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Probiotic induced synthesis of
microbiota polyamine as a
nutraceutical for metabolic
syndrome and obesity-related
type 2 diabetes
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The gut microbiota regulates multiple facets of host metabolism and immunity

through the production of signaling metabolites, such as polyamines which are

small organic compounds that are essential to host cell growth and

lymphocyte activation. Polyamines are most abundant in the intestinal

lumen, where their synthesis by the gut microbiota is influenced by

microbiome composition and host diet. Disruption of the host gut

microbiome in metabolic syndrome and obesity-related type 2 diabetes

(obesity/T2D) results in potential dysregulation of polyamine synthesis. A

growing body of evidence suggests that restoration of the dysbiotic gut

microbiota and polyamine synthesis is effective in ameliorating metabolic

syndrome and strengthening the impaired immune responses of obesity/

T2D. In this review, we discuss existing studies on gut microbiome

determinants of polyamine synthesis, polyamine production in obesity/T2D,

and evidence that demonstrates the potential of polyamines as a nutraceutical

in obesity/T2D hosts.
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Introduction

More than 90% of diabetes is attributed to obesity and it is therefore referred to as

obesity-related type 2 diabetes (obesity/T2D) (1). The majority of individuals with

obesity/T2D are also diagnosed with metabolic syndrome, based on diagnostic criteria

that includes increased waist circumference (i.e., central obesity), elevated triglycerides,
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and abnormally high fasting glucose indicative of insulin

resistance (2, 3). Based on predictions from 2007, the

prevalence of diabetes is expected to reach 366 million

worldwide by 2030 (4). However, recent epidemiological

findings suggest 537 million individuals were already affected

by obesity/T2D globally in 2021 (5), surpassing the original 2007

estimate (4). Parallel increases in obesity and type 2 diabetes are

major public health concerns as both are associated with lower

health-related quality of life (6, 7) such as adverse post-infection

clinical outcomes (8–12). For example, both obesity and diabetes

increase the risk for post-operative periprosthetic joint infections

(PJIs) (9) and surgical site infections (SSIs) (10). During the

COVID-19 pandemic, individuals with obesity/T2D were more

likely to be hospitalized (11, 12) with some studies suggesting

higher in-hospital mortality rates (13) likely due to increased

incidence of cytokine storms preceding septic shock (12). Thus,

obesity/T2D is linked to deficits in overall immunity that are

associated with severe infections across body sites at higher

mortality and morbidity rates compared to non-obese/T2D

counterparts. This in part occurs due to chronic low-grade

inflammation that is associated with a disturbance in gut

microbiome composition and metabolism as compared to a

healthy or homeostatic baseline known as gut dysbiosis (14–22).

It is well accepted that long-term exposure to prototypical

Western diets characterized by highly processed foods is at the

core of obesity/T2D-related metabolic syndrome (23–25) and

chronic low-grade inflammation (26). The gut microbiome as

the mediator linking diet and obesity has been established in

multiple human and animal studies, with diet identified as the

primary contributor to changes in gut microbiome diversity and

functional capacity associated with obesity and impaired

immunity (27–29). Metabolomic studies have identified several

groups of gut microbiota metabolites associated with obesity/

T2D, including short-chain fatty acids (30–33), triethylamine-

N-oxide (34–36), and bile acids (30, 37–39), which regulate host

metabolism and immunity. In this review, we focus on

polyamines, a group of metabolites increasingly associated

with obesity/T2D.

Polyamine metabolites are essential to mammalian health in

multiple organs (40) where they regulate cellular metabolism,

proliferation, and differentiation (40, 41). Despite extensive work

on polyamines in cancer, autoimmune diseases, and aging, the

role of polyamines in immunity remains obscure. More

importantly, the role of polyamines in obesity/T2D immunity

is not well-studied. Herein, we review the contribution of

polyamine biosynthesis and function to obesity/T2D, host

immunity, and evaluate new work that utilizes polyamines to

mitigate metabolic syndrome and complications of obesity/T2D.

Understanding the role of polyamines on immunity and

metabolic diseases will lead to identification of novel,

alternative therapeutics for immunocompromised obese/

T2D patients.
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Polyamine and obesity-related type
2 diabetes

The gut microbiota is a major
contributor to the host polyamine pool

Polyamines are produced primarily from amino acid

precursors arginine, ornithine, and methionine (42). Diamine

putrescine, triamine spermine, and tetraamine spermidine are

the most abundant natural polyamines found in mammals (43).

The total polyamine reservoir in mammals is regulated

endogenously by host cells (43) and exogenously by gut

bacteria (44–47) and diet (48, 49). Putrescine, spermidine, and

spermine exist in the micromolar to millimolar range in various

foods (48, 49) and across body sites of healthy adults as

summarized in Figure 1. The use of radiolabeled polyamines

demonstrated that polyamines are readily absorbed and enter

the circulation (48), where they are distributed across different

organs and metabolic fluids, including the brain (50), kidneys

(51), breastmilk (52–54), urine (55–58), and serum/plasma (55,

56, 59–62). Notably, the largest accumulation of polyamines

occurs in the intestinal lumen as determined with fecal samples

from healthy donors where putrescine is the most abundant

followed by spermidine and spermine (63, 64). Fecal levels of

polyamines have been shown to correlate with gut microbiota

composition in humans (63–65) and rodent models (66, 67).

Oral supplementation in rodents with arginine led to increased

polyamine concentrations in feces in a dose-dependent manner,

which was eliminated when these animals were treated with

antibiotics prior to arginine administration (66). This implicates

the role of the gut microbiota in amino acid metabolism that

results in synthesis of polyamines in mammals. Additionally,

both Gram-positive and Gram-negative bacteria isolated from

human fecal samples, including Bifidobacterium, Clostridium,

Enterococcus, and Lactobacillus, are able to produce polyamines

in vitro (68). Of these genera, the abundance of Bifidobacterium

animalis is decreased and Lactobacillus reuteri increased in obese

individuals (69, 70). Together, these studies demonstrate that the

gut microbiota is a major contributor to the total polyamine pool

in vivo. Moreover, with the direct link between obesity/T2D and

gut dysbiosis (71, 72), there is a compelling and urgent need to

study host-microbiota-polyamine interactions and the

contribution of polyamines in obesity/T2D.
Polyamine synthesis in
obesity/type 2 diabetes

Thus far, there are only a handful of studies that have

reported polyamine levels in obese individuals, all of which

examined circulating polyamines in serum or plasma (73–75). In

a study of 114 overweight/obese adults (BMI=27-40 kg/m2) with
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and without type 2 diabetes, it was concluded that individuals

with obesity/T2D had elevated levels of putrescine as compared

to obese, non-diabetic participants (73). This study did not have

an additional control group of healthy adults but levels of

putrescine (0.076mM), spermidine (0.15mM), and spermine

(0.027mM) were in range when compared to previously

reported levels in plasma/serum of healthy adults

(putrescine = 0.053-0.49mM, spermidine = 0.004-11mM,

spermine = 0.009-5.9mM) (55, 56, 59–62). In a second cohort

of morbidly obese adults, the same group of authors noted

increases in serum putrescine that was associated with failure

to ameliorate metabolic syndrome six months after bariatric

surgery (74). These results differ from a third study of 102 obese

adults that demonstrated there were no differences circulating
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levels of putrescine, spermine, and spermidine in male vs female

obese adults (76). Unfortunately, this study also did not have

healthy adult controls but when compared to studies in healthy

adults, only putrescine was elevated whereas spermine and

spermidine were in the range of previously reported levels (55,

56, 59–62). More recently, spermidine was found to be positively

associated with obesity in rural Chinese residents (75). However,

these individuals were more likely to decrease their BMI over

two years in a follow-up study (75). This suggests that

spermidine exert protective effects against weight gain but of

unknown mechanism. Large ranges can be seen across these

studies illustrated in Figure 1. Variation in these studies likely

originates from: i) different methods used to extract and analyze

polyamines; e.g., HPLC was used in all obese/T2D studies
FIGURE 1

Distribution of natural polyamines in healthy adults. The three most abundant polyamines in humans are putrescine, spermidine, and spermine.
Total polyamine is highest in the intestine because diet and gut microbiome are the primary sources of polyamines. From the gastrointestinal
tract, polyamines are readily absorbed and enter circulation where they are found in a variety of organs including the brain, kidneys, and in
metabolic fluids such as urine, and breastmilk. Studies that reported concentrations in ng/mL or mg/mL were transformed to mM using the
molecular weights of putrescine (88.15 g/mol), spermidine (145.25 g/mol), and spermine (202.34 g/mol) for better comparisons.
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whereas LCMS is considered to be more accurate and sensitive,

ii) only including male participants (59), iii) not considering

potential correlation between age and polyamines that has been

previously identified (40, 63, 77). Therefore, although the

majority of existing studies suggest polyamines are elevated in

obesity/T2D, it is difficult to make substantial conclusions

without control non-obese, non-diabetic healthy adults

because exogenous polyamines have anti-obesity effects in

preclinical studies (78–81). Additionally, patients with type 2

diabetes expressed reduced levels of polyamine synthetic

enzymes such as ornithine decarboxylase that is necessary for

putrescine production (82). Because these studies suggest an

elevation in only putrescine when compared to healthy adults of

other studies, it is important to identify changes in individual

polyamine metabolites in future works. Note that these trends

were also concluded from studies primarily in European or rural

Chinese residents (59, 73–76). Additional studies are required in

countries where obesity/T2D affect over 20% of the population

including the United States, Mexico, Russia, and Brazil (83, 84).

Results from animal models of obesity-related diseases are

also difficult to interpret due to the use of heterogenous models

of obesity/T2D and sampling of tissues. Adipocytes from obese

Zucker rats demonstrated a 4-fold increase in concentration of

spermine and spermidine that was positively associated with

adipose triacylglycerol formation (85). However, two-month-old

leptin-deficient obese/T2D mice exhibited 31% less spermidine

but 24% higher spermine in whole pancreatic islets (86).

Obesity/T2D decreased expression of polyamine synthetic

genes Odc (ornithine decarboxylase), Srm (spermidine

synthase), and Sms (spermine synthase) that concomitantly

resulted in a ~30% reduction in spermidine in the colon (87).

These results differed from another study in diet-induced obese/

T2D murine model that demonstrated no deficiency in

polyamines due to obesity/T2D locally in the gut or

systemically in plasma (88). Despite the variations in both

humans and animal models of obesity/T2D, polyamines are

essential to white adipose tissue homeostasis by stimulating

adipocyte lipolysis (81) and the deletion of a spermidine to

spermine conversion enzyme, spermidine/spermine N1-

acetyltransferase, leads to late-onset obesity and insulin

resistance (89–91).
Polyamines regulate host immunity

Polyamines regulate a variety of cellular functions in both

innate and adaptive immune cells that are often described to be

immunosuppressive (41). At neutral pH, polyamines exist as

positively charged molecules that interact with negatively

charged macromolecules such as DNA, RNA, and proteins (43).

As a result, polyamines are necessary for molecular regulation of

growth, autophagy, differentiation, and activation of lymphocytes.

Polyamine depletion with enzyme inhibitors induced abnormal
Frontiers in Endocrinology 04
differentiation of cytolytic T lymphocytes (92) and caused defects

in B-cell production of immunoglobulins (93). Both of these

phenotypes were rescued upon exogenous addition of

polyamines. T helper cells are the most well-studied when

investigating the role of polyamines. Polyamines regulate CD4+

T cell differentiation as demonstrated by spermidine induction of

Foxp3 expression to polarize naïve T cells to become regulatory T

cells in an autophagy-dependent manner (94). In addition to

Tregs, polyamines have been proposed to regulate transcription

factors such as Tbx21 (T-Bet),Gata3, and Rorc that mediate CD4+

T cell differentiation into other subsets Th1, Th2, and Th17

epigenetically (95). This suggests that polyamines have

significant impacts on adaptive immunity.

The role of polyamines in innate immune cells are less

clearly defined. Polyamine synthesis is required for natural

killer cell metabolism and effector function including the

production of granzyme B and IFN-g (96). In neutrophils,

polyamines regulate effector functions by promoting

superoxide and myeloperoxidase production. In healthy

human neutrophils, depletion of polyamines treatment led to

decreased production of superoxides (O−
2 , H2O2) and release of

myeloperoxidase (97). This is congruent with a second study

demonstrating physiological concentrations of spermidine

induced superoxide generation in human neutrophils

stimulated with chemotactic peptide fMet-Leu-Phe (98). While

the effects of polyamines are pro-inflammatory in natural killer

cells and neutrophils, polyamines are immunosuppressive in

monocytes/macrophages. Spermine inhibited synthesis of pro-

inflammatory cytokines (TNF, IL-1, IL-6, MIP-1a, MIP-1b) in
LPS-stimulated human peripheral blood mononuclear cells (99)

and inhibited the production of nitric oxide in J774 murine

macrophages stimulated with LPS or IFN-g (100). Spermidine

promoted hypusination of the eukaryotic translation factor

eIF5A that switches macrophage metabolism to oxidative

phosphorylation, a phenotype associated with M2-like anti-

inflammatory macrophages (95, 101). However, depletion of

polyamines in the same cell line induced nitric oxide synthesis

when macrophages were stimulated with LPS (102). Thus, the

exact role of polyamines in immune cells, particularly innate

immune cells, remains unclear. It is particularly interesting to

investigate the role of polyamines in innate immune cell

dysfunction in obesity/T2D.
Polyamines as a nutraceutical

Polyamines as a nutraceutical for
metabolic syndrome in obesity/T2D

Several studies have demonstrated beneficial effects of

increased polyamine concentrations in correcting the

metabolic complications of obesity/T2D (78–81, 87, 103). The

total host polyamine pool can be increased either with diet
frontiersin.org
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(Figure 1) or by supplementation with probiotics or prebiotics

which increase the abundance of gut bacteria that synthesize

polyamines (44–47, 68). Bifidobacterium spp. are often regarded

as beneficial bacteria due to their production of short-chain fatty

acids, which has a myriad of physiological effects on the host

(104). More recently, Bifidobacterium spp. have also been linked

to polyamine synthesis in animal models of obesity/T2D and

importantly, improved clinical outcomes (67, 87, 88). In a diet-

induced model of obesity/T2D, mice fed Bifidobacterium

animalis subsp. lactis for 12 weeks rescued polyamine

production with a concomitant correction of lipid and glucose

metabolism, reduction in metabolic endotoxemia, and

strengthening of gut barrier function (87). Similarly,

administration of B. lactis with arginine, an amino acid

precursor to polyamine synthesis, resulted in increased levels

of circulating and colonic levels of polyamines that correlated

with reduced inflammation in senescent mice (67). Furthermore,

in another diet- induced obese/T2D mouse model ,

supplementation with oligofructose, a bifidogenic indigestible

carbohydrate, led to increases in abundance of B. pseudolongum

that was associated with elevation of bacteria-specific polyamine

precursor acetyl-ornithine and down-stream levels of spermine

and spermidine (88).

Together, these studies demonstrated that restoration of

polyamine synthesis by B. lactis and B. pseudolongum

ameliorated complications associated with obesity/T2D.

Moreover, direct administration of polyamines reduced body

weight, adipocyte differentiation, and lipid accumulation in

obese mice (78–81). Enhancement of polyamine synthetic

enzyme, SAT1, by triethylenetetramine dihydrochloride was

also associated with anti-obesity and anti-diabetic effects in

mice (103). There is an ongoing need to study the direct

effects of polyamines on development of diabetes. In summary,

these studies provide evidence that polyamines are integral to

regulating metabolic syndrome and illustrate its potential as a

nutraceutical for metabolic complications of obesity/

T2D (Figure 2).
Polyamines as a nutraceutical to improve
immunity against bacterial infections in
obesity/T2D

Obesity/T2D is associated with increased risk for adverse

clinical outcomes post-infection likely due to deficits in the

immune system that have been likened to that of aging (105).

It is particularly interesting because aging has been linked to

declining levels of polyamines (40, 77), chronic low-grade

inflammation (termed “inflammaging”) (106), and higher

morbidity and mortality during infections (107). In fact,

spermidine levels are depleted in the elderly and polyamine

treatment corrects autophagy and B-cell senescence (108, 109).

Similar dysregulation of polyamines in obesity/T2D would affect
Frontiers in Endocrinology 05
bacteria-host immune interactions that govern infection

outcomes. In preclinical studies, obesity/T2D exacerbates

inflammation and infection severity in models of osteomyelitis

(110, 111), bacteremia (112), and skin infections (113, 114).

Although not in the context of infection, administration of

polyamines or associated probiotic and prebiotics have

alleviated inflammation in a variety of disease models.

Treatment with B. lactis and arginine, an amino acid precursor

to polyamine synthesis, resulted in increased levels of circulating

and colonic levels of polyamines that was associated with

reduced inflammatory signaling in serum of mice (67). In a

model of T-cell transfer colitis, spermidine potentiated Treg

differentiation and ameliorated disease pathology in the gut (94).

Injection of spermine protected mice from developing acute

footpad inflammation (99), which may be important for

mitigating excessive inflammation in diabetic foot ulcers (114).

Therefore, polyamines are emerging players in dictating

bacterial-host immune interactions in obesity/T2D by

regulating inflammation (Figure 2).

More recently, polyamines have been directly shown to

reduce osteomyelitis severity in a murine model of obesity/

T2D (88). Supplementation with oligofructose, a bifidogenic

prebiotic, decreased Staphylococcus aureus burden in infected

bone and tissue in obese/T2D mice. Oligofructose dampened

systemic inflammatory signaling that normally exacerbates

infections in obesity/T2D (111, 114, 115), consistent with prior

studies (99, 116). The authors determined a 6-log fold-change in

B. pseudolongum in the gut microbiota of obese/T2Dmice due to

oligofructose treatment. This compositional change was

associated with elevated polyamines in the cecum and plasma

of obese/T2D mice. Remarkably, direct oral administration of

spermine and spermidine led to a reduction in osteomyelitis

severity similar to oligofructose. These results suggest that

polyamines promote beneficial effects during infections in

obesity/T2D and is an unexplored area that warrants

further investigation.
Conclusion and perspectives

In this review, we propose that polyamines metabolites have

the potential to ameliorate metabolic syndrome and the

complications of obesity/T2D. Increasing evidence suggests

that polyamines contribute to regulation of metabolic health

and immunity in obesity/T2D. However, preclinical and clinical

studies that examine polyamines in obesity/T2D are inconsistent

due to heterogenous methods and tissue sampling. With their

pleiotropic effects on transcription and translation in both

eukaryotes and prokaryotes, the mechanisms by which

polyamines affect human health remain unknown. In addition

to the cautionary points we raise with current human data,

future preclinical studies are needed to fully define the role of

polyamines in obesity-associated metabolic disorders. First,
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obesity/T2D occurs through different mechanisms in the

established diet-induced, transgenic leptin-deficient, and leptin

receptor-deficient animal obesity models (117). The distinct gut

microbiota and drug responses in these models affect

microbiome compositional and metabolomic studies of obese/

T2D animals and lean/controls (117–119). Second, the frequent

use of male animals which gain weight more consistently in diet-

induced murine models ignores the effect of sex on

complications of obesity/T2D (120). Third, animal studies that

implement probiotic, prebiotic, or post-biotics like polyamines

often treat animals in parallel during the development of obesity/

T2D. However, individuals with obesity/T2D often seek medical

care after they have developed obesity/T2D and the

complications of metabolic syndrome. Finally, previous

literature has only analyzed polyamines in plasma of obese/

T2D individuals, which does not consider the contributions of

the gut microbiota as the primary driver of polyamine

production. Further studies are needed to investigate

polyamine levels in fecal samples to better understand

polyamine production in obese/T2D individuals. Therefore, it
Frontiers in Endocrinology 06
is difficult to translate the results of animal experiments to

personalized nutrition and precision medicine in humans.

With polyamines found as ubiquitous metabolites among

eukaryotes and prokaryotes, their role in infectious disease is

more complex than other microbiota-derived metabolites.

Polyamines have been shown to be critical for survival and

virulence of human bacterial pathogens (121, 122). While some

pathogens produce polyamines, others rely on the extracellular

polyamine pool regulated by host cells and the gut microbiota

through uptake via transporter systems (121, 122) where

polyamines have been shown negative effects on infectious

bacteria. For example, spermine directly inhibits the growth of

pathogenic Escherichia coli, Salmonella enterica serovar

Typhimurium, and Staphylococcus aureus, while increasing

susceptibility to b-lactam antibiotics in Pseudomonas

aeruginosa (123). Because polyamines regulate survival and

proliferation of bacteria and mammalian cells, this suggests

that the host and bacteria pathogens compete for the

extracellular polyamines pool during infections. For example,

the polyamine transport operon potABCD in Streptococcus
FIGURE 2

Proposed health benefits of dietary polyamines in obesity-related diseases. Polyamines are essential to human health, with their abundance
altered by obesity-related diseases. This figure highlights a summary of potential benefits of polyamines on obesity-related diseases including
metabolic syndrome and type 2 diabetes. Polyamines ameliorate metabolic syndrome by reducing weight gain, insulin resistance, lipid
metabolism, gut barrier function, and metabolic endotoxemia. Polyamines also regulate both innate and adaptive immunity including
proinflammatory cytokine production, autophagy, macrophage polarization, T cell differentiation, and B cell senescence. Further investigation is
needed to elucidate polyamine-mediated health benefits in obesity-related diseases.
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pneumoniae is required for resistance to neutrophil killing in

vivo (124).This further implies a need to investigate the

intracellular levels of polyamines in both mammalian cells and

bacterial pathogens.

In conclusion, a growing body of evidence suggests that

dysregulation of polyamines is associated with obesity/T2D and

the related complications of immune deficits and metabolic

disorders. The obesity/T2D epidemic is a public health

concern and calls for alternative therapeutics. Probiotics,

prebiotics, and post-biotics serve as mediators of metabolic

syndrome and immunity in obesity/T2D. Prebiotics like

oligofructose and probiotics like Bifidobacterium spp. that is

associated polyamine production can be therapeutic alternatives

to treating metabolic syndrome and strengthening of immunity,

but relies on modulation of the gut microbiome. Therefore,

direct application of the post-biotic, polyamines, to obese/T2D

patients is a more attractive target. However, the biology of

polyamines is heavily understudied outside the context cancer

and remains to be investigated. Further research is needed to

elucidate the mechanisms of polyamine regulation that

contribute to diminished gut health, chronic inflammation in

obesity, and development of diabetes, which will aid in the use of

polyamines as a diagnostic tool for these complications.
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