCES’, other team members, and analysis of

historical patient data, TIDE is constantly being updated with

improvements to the visual interface, the algorithmic ranking,

and to better fit the clinic workflows (14).
CGM metrics and accessing glucose data

In the current 4T Study, all newly diagnosed youth with T1D

are started on a CGM system (Dexcom G6, DexCom Inc., San

Diego, CA) and remote CGM review within the first month of

diagnosis. The CGM system measures up to 288 interstitial

glucose readings per day and transmits data to the Dexcom
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app using Bluetooth. This glucose data is automatically

transmitted to Dexcom’s remote database when the mobile

phone or smart device is connected to the internet. An

internally developed Python-based software tool that makes

use of the Dexcom Application Programming Interface (API)

is used to download data from Dexcom’s remote database to an

internal database of the Lucile Packard Children’s Hospital

(LPCH). This downloaded data for all participants is then

aggregated and processed to compute the metrics of interest.

Based on the consensus guidelines on clinical targets for CGM

(22), the following metrics are computed and integrated into the

TIDE platform: percent CGM wear time, mean glucose (mg/dL),

percent time-in-range (TIR; 70-180 mg/dL), percent change in

TIR from the previous review period, percent time in

hypoglycemia (<70 mg/dL and <54 mg/dL), percent time in

hyperglycemia (>180 mg/dL and >250 mg/dL). TIDE is hosted

on LPCH’s servers and the CDCES team can access it from their

office. TIDE indicates which participants to prioritize for review

and shows daily CGM traces over the previous two weeks.
Activity metrics and accessing physical
activity data

In the current 4T Exercise Study, a subset of participants

from the main 4T Study (11+ years of age) are also started on a

physical activity tracker (Garmin vıv́osmart® 4 or Garmin

Venu® Sq) around one month following T1D diagnosis and

CGM start. Participants in the study are trained to use the watch

and instructed to wear it throughout the 12 month study

duration, with the goal of capturing at least two weeks of

activity data each month (17). The activity trackers capture

data including, but not limited to, heart rate, activity type, active

kilocalories, step count, stress, metabolic equivalents (METS),

etc. The overall aim is for the activity trackers to provide the

clinical team with insights into the activity patterns, trends, and

behaviors of newly diagnosed youth with T1D.

To collect and access the physical activity data, the study staff

first create individual de-identified study accounts in Garmin

Connect for all newly enrolled 4T Exercise participants. The

physical activity data are transmitted from the activity tracker to

the Garmin Connect application using Bluetooth. To get access

to the raw participant data files, we use the Garmin Developer

API and have an application hosted in the cloud that receives the

data. The first step was to create a Garmin Developer account

and get approved for API access credentials. This required

setting up a test integration and completing a review from the

Garmin developers. This is a one-time step in order to use the

Garmin Developer API. For our application to receive data for

any given Garmin Connect account, we then complete a data

access authorization flow with Garmin between the Garmin

Connect account and our API credentials. This requires both the

API credentials and the Garmin Connect account credentials
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and this authorization is completed in our application. At this

point, we have participants with Garmin watches, which are

connected to a Garmin Connect account that we have created for

them, and all of the data that gets tracked by the Garmin account

has been authorized to be sent to our application. As our

application receives Garmin data, we store all of the raw data

that we receive. When the raw data are downloaded from our

application, we make sure to remove any duplicate or

incomplete data entries that Garmin has sent.

There are additional features that our application allows,

including: unauthorizing a participant’s Garmin Connect

account from our API credentials so we will no longer receive

data; backfilling participant data (in the event that we missed an

event from Garmin and getting access to two years of historic

account data); reporting on the last day that data was received

for a participant; and reporting on approximate watch wear time

(estimated by analyzing the Garmin heart rate data that has

been received).
Data processing and data flow into TIDE

TIDE is deployed within the secure data infrastructure of the

Lucile Packard Children’s Hospital and through HIPAA-

compliant web interfaces and encrypted data storage servers.

Our team at Stanford has developed a software program to

automatically pull raw data from the remote databases of

Dexcom and Garmin daily, at midnight. This allows the care

team to have access to updated data files in the morning and can

plan their day accordingly (i.e., which patients to contact). We

then synchronize the two data streams and visualize both CGM

and physical activity data in TIDE, locally. We have data coming

from two independent sources: Dexcom’s remote database and

Garmin’s remote database. We independently download

Dexcom data as a comma-separated values (csv) file and

Garmin data as a JavaScript Object Notation (JSON) file onto

a local computer (i.e., we are currently running this data

integration on a testing environment) as described in sections

“CGM Metrics and Accessing Glucose Data” and “Activity

Metrics and Accessing Physical Activity Data”, respectively. We

developed a Python program to synchronize these two sources of

data based on the Standard time. CGM glucose data is available

every 5 minutes, however, there is no regular interval for Garmin

data as it captures various measurements (e.g., heart rate, type of

activity, and intensity of activity) which are aggregated at

differing time intervals.

We are currently overlaying CGM, heart rate, and step count

values locally, as shown in Figure 1. CGM and heart rate values

are shown as line plots and a linear interpolation is performed to

create smoother plots for visualization. The step count is shown

as a step plot. If there are missing values for more than 15

minutes for any particular metric, then we do not include

missing values for that particular metric. For instance, if a
frontiersin.org
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participant has taken off the activity tracker for a period of time

(e.g., 1 hour), then only the CGM values for that 1-hour period

will be displayed. Currently, we are focusing on the integration

of activity types that contain step counts (e.g., walking, running,

etc.), but we intend to expand this further to include all physical

activity data types. The intensity of the activity is computed over

a period of 15 minutes (called an Epoch summary based on

Garmin’s Health REST API Specification document) and

categorized into three measures: “sedentary”, “active”, or

“highly active”. Epoch summaries contain information about

wellness data, including steps and distance, and are broken down

into short time periods (i.e., 15 minutes). The synchronized,

combined Dexcom-Garmin data are converted to a Pandas data

frame in Python and provided as the input to TIDE.
Future directions and use cases with the
TIDE care model

To date in the 4T Exercise Study, we have been collecting

and monitoring participant’s physical activity data offline (i.e.,

not in real-time). This physical activity data is also reviewed and

used to provide specific exercise education to newly diagnosed

youth with T1D in the 4T Exercise Study, led by a Certified

Exercise Physiologist. The next steps are to take the physical
Frontiers in Endocrinology 04
activity metrics (i.e., heart rate and step count) overlayed with

CGM data live in future iterations of the TIDE care model. Our

team has chosen to start with heart rate and step count metrics to

integrate into TIDE as these are additional signals commonly

considered for exercise detection with closed loop technology

(23–25). This data will be displayed in TIDE for healthcare

providers and CDCES’ to visualize participants’ physical activity

data patterns and allow more exercise-specific discussions

during standard diabetes care visits (Figure 1). These activity

workflows and visualizations are being developed with support

from a Certified Exercise Physiologist, CDCES’, Stanford

Pediatric Endocrinology clinical team, members of Machine

Learning Group at Stanford, and the Systems Utilization

Research for Stanford Medicine (SURF) team. Although our

current workflow is integrating specifically Garmin and Dexcom

CGM data into TIDE, future work is underway and is aimed at

increasing interoperability and integration of various types of

CGM systems and commercially available activity trackers into

the TIDE platform. This is being done by leveraging the Fast

Healthcare Interoperability Resources® (FHIR; a widely used

standard for securely exchanging healthcare information

electronically) software framework.

The existing TIDE dashboard shows a prioritized list of

patients for weekly provider review with various CGM summary

statistics (e.g., average glucose, percent CGM wear time, percent
FIGURE 1

Multimodal decision-support Timely Interventions for Diabetes Excellence (TIDE) care model integrating continuous glucose monitoring (CGM)
and physical activity (Garmin Vivosmart 4 or Venu Sq) metrics.
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time-in-range, percent time below range, etc.), described

elsewhere (15). When a CDCES selects a patient of interest,

the glucose traces are displayed for the past two weeks. We are

now extending this dashboard to incorporate additional physical

activity metrics. The next iteration of TIDE will include the

physical activity summary statistics (e.g., percent activity tracker

wear time, average step count, etc.) as additional columns

alongside the CGM summary statistics.

As a first step, our aim is to build out and use this physical

activity and CGM overlay integration in TIDE for all 4T Exercise

study participants before scaling the TIDE platform beyond

Stanford’s borders. This would serve as incoming data to help

healthcare providers and CDCES with tracking physical activity

patterns and behaviors of newly diagnosed youth with T1D.

Physical activity data in TIDE will include summary statistics to

identify whether youth with T1D are meeting exercise guidelines

(e.g., at least 60 minutes of moderate-to-vigorous physical activity

per day or step count per day). Examples of these population-level

flags will include percent activity tracker wear time, percent of

exercise guidelines being met, and percent change in physical

activity from the previous review period (e.g., every two weeks).

Our goal with this novel data integration is that by increasing

accessibility to physical activity data visualizations in TIDE, the

CDCES and care team may be more willing to discuss exercise

with their patients. Seeing graphic representations of activity data

rather than relying on patient recall may help CDCES’ and the

care team to make more informed decisions around insulin dose

adjustments and overall diabetes care. Visualizations of physical

activity data also offers another opportunity for healthcare

providers to connect patients with specialists, where available

(e.g., Certified Exercise Physiologist, etc.).

With the overlay of physical activity metrics and CGM data

in TIDE, we are also working on specific “activity flags” that will

highlight if rapid changes in glycemia occur during structured

exercise bouts. For example, a ≥50 mg/dL drop or hypoglycemia

(<70 mg/dL) during structured exercise will be flagged in the

TIDE care model for review. This information may help

healthcare providers understand whether dysglycemia occurs

during exercise, but also determine the risk of nocturnal

hypoglycemia with increased levels of physical activity (7, 26).
Conclusions

At Stanford, we have developed a novel technology-enabled,

telemedicine-based care model called Timely Interventions for

Diabetes Excellence (TIDE) for patients with newly diagnosed

T1D (14). This algorithm-enabled prioritization of T1D patients

with CGM data for asynchronous remote review has improved
Frontiers in Endocrinology 05
CDCES’ workflow (i.e., reduced time spent per patient) and

improved patients’ glucose time-in-range (14, 15).

Next steps include overlaying physical activity data (e.g.,

heart rate and step count) from wearable activity trackers with

CGM data in the current TIDE care model. This activity-glucose

multimodal algorithm-enabled decision-support tool will

provide healthcare providers and CDCES’ with additional data

to make more informed decisions around patient needs, insulin-

dosing decisions, and overall diabetes management.
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