
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Xiao-qiang Liu,
Tianjin Medical University General
Hospital, China

REVIEWED BY

Qi-Chen Yang,
Sichuan University, China
Shuo Zhang,
Beijing Tongren Hospital, Capital
Medical University, China

*CORRESPONDENCE

Zhipeng You

yzp74@sina.com

SPECIALTY SECTION

This article was submitted to
Reproduction,
a section of the journal
Frontiers in Endocrinology

RECEIVED 03 November 2022
ACCEPTED 02 December 2022

PUBLISHED 10 January 2023

CITATION

Liu K, Fan H, Hu H, Cheng Y, Liu J and
You Z (2023) Genetic variation
reveals the influence of steroid
hormones on the risk of retinal
neurodegenerative diseases.
Front. Endocrinol. 13:1088557.
doi: 10.3389/fendo.2022.1088557

COPYRIGHT

© 2023 Liu, Fan, Hu, Cheng, Liu and
You. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 10 January 2023

DOI 10.3389/fendo.2022.1088557
Genetic variation reveals the
influence of steroid hormones
on the risk of retinal
neurodegenerative diseases

Kangcheng Liu, Huimin Fan, Hanying Hu, Yanhua Cheng,
Jingying Liu and Zhipeng You*

Jiangxi Province Division of National Clinical Research Center for Ocular Diseases, Jiangxi Clinical
Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual
Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
It is difficult to get evidence from randomized trials of a causal relationship

between steroid hormones produced by the adrenal gland and gonad and

retinal neurodegenerative disorders (RND). In this study, genetic variations of

a ldosterone (Aldo) , androstenedione (A4) , progesterone (P4) ,

hydroxyprogesterone (17-OHP), and testosterone/17b-estradiol (T/E2) were

obtained from genome-wide association studies as instrumental variables.

Mendelian randomization (MR) analysis was used to assess the impact on the

risk of RND, including glaucoma (8,591 cases and 210,201 controls), diabetic

retinopathy (DR, 14,584 cases and 202,082 controls) and age-related macular

degeneration (AMD, 14,034 cases and 91,214 controls). As the main method,

inverse variance weighted results suggest that the increased glaucoma risk was

affected by T/E2 (OR = 1.11, 95% CI, 1.01–1.22, P = 0.03), which was further

validated by other methods (PWM= 0.03, PMLE= 0.03, PMR-RAPS= 0.03). In the

replicated stage, the causal relationship between T/E2 and glaucoma was

verified based on the MRC-IEU consortium (P = 0.04). No impact of Aldo,

A4, P4, 17-OHP, and T/E2 was observed for the risk of DR (P > 0.05) and AMD (P

> 0.05). The heterogeneity test (P > 0.05) and pleiotropy test (P > 0.05) verified

the robustness of the results. Our results suggest that T/E2 has a suggestive

effect on the glaucoma risk. However, the genetic evidence based on a large

sample does not support the effect of steroid hormones on DR and AMD risk.

Further studies are vital to assess the possibility of steroid hormones as targets

for prevention and treatment.
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1 Introduction

Steroid hormones, including aldosterone (Aldo),

androstenedione (A4), progesterone (P4), hydroxyprogesterone

(17-OHP), testosterone (T), and 17b-estradiol (E2), are

produced primarily by the adrenal gland and gonads (1). As

regulators of various physiological processes, their biological

synthesis originates from cholesterol (2). 17-OHP is transformed

from progesterone into A4, T, and Aldo. Moreover, androgens

(such as A4 and T) are precursors for E2. The levels of these

steroid hormones are in dynamic balance in the body and affect

the body’s inflammation, metabolism, cell proliferation, and

other physiological activities. When the adrenal gland or

gonad is in a disease state (such as primary aldosteronism

(PA), prostate cancer (PC), or ovarian tumor), steroid

hormone levels will change significantly and further affect

other organs (such as the heart) of the body.

Notably, steroid hormone receptors have been found

throughout eye structures, including the retina (3, 4). These

findings revealed that steroid hormones could likely influence

visual processing and retinal neurodegenerative diseases (RND)

risk. Some studies believe that changes in steroid hormone

homeostasis will damage the retina, leading to glaucoma, age-

related macular degeneration (AMD), diabetic retinopathy

(DR), and other RND (5–7). The study of the rat model shows

that Aldo can affect the retinal ischemic damage caused by

glaucoma through the Renin-Angiotensin-Aldo System (8, 9).

After systemic administration of Aldo, Nitta et al. (10) found

progressive loss of retinal ganglion cells (RGCs) without elevated

intraocular pressure (IOP), which means that PA will increase

the glaucoma risk. Ohshima et al. compared 137 glaucoma

patients with PA and 177 controls and found no difference in

the prevalence of glaucoma optic disc appearance between the

two groups (11). Hao et al. found that E2 can protect RGCs

under a high glucose environment through the mitochondrial

pathway (12). However, Siddiqui et al.’s study on 255 subjects

suggested that E2 was not related to DR risk (13). Lin et al.’s

cohort study found that elevated androgen levels in PC patients

increased the AMD risk (14). POLA study monitored several

steroid hormones in serum and found no correlation between T,

E2, and AMD. From these contradictory results, it can be found

that the steroid hormones’ effect on RND is still unclear.

Clarifying the causal relationship between the steroid

hormones and RND helps define the strategic approach of

steroid hormone benefits, potentially valuable for RND.

However, due to the complexity of the steroid hormone

system, many confounders affect the evaluation of randomized

controlled studies. It is difficult for researchers to determine the

effect of a single steroid hormone on the RND risk. To obtain

more reliable results with large samples, the Mendelian
Frontiers in Endocrinology 02
randomization (MR) study provides an alternative method to

explore the influence of various factors on RND risk through

genetic variation (15, 16). M. Verbanck et al. used MR to analyze

the influence of testosterone on prostate cancer, hypertension,

and other diseases (17). Pott et al. (18) also found the sex-specific

causal networks of steroid hormones and obesity through MR

research. These studies provide additional possibilities for

exploring the effects of steroid hormones on disease risk.

Therefore, to better explore the role of steroid hormones on

the risk of RND, we performed a two-sample MR study in which

we simultaneously obtained four different instrumental variables

(IVs) of steroid hormones from genome-wide association studies

(GWASs) of large samples. Through exploring causality, we

hope to increase the understanding of the risk of steroid

hormones affecting RND. Moreover, it provides a more

theoretical basis for reducing the RND risk caused by changes

in steroid hormone levels.
2 Methods

2.1 Design of the two-sample MR study

To investigate the effect of steroid hormone levels on the risk

of RND (glaucoma, DR, and AMD), we conducted an MR study.

Considering the winners’ curses and weak instruments, we chose

a two-sample MR instead of a one-sample MR (19). According

to Mendel ’s laws of inheritance, s ingle nucleotide

polymorphisms (SNPs) are inherited independently and

circumvented reverse causality. In addition, this two-sample

MR study follows the MR-STROBE guidance (20).
2.2 Exposure: Genetic predictors for
steroid hormones

In our study, steroid hormones mainly included Aldo, A4,

P4, 17-OHP, and T/E2. Single nucleotide polymorphisms

(SNPs) predicting levels of five steroid hormones were

obtained from the GWAS by Pott et al. (18). This GWAS used

data from LIFE-Adult (males/females: 863/618) (21) and LIFE-

Heart (males/females: 1357/711) (22). In LIFE-Adult and LIFE-

Heart, A4, P4, and 17-OHP were measured by liquid

chromatography-tandem mass spectrometry (LC—MSMS).

For T and E2, the electrochemiluminescence immunoassay

was used for measurement in LIFE-Adult, and LC—MSMS

was used for measurement in LIFE-Heart. At the same time,

this GWAS based on two Life studies has adjusted age, sex, and

log-transformed BMI and was imputed using 1000 Genomes

(Phase 3) reference panel.
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2.3 Outcome: summary-level data of
RND

To explore the influence of steroid hormones on RND risk,

we selected glaucoma, DR, and AMD as the main subjects in the

discovery stage. The summary-level data of glaucoma and DR

were obtained from FinnGen biobank (218,792 subjects;

browser: r5.finngen.fi) (23). The GWASs from FinnGen

biobank analyzed 16,962,023 variables and adjusted age, sex,

genetic relatedness, genotyping batch, and first 10 principal

components (PCs). Detailed information on glaucoma and DR

on the GWASs is provided in Table 1. The summary-level data

of AMD were obtained from the GWAS by Winkler et al. (24).

This GWAS included 14,034 AMD patients and 91,214 controls

through 11 data sources (Table 1). All data sources of the GWAS

by Winkler et al. were processed through a standardized quality-

control pipeline (25) and adjusted age, population stratification,

DNA source, and two PCs.

In the replicated stage, we chose the largest sample size,

GWAS (ID: ukb-b-8398), as the replication outcome of

glaucoma. Based on the MRC-IEU consortium (26), this

GWAS analyzed 9,851,867 SNPs from 150,642 European
Frontiers in Endocrinology 03
samples. This GWAS was obtained from the MR base database

(27), which contains 4,737 glaucoma cases and 458,196 controls

(as of October 31, 2022) (Table 1).
2.4 IVs selection and assumption

To obtain reliable results, MR analysis needs to satisfy the

following three assumptions (Figure 1): (1) Each SNP as IV is

associated with each steroid hormone; (2) All IVs that passed

quality selection should not be associated with confounders; (3)

The effects of the IVs on the risk of each steroid hormone are

only mediated by RND.

Since there are too few IVs obtained by selecting the threshold of

5×10-8 (genome-wide significance), P < 1×10-5 (locus-wide

significance) is selected as the threshold to obtain higher statistical

power for obtaining IVs, similar to other MR studies, this threshold

is acceptable (28). A threshold (R2 < 0.001) and clumping distance

(10,000 kb) were set for IVs to attenuate linkage disequilibrium (LD)

by referring to the European-based 1,000 Genome Projects. Remove

palindromic SNPs and use MR-Steiger filtering (29) to clarify the

causality direction of each IV between steroid hormones and RND.
FIGURE 1

Assumptions of Mendelian randomization analysis between steroid hormone and RND.
TABLE 1 GWAS samples of retinal neurodegenerative diseases used in MR study.

Stage Outcome Cases Controls Population Reference

Discovery glaucoma 8,591 210,201 European FinnGen biobank (22)

Discovery DR 14,584 202,082 European FinnGen biobank (22)

Discovery AMD 14,034 91,214 European Winkler et al (23)

Replicated glaucoma 4,737 458,196 European MRC-IEU consortium (25)

DR, Diabetic retinopathy; AMD, Age-related macular degeneration.
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2.5 Methods of MR analysis

2.5.1 Causal effect estimation
MR analysis of only one SNP was performed using the Wald

ratio (WR) method. For causal estimation of multiple SNPs,

inverse variance weighted (IVW) is the main evaluation method

for MR analysis (30). At the same time, four additional methods

are used to verify the results of IVW with causality between

steroid hormones and RND: (1) MR-Egger (31): Even if most

IVs have pleiotropy, it can provide effective estimates. However,

compared with the other 4 methods, the causal estimates of MR-

Egger may be biased; (2) Weighted median (32): The weighted

median of the WR estimate is calculated to obtain a relatively

robust causal estimate; (3) Maximum likelihood estimator

(MLE) (33): the results assume the linear correlation of RND

and each steroid hormone with jointly normal distribution and

allow for uncertainty in both gene–steroid hormone and gene–

RND associations; (4) MR robust adjusted profile score (MR-

RAPS) (34): Even if there are weak IVs, the method can also

provide robust causal estimates.

2.5.2 Sensitivity analysis
MR Egger expression and MR-PRESSO tested the pleiotropy

of MR results. Moreover, MR-PRESSO can also be used to

remove outliers (35). Cochrane’s Q method tested the

heterogeneity of MR results between steroid hormones and

RND. At the same time, SNPs were deleted one by one by

using the Leave-one-out method to evaluate whether they drove

the causal effect between steroid hormones and RND.
2.6 Statistical analysis

All statistical analyses were completed in R software

environment of version 2.22. R packages “TwoSampleMR” and

“MR-PRESSO” were used to analyze the causality between

steroid hormones and RND. F statistics < 10 is considered a

weak IV (F = R2(n−k−1)
k(1−R2) ; R

2: GM taxa variance explained by SNPs;

n: sample size; k: the number of included IVs) (36). The effect

estimates of IVs predicted steroid hormones on RND were

presented as odds ratio (OR) with a 95% confidence interval

(CI). P < 0.05 was considered suggestive of significance and a

potential causal effect.
3 Results

3.1 Causal associations between steroid
hormones and glaucoma (discovery
stage)

After data harmonization of GWAS data, 17 SNPs related to

Aldo, 16 SNP s related to A4, 28 SNPs related to P4, 11 SNPs
Frontiers in Endocrinology 04
related to 17-OHP, and 15 SNPs related to T/E2 were used as IVs

for MR analysis (Supplementary Table S1). All IVs are strong

instruments (F, 19.52 to 85.15) (Supplementary Table S1).

As the most important method, IVW results found that the

increased risk of glaucoma was affected by T/E2 (OR = 1.11, 95%

CI, 1.01–1.22, P = 0.03) (Figure 2 and Table 2). The results of WM

(P = 0.03), MLE (P = 0.03), and MR-RAPS (P = 0.03) also verified

this discovery (Figure 2 and Table 2). The results of Aldo (PIVW=

0.25, PMR-Egger = 0.35, PWM= 0.88, PMLE= 0.65, PMR-RAPS= 0.66), A4

(PIVW= 0.35, PMR-Egger = 0.98, PWM= 0.99, PMLE= 0.55, PMR-RAPS=

0.57), P4 (PIVW= 0.93, PMR-Egger = 0.50, PWM= 0.82, PMLE= 0.85,

PMR-RAPS= 0.85) and 17-OHP (PIVW= 0.77, PMR-Egger = 0.25, PWM=

0.82, PMLE= 0.51, PMR-RAPS= 0.52) did not suggest a significant

causal relationship with glaucoma (Figure 2 and Table 2).

The heterogeneity test used Cochrane’s Q method to confirm

that there was no heterogeneity in MR results (IVW: all P > 0.62;

MR-Egger: all P > 0.56) (Figure 2 and Table 2). MR-Egger

regression confirmed that the results did not have level

pleiotropy (all P > 0.14) and was further verified by MR-PRESSO

(all P> 0.67) (Figure 2 and Table 2). More details are shown in

Supplementary Table S2. Meanwhile, there was no significant

difference in causal estimations of each steroid hormone on

glaucoma by the leave-one-out analysis (Supplementary Figure S1).
3.2 Causal associations between steroid
hormones and DR (discovery stage)

After quality control, the same number of SNPs as glaucoma

was used as strong IVs (F, 19.52 to 85.15) for MR analysis

(Supplementary Table 1).
FIGURE 2

Causal analysis of steroid hormone and RND based on MR
analyses and sensitivity analyses in the discovery stage.
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The results of MLE (OR = 1.10, 95% CI, 1.05–1.14, P = 0.02)

and MR-RAPs (OR = 1.10, 95% CI, 1.05–1.15, P = 0.02) found that

Aldo had a potential causal relationship with cataract (Figure 2 and

Table 3). The main results for IVW were close to significant

differences (P = 0.07) (Figure 2 and Table 3). Heterogeneity tests

(IVW: P = 0.23; MR-Egger: P = 0.21) and pleiotropy tests (MR-

Egger regression: P = 0.49; MR-PRESSO: P = 0.408) verified the

robustness of the results (Figure 2 and Table 3).

There was no significant causal association between these

4 steroid hormones (A4, P4, 17-OHP, and T/E2) and DR (all

P > 0.05) (Figure 2 and Table 3). The Cochrane’s Q test confirmed

no heterogeneity in these results (P, 0.23 to 0.48) (Figure 2 and

Table 3). MR-Egger regression and MR-PRESSO test confirmed

that there was no pleiotropy in these results (A4, P4, and 17-OHP:

all P > 0.05) (Figure 2 and Table 3). The results of T/E2 had
Frontiers in Endocrinology 05
pleiotropy by MR-Egger regression (P = 0.04), which is contrary to

MR- PRESSO (P = 0.412). More details are shown in

Supplementary Table S2. Additionally, the leave-one-out method

was used to further validate data robustness between each steroid

hormone and DR (Supplementary Figure S2).
3.3 Causal associations between steroid
hormones and AMD (discovery stage)

After data harmonization of GWAS data, 18 SNPs related to

Aldo, 15 SNP s related to A4, 28 SNPs related to P4, 12 SNPs

related to 17-OHP, and 15 SNPs related to T/E2 were used as

IVs, and the details of all IVs can be found in Supplementary

Table S1. The 5 steroid hormones did not show a significant
TABLE 3 MR results and sensitivity analyses between steroid hormones and DR in the discovery stage.

P (MR results) P (Cochrane's Q) P (Pleiotropy)

IVW MR-Egger WM MLE MR-RAPS IVW MR-Egger MR-Egger regression MR-PRESSO

Aldo 0.07 0.97 0.60 0.02 0.02 0.23 0.21 0.49 0.408

A4 0.39 0.79 0.64 0.35 0.34 0.35 0.32 0.45 0.464

P4 0.98 0.44 0.86 0.91 0.91 0.48 0.47 0.38 0.513

17-OHP 0.73 0.75 0.37 0.53 0.53 0.31 0.24 0.82 0.386

T/E2 0.56 0.08 0.46 0.56 0.56 0.47 0.82 0.04 0.412

MR, Mendelian randomization; IVW, Inverse variance weighted; WM, Weighted median; MLE, maximum likelihood estimator; MR-RAPS, MR robust adjusted profile score; Aldo,
aldosterone; A4, androstenedione; P4, progesterone; 17-OHP, hydroxyprogesterone; T/E, Testosterone_Estradiol_Ratio.
TABLE 2 MR results and sensitivity analyses between steroid hormones and glaucoma.

P (MR results) P (Cochrane's Q) P (Pleiotropy)

IVW MR-Egger WM MLE MR-RAPS IVW MR-Egger MR-Egger regression MR-PRESSO

Discovery stage

Aldo 0.25 0.35 0.88 0.65 0.66 0.97 0.99 0.14 0.918

A4 0.35 0.98 0.99 0.55 0.57 0.68 0.64 0.59 0.767

P4 0.93 0.51 0.82 0.85 0.85 0.91 0.91 0.41 0.698

17-OHP 0.77 0.25 0.82 0.51 0.52 0.82 0.91 0.19 0.769

T/E2 0.03 0.19 0.04 0.03 0.03 0.62 0.57 0.58 0.679

Replicated stage

Aldo 0.93 0.20 0.67 0.75 0.76 0.81 0.95 0.20 0.735

A4 0.35 0.75 0.80 0.32 0.35 0.87 0.81 0.66 0.935

P4 0.17 0.16 0.06 0.69 0.67 0.17 0.47 0.11 0.057

17-OHP 0.43 0.45 0.07 0.55 0.55 0.09 0.08 0.49 0.133

T/E2 0.04 0.44 0.11 0.04 0.05 0.65 0.77 0.29 0.675

MR, Mendelian randomization; IVW, Inverse variance weighted; WM, Weighted median; MLE, maximum likelihood estimator; MR-RAPS, MR robust adjusted profile score; Aldo,
aldosterone; A4, androstenedione; P4, progesterone; 17-OHP, hydroxyprogesterone; T/E, Testosterone_Estradiol_Ratio.
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effect on AMD risk (all P > 0.05) (Figure 2 and Table 4). The

results of sensitivity analysis confirmed the absence of significant

heterogeneity (all P > 0.05) and pleiotropy (all P > 0.05) (Figure 2

and Table 4). More details are shown in Supplementary Table

S2. Additionally, the leave-one-out method was used to further

validate data robustness between each steroid hormone and

AMD (Supplementary Figure S3).
3.4 Causal associations between steroid
hormones and glaucoma (replicated
stage)

For the causal relationship between T/E2 and glaucoma

found in the discovery stage, we verified it in the replicated

stage. Based on the GWAS from the MRC-IEU consortium,

eight SNPs related to Aldo, seven SNP s related to A4, six SNPs

related to P4, five SNPs related to 17-OHP, and six SNPs related

to T/E2 were used as IVs (Supplementary Table S1).

In the replicated stage, the results of IVW verified the

findings at the discovery stage, that is, T/E2 was causally

associated with the risk of glaucoma (P = 0.04), while Aldo

(P=0.93), A4 (P = 0.35), P4 (P = 0.17) and 17-OHP (P = 0.43)

were not significantly causally associated with glaucoma

(Figure 3 and Table 2). Similarly, the results of MLE showed

the effect of T/E2 on glaucoma risk (P = 0.04) (Figure 3,

Supplementary Table S2). Furthermore, MR- RAPS results

showed an association between T/E2 and glaucoma that

approached statistical difference (P = 0.05) (Figure 3 and

Table 2). More details are shown in Supplementary Table S2.

At the same time, the results of Leave-on-out did not show that a

single IV drove the causal relationship between each steroid

hormone and glaucoma (Supplementary Figure S4).
4 Discussion

Our study systematically assessed the causal correlation of

steroid hormone and RND (glaucoma, DR, and AMD) using the
Frontiers in Endocrinology 06
data from large-scale GWAS. Our study’s observational and

IVW results supported the T/E2 effect on glaucoma to a certain

extent, which was further validated by the WM, MLE, and MR-

RAPS results. At the same time, this discovery was verified in the

replicated stage. This means that glaucoma risk is affected by T

and E2. The increase of the T level or the decrease of the E2 level

will increase the value of T/E2, indicating that the risk of

glaucoma increases. Therefore, T/E2 may be a biomarker to

assess glaucoma risk. However, gene data based on a large

sample did not show the effect of steroid hormones on DR

and AMD risk.

Dewundara et al. reported that age at menarche and

menopause, using oral contraceptives or bilateral ovariectomy

would increase the glaucoma risk by reducing the duration of E2

exposure (37). In a post hoc analysis from a clinical trial, the

intervention of E2 may become a protective factor of glaucoma
FIGURE 3

Causal analysis of steroid hormone and glaucoma based on MR
analyses and sensitivity analyses in the replicated stage.
TABLE 4 MR results and sensitivity analyses between steroid hormones and AMD in the discovery stage.

P (MR results) P (Cochrane's Q) P (Pleiotropy)

IVW MR-Egger WM MLE MR-RAPS IVW MR-Egger MR-Egger regression MR-PRESSO

Aldo 0.39 0.71 0.58 0.64 0.65 0.89 0.89 0.46 0.920

A4 0.79 0.59 0.79 0.52 0.53 0.38 0.33 0.63 0.271

P4 0.82 0.70 0.45 0.94 0.94 0.18 0.15 0.74 0.196

17-OHP 0.43 0.21 0.74 0.73 0.74 0.51 0.54 0.29 0.564

T/E2 0.75 0.78 0.81 0.68 0.68 0.07 0.06 0.67 0.066

MR, Mendelian randomization; IVW, Inverse variance weighted; WM, Weighted median; MLE, maximum likelihood estimator; MR-RAPS, MR robust adjusted profile score; Aldo,
aldosterone; A4, androstenedione; P4, progesterone; 17-OHP, hydroxyprogesterone; T/E, Testosterone_Estradiol_Ratio.
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by reducing IOP (38). Moreover, Nakazawa et al. showed that E2

could activate the ERK-c-Fos pathway, thereby reducing the

death of RGC and exerting neuroprotective effects (39). In

contrast, Estradiol regulates nitric oxide signaling and

enhances ocular blood flow, thereby lowering IOP. From the

genetic perspective, Magalhães et al. also mentioned that the

NOS3 gene coding for endothelial nitric oxide (NO) synthase is

associated with glaucoma (40). Mookherjee et al. (41) also

suggested that E2 may play a role in the pathogenesis of

glaucoma. When CYP1B1 is mutated, the metabolic activity of

E2 may be affected, leading to the upregulation of Myocilin and

affecting the development of primary open-angle glaucoma

(POAG) (41). A cohort study of 63 women with POAG also

found a correlation between E2 and POAG, confirming that a

decreased level of E2 is a risk factor for POAG (42). Our results

also verify this conclusion to some extent: reduced E2 levels

increased susceptibility to glaucoma.

Notably, the control of IOP is closely related to glaucoma

progress. Through pathway analysis, Youngblood et al. identified

E2 as an upstream regulator of IOP-related genes such as TES

(43). Jojua et al. (44) examined the levels of E2 and

gonadotropins in 71 patients with POAG and the results

confirmed the role of E2 and gonadotropins in IOP regulation.

Therefore, we speculate that the effect of E2 on glaucoma risk

may lie in the effect of E2 on IOP.

T and E2 are in dynamic balance in the body, and their

imbalance may affect the risk of disease (45). This means that the

effect of steroid hormones may not be limited to the change of

E2. There is a gap in current research on T’s role in the

glaucomatous process. A cohort study in Korea showed that

the use of androgen deprivation therapy was associated with a

decreased risk of POAG patients with prostate cancer (46).

Bailey et al. confirmed the association between the gene

variant set of T and glaucoma at the genetic level (47). Kang

et al. evaluated the postmenopausal sex hormone levels of 189

POAG patients and 189 controls and found a suggestive

association between elevated T levels and increased IOP and

glaucoma risk (48). Our results are consistent with the above

studies’ conclusions and reflect that elevated T levels will

increase the risk of glaucoma. Lee et al. believed that T

inhibits the activity of endothelial NO synthase in the

trabecular meshwork, thereby reducing the outflow of aqueous

humor and increasing IOP, which aggravates the RGCs damage.

However, additional research is required to corroborate

this viewpoint.

Takasago et al. administered Aldo (40, 80, or 160 mg/kg/day)
to rats and found that the RGC number was significantly reduced

(49). Different from the animal experiment, compared with the

control group, the patients with aldosteronism have no significant

difference in their prognosis of glaucomatous optic disc

appearance (11). Our MR results also found no causal
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relationship between aldosterone and glaucoma. Due to the

species differences between animal models and humans, the

effects of aldosterone on the eyes are also different. Moreover,

the effect of Aldo is not only in itself but, more importantly, in the

Renin-Angiotensin-Aldo System’s co-regulation.

Further limitations include that our study does not support

the effect of steroids on DR and AMD risk, even though we chose

1×10-5 (locus-wide significance) as the threshold for the IVs.

Typically, a more stringent threshold (genome-wide significance

threshold) should be chosen, which will further reduce the

number of IVs eligible for quality control. Therefore, the effect

of T/E2 on glaucoma risk still deserves to be studied in depth. In

future studies, the GWAS sample size needs to be expanded to

obtain more valid IVs for further validation to obtain more

rigorous conclusions. Also, since there are many different types

of glaucoma (e.g., POAG, primary angle closure glaucoma), we

will further explore the effect of T/E2 on the risk of different

types of glaucoma in the future study. On the other hand, we

exclusively examined the effect of serum steroid hormones on

the risk of RND. Local steroid hormone levels in the eye could be

a more visual response to the effect on RND. Due to the lack of a

GWAS for ocular local steroid hormone levels, further studies

are needed to obtain IVs that can be used for evaluation. In

addition, since the genetic variation of steroid hormones

originates from the European population, the conclusions still

need to be generalized with caution to extend the conclusion to

Asian races.

Through MR analysis, we found a causal relationship

between T/E2 and glaucoma, which provides new genetic

evidence for glaucoma prevention and risk assessment.

However, there is still a lack of strong evidence for the effect

of steroids on DR and AMD. Further research is needed to

confirm their relationship.
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