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of pituitary adenomas
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1Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of
Medicine, Xiamen University, Xiamen, China, 2Department of Immunology, Hokkaido University
Graduate School of Medicine, Sapporo, Japan
Objective: Invasive pituitary adenomas (IPAs) are common tumors of the

nervous system tumors for which invasive growth can lead to difficult total

resection and a high recurrence rate. The basementmembrane (BM) is a special

type of extracellular matrix and plays an important role in the invasion of

pituitary adenomas (PAs). The aim of this study was to develop a risk model for

predicting the invasiveness of PAs by analyzing the correlation between the

expression of BM genes and immune infiltration.

Methods: Four datasets, featuring samples IPAs and non-invasive pituitary

adenomas (NIPAs), were obtained from the Gene Expression Omnibus

database (GEO). R software was then used to identify differentially expressed

genes (DEGs) and analyze their functional enrichment. Protein-protein

interaction (PPI) network was used to screen BM genes, which were analyzed

for immune infiltration; this led to the generation of a risk model based on the

correlation between the expression of BM genes and immunity. A calibration

curve and receiver operating characteristic (ROC) curve were used to evaluate

and validate the model. Subsequently, the differential expression levels of BM

genes between IPA and NIPA samples collected in surgery were verified by

Quantitative Polymerase Chain Reaction (qPCR) and the prediction model was

further evaluated. Finally, based on our analysis, we recommend potential drug

targets for the treatment of IPAs.

Results: The merged dataset identified 248 DEGs that were mainly enriching in

signal transduction, the extracellular matrix and channel activity. The PPI

network identified 11 BM genes from the DEGs: SPARCL1, GPC3, LAMA1,

SDC4, GPC4, ADAMTS8, LAMA2, LAMC3, SMOC1, LUM and THBS2. Based on
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the complex correlation between these 11 genes and immune infiltration, a

risk model was established to predict PAs invasiveness. Calibration curve and

ROC curve analysis (area under the curve [AUC]: 0.7886194) confirmed the

good predictive ability of the model. The consistency between the qPCR

results and the bioinformatics results confirmed the reliability of data mining.

Conclusion: Using a variety of bioinformatics methods, we developed a

novel risk model to predict the probability of PAs invasion based on the

correlation between 11 BM genes and immune infiltration. These findings

may facilitate closer surveillance and early diagnosis to prevent or treat IPAs

in patients and improve the clinical awareness of patients at high risk of IPAs.
KEYWORDS

invasive pituitary adenomas, basement membrane genes, bioinformatics, PPI, GEO,
tumor microenvironment, immune infiltration
Introduction

Pituitary adenomas (PAs) are common neuroendocrine

tumors that account for 10–15% of all primary tumors of the

central nervous system (1). Most PAs are non-invasive, follow a

slow growth pattern and remain in the intra sella (2). However,

25–55% of PAs may exhibit invasive features (Knosp grade III

and IV), including invasion of the cavernous and sphenoidal

sinuses and local or extensive bone erosion; these tumors are

considered as invasive pituitary adenomas (IPAs) (3). Compared

with non-invasive pituitary adenomas (NIPAs), IPAs are

characterized by large volume, rapid proliferation, a high

recurrence rate and a poor prognosis; moreover, these tumors

are difficult to completely remove by surgery. Collectively, these

factors can lead to serious damage being incurred by adjacent

structures (3, 4). Despite numerous studies and advances in

classification and prognosis, there are still no pathological

marker that can be used to reliably predict the behavior of

IPAs (5). Therefore, it is vital that we identify early diagnostic

biomarkers for the clinicopathological behavior of IPAs and

investigate the molecular mechanisms underlying the

invasiveness of this condition.

An increasing number of studies have shown that the tumor

microenvironment (TME) plays a crucial role in tumor

progression and treatment (6). Therapeutic strategies targeting

the TME have become a promising approach for the treatment

of tumors (7). The TME consists of various types of immune

cells, activated fibroblasts, basement membranes, capillaries and

the extracellular matrix (8). Recent studies have characterized

different subsets of immune and stromal cells in the TME of PAs,

as well as cytokines, growth factors and stromal remodeling
02
enzymes (9). The basement membrane (BM) is a key element of

the TME and is widely distributed in the extracellular matrix of

metazoan tissues (10). The function of the BM is to resist

mechanical stress, determine tissue shape and create diffusion

barriers (11). The BM can also provide signals that guide cell

polarity, differentiation, migration and survival (12). Because the

mechanistic actions of the BM can affect morphological changes

in tissues, it follows that the BM can also affect the proliferation,

invasion and metastasis of tumor cells (13). The structure and

properties of the BM are encoded and regulated by a specific

suite of BM genes; variations in the expression of BM genes are

considered to be the basis of many human diseases. In addition,

proteins in the BM are the selective targets of autoantibodies in

immune diseases (14, 15). Therefore, the combined study of BM

genes and immune infiltration in IPAs may provide new clues

for the clinical prevention, diagnosis, and treatment of

this disease.

A recent study developed and defined a comprehensive

network of more than 200 genes and proteins in the BM (16).

On this basis, we used several bioinformatics methods to

investigate the mechanisms underlying the specific action of

BM genes in IPAs. Four datasets containing IPA and NIPA

samples were downloaded from the Gene Expression Omnibus

database (GEO) to obtain expression data from genes in the BM.

Then, we developed a protein-protein interaction network (PPI)

that specifically related to genes in the BM. Next, we analyzed the

correlation between the expression of BM genes and immune

infiltration to develop a risk model to predict the invasiveness of

PAs. Finally, we validated our findings by performing qPCR on

samples acquired from surgery and recommended 10

possible drugs.
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Materials and methods

Data acquisition and processing

Figure 1 shows a flowchart of the study process. First, we

downloaded four IPA- related datasets (Table 1) from the Gene

Expression Omnibus (GEO) database of the National Center for

Biotechnology Information (NCBI): GSE51618, GSE26966,

GSE169498, and GSE22812. These datasets were then merged

with the “limma” package in R software (version 4.2.1); the “sva”

package was used to remove lot-to-batch differences and other

unwanted variations (17).
Identification of differentially
expressed genes

Differentially expressed genes (DEGs) were identified by

comparing expression levels between IPA samples and NIPA

samples in the merged dataset using the “limma” package (18);

the screening criteria were a P < 0.05 and |log2FC| > 1.

“Heatmap” and “ggplot2” packages were used to create

heatmaps and volcano plots to visualize DEGs (19).
Frontiers in Endocrinology 03
DEGs enrichment analysis

To investigate the enrichment pathways and functions of

DEGs, we performed the gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses to explore biological significance and key approaches.

For this, we used the “cluster Profiler”, “ggplot2”, “org.Hs.eg.db”

and “enrichplot” packages of R software; P < 0.05 was considered

as significant enrichment (20, 21).
Acquisition of BM genes and
construction of a PPI network

We identified genes in the BM with differential expression by

identifying intersecting DEGs. Next, we used the STRING

database (https://string-db.org) to construct a PPI network

(with a confidence score of 0.4) for the identified genes;

irrelevant genes were removed according to the degree of

the connection and a cluster composed of interconnecting BM

genes was obtained for subsequent analyses and risk

model construction.
FIGURE 1

Flowchart showing the study process.
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Recognition of transcription factors
and miRNAs

Transcription factors (TFs) are proteins that attach to

specific genes and control the rate of DNA transcription. TFs

recognize specific DNA sequences to control chromatin and

transcription and form a complex system that directs genomic

expression and underlies many different aspects of human

physiology, disease, and variation (22). Topologically trusted

TFs that often bind to genes were identified using the JASPAR

database in NetworkAnalyst (23), an online platform for

analyzing gene expression data and gaining insight into

biological mechanisms, roles, and interpretations. In addition,

miRNAs can be used to track target gene interactions that result

in binding to gene transcripts that are detrimental to protein

expression; in the present study, we used Tarbase as an

experimental validity database of miRNAs-genes interactions

(24, 25). Using this database, we extracted miRNAs interacting

with genes in the PPI network and performed topological

analysis to explore their biological functions and characteristics.
Analysis of immune infiltration

Next, we used several packages in R (“ggpubr”, “GSVA”,

“GSEABase” and “reshape2”) to analyze immune infiltration and

correlations in samples and to analyze differences in the

infiltration of immune cells and immune functions between

IPA samples and NIPA samples. These results were presented as

heatmaps and correlation matrix maps.
Correlation analysis of BM genes
and immunity

The ssGSEA algorithm was used to quantify the relative

infiltration levels of immune cells and immune functions in the

merged dataset (26). Next, we performed Spearman’s correlation

analysis of immune cells and determined their relative functions

in the BM gene cluster. Then, “psych” and “ggcorrplot” packages

in R were used to visualize rectangular correlation plots.
Frontiers in Endocrinology 04
Risk model construction and verification

A risk prediction model for IPA was constructed by

considering the correlations between the expression of BM

genes and immune infiltration; this model was visualized by a

nomogram. A calibration curve and receiver operating

characteristic (ROC) curve were then used to evaluate and

validate the model.
Sample selection and qPCR validation

To validate our bioinformatics results, we used qPCR to

verify the expression levels of the top three genes contributing to

the risk model (THBS2, SDC4 and LUM). The samples of PA

tissues collected in this study were acquired from PA patients

who underwent endoscopic transsphenoidal pituitary surgery in

the Neurosurgery Department of The First Affiliated Hospital of

Xiamen University between December 2021 and August 2022.

All tissue samples were frozen in liquid nitrogen immediately

after surgical resection and stored in a -80°C refrigerator to await

further analysis; five IPA tissue samples and five NIPA tissue

samples were acquired. All of the selected samples were

confirmed by preoperative imaging, intraoperative endoscopic

observation and postoperative pathology. IPAs were defined

according to Knosp classification grades III-IV (27). All

participants and their families provided signed and informed

consent and the study was approved by the ethics committee

of hospital.

Total RNA was extracted from samples using TRIzol reagent

(Servicebio, Wuhan, China) for reverse transcription and SYBR

Green qPCR Master Mix (None ROX) for qPCR in accordance

with the manufacturer’s instructions. We used the GAPDH gene

as an internal reference and the primer sequences are

summarized in Supplementary Table S1. Each sample was

repeated at least three times. The relative expression levels of

THBS2, SDC4 and LUM were calculated using the 2-△△CT

method. Differences in expression were analyzed by GraphPad

prism (version 8.0.1) and the student’s t-test was used to

determine the significance of the differences between groups. P

< 0.05 was considered statistically significant.
TABLE 1 Information relating to the four microarray datasets.

Accession numbers Platform Non-invasive PA Invasive PA Species

GSE51618 GPL6480 4 3 Homo sapiens

GSE26966 GPL570 7 7 Homo sapiens

GSE169498 GPL22120 24 49 Homo sapiens

GSE22812 GPL2895 5 8 Homo sapiens
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Drug recommendation

The DSigDB is a global database for identifying gene-related

targeted drugs (28) and was used as a drug signature database to

identify drug molecules. Potential drugs were identified by using

the cluster of BM genes in the risk prediction model and the

‘diseases/drugs’ function in the online web tool Enrichr (https://

maayanlab.cloud/Enrichr/ ).
Statistical analysis

All data processing and analysis were performed in R

software (version 4.2.1) and GraphPad prism (version 8.0.1).

To compare continuous variables between the two groups, the

statistical significance of normally distributed variables was

calculated by the independent student’s t-test. Differences

between non-normally distributed variables were calculated by

the Wilcoxon rank-sum test. Chi-squared tests or Fisher’s exact

test were performed to determine statistical significance of

categorical variables between the two groups. Correlation

coefficients between different genes were determined by

Pearson correlation analysis. All statistical p-values were two-

sided and P < 0.05 was considered statistically significant.
Results

Data processing and the identification
of DEGs

After removing the batch effect and merging the four

datasets, 248 DEGs were identified between the IPA and NIPA
Frontiers in Endocrinology 05
samples after screening the merged dataset using P < 0.05 and |

log2FC| > 1 as criteria. This included 91 up-regulated genes and

157 down-regulated genes; these were visualized as a heatmap

(Figure 2A) and a volcano plot (Figure 2B).
DEG enrichment analysis

GO enrichment analysis showed that for biological

processes, the DEGs were significantly enriched in the

modulation of chemical synaptic transmission, the regulation

of transsynaptic signaling and the regulation of hormone levels.

For cellular components, DEGs were enriched in the collagen-

containing extracellular matrix, glutamatergic synapses and the

transmembrane transporter complex. For molecular functions,

the DEGs were enriched in channel activity, passive

transmembrane transporter activity and ion channel activity

(Figure 3A). KEGG enrichment analysis showed that DEGs were

mainly enriched in neuroactive ligand-receptor interaction,

cAMP signaling pathways, ECM-receptor interaction and

other related pathways (Figure 3B). Further details are

provided in Supplementary Table S2, S3.
Identification of BM genes and
construction of a PPI network

In total, 13 BM genes and their expression levels were

extracted for the selected DEGs (Figure 4A). These were input

into the STRING database to construct a PPI network with a

confidence score of 0.4. A cluster of 11 BM genes was then

obtained for subsequent analysis after removing irrelevant genes

(UNC5D and FREM1): SPARCL1, GPC3, LAMA1, SDC4, GPC4,
BA

FIGURE 2

The identification of DEGs between IPA and NIPA samples in the merged dataset. (A) Heatmap, red rectangles represent high expression while
blue rectangles represent low expression. (B) Volcano plot, red dots represent up-regulated genes, blue dots represent down-regulated genes,
and black dots represent genes with no significant difference.
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B

A

FIGURE 4

Venn diagram and PPI network. (A) Venn diagram of BM genes and DEGs; the intersection in the middle represents the identification of BM
genes from DEGs. (B) PPI network; the cluster on the left shows how the 11 BM genes were connected with each other; the two genes on the
right were irrelevant genes.
BA

FIGURE 3

DEG enrichment results. (A) Bubble chart for GO analysis showing the top five GO terms for biological process (BP), cellular component (CC)
and molecular function (MF). (B) Bubble chart for KEGG pathway analysis showing the top six enriched KEGG pathways in DEGs.
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ADAMTS8, LAMA2, LAMC3, SMOC1, LUM and THBS2

(Figure 4B). Further details of the 224 BM genes and 248

DEGs are provided in Supplementary Table S4.
Identification of TFs and miRNAs

To identify substantial changes occurring at the

transcriptional level and gain insight into the molecules that

regulate these 11 BM genes, we employed a network-based

approach to decode regulatory TFs and miRNAs. Then, we

used NeworkAnalyst to generate a BM genes-TFs interaction

network (Figure 5A) and a BM genes-miRNAs interaction

network (Figure 5B). It was evident that both TFs and

miRNAs were closely related to the 11 BM genes, thus

indicating that their characteristic features were regulated by

more than one BM gene; furthermore, there was evidence of

strong levels of interaction between the 11 BM genes.
Analysis of immune infiltration

Immune infiltration analysis showed that immune cells and

immune functions differed with respect to their correlations

(Figure 6A). Immune cells showed different degrees of positive

and negative correlation (Figure 6B); the most significant

correlation was between tumor infiltrating lymphocytes (TILs)

and macrophages for which immune function consistently

showed positive correlation (Figure 6C). Furthermore, several
Frontiers in Endocrinology 07
types of immune cells, including DCs, B cells, Neutrophils, Tfh

and Th1 cells (Figure 6D) and immune functions such as APC

co-inhibition, check point, and type I IFN response (Figure 6E)

differed significantly between the IPA and NIPA samples.
Correlation analysis of BM genes
and immunity

According to the analysis of the expression levels of 11 BM

genes and immune infiltration, we constructed a correlation

rectangle diagram (Figure 7) which showed that the 11 BM genes

identified had different degrees of correlation with immune cells

and immune function. The most significant positive correlation

was between SDC4 and DCs. LAMA2 exhibited the most

significant negative correlation with Tfh (r=-0.61). THBS2 was

correlated with the highest number of immune cells and

immune function items; all were positively correlated except

for Tfh.
Construction and verification of a risk
prediction model

Next, a risk model for IPAs was constructed based on the

results arising from complex correlation between the 11 BM

genes and immunity; the model was presented as a nomogram

(Figure 8A) which was able to generate individual probabilities

of clinical events by integrating different variables, thus meeting
BA

FIGURE 5

(A) A cohesive and regulatory BM genes–TFs interaction network; the rhombic nodes are TFs and interactions between gene symbols and TFs
are shown as circle nodes. (B) An interconnected regulatory BM genes–miRNAs interaction network; the circle nodes indicate miRNAs and
interactions between gene symbols and miRNAs are shown as squares.
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the need for biological and integrated models and achieving the

promotion of personalized medicine (29). All 11 genes

contributed to the model although THBS2 contributed the

most and accounted for the highest score. Calibration curves

were used to visualize the performance of the nomogram, thus
Frontiers in Endocrinology 08
confirming the performance of the evaluation model

(Figure 8B). The effectiveness of the model to predict the

invasiveness of PAs was verified by ROC analysis (AUC:

0.7886194), thus proving that the model exhibited good

evaluation value (Figure 8C).
B C

D E

A

FIGURE 6

Analysis of immune infiltration. (A) Immune-related heatmap. (B) Rectangular diagram of immune cells. (C) Rectangular diagram of immune
function. (D) Differences of immune cells when compared between IPA samples and NIPA samples. (E) Differences in immune function when
compared between IPA samples and NIPA samples. * indicates P < 0.05, * indicates P < 0.01, ns indicates no significance.
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qPCR validation

The ten clinical samples used for qPCR were obtained from

five patients with NIPAs (Figure 9A) and five patients with IPAs
Frontiers in Endocrinology 09
(Figure 9B); analysis showed that the expression levels of THBS2

(P = 0.0196), SDC4 (P = 0.016) and LUM (P = 0.0284) in IPA

tissues were significantly lower than those in NIPA tissues

(Figure 9C–E). These findings were consistent with those
FIGURE 7

Correlation rectangle diagram for 11 BM genes and immunity showing correlations between the 11 BM genes and immunity including immune
cells and immune functions; red indicates a positive correlation, purple indicates a negative correlation and the number in the box is the
correlation coefficient.
B

C

A

FIGURE 8

Model establishment and verification (A) Nomogram; ‘high’ and ‘low’ represent gene expression levels. (B) Calibration curves; the dashed
diagonal line in grey represents the ideal prediction by a perfect model. The closer the bias-corrected calibration curve (red line) is to the
diagonal line, the higher the prediction accuracy of the model. (C) ROC curve; the area under the red curve represents the AUC.
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arising from DEGs analysis, thus indicating that the data mining

was reliable and the model has potential research value.
Drug recommendations

Target-drug interaction analysis can reveal interactions

between drugs and targets that are critical if we are to

understand the structural features necessary for receptor

sensitivity (30). The 11 BM genes featuring in the model were

used as drug targets to extract the top 10 drugs from the DSigDB

database according to P-value. Then, we obtained the chemical

and structural formulae for each drug from the Drugbank

database (Table 2).
Discussion

IPAs are common and intractable intracranial epithelial-

derived tumors with multiple causes, processes and outcomes

(31). Recent advances in the field of molecular medicine have

shown that molecular changes at the levels of the genome,

transcriptome, proteome, and metabolome are all involved in

the potential invasion of PAs (32). In addition, the altered

expression of some genes and the presence of mutations are

also associated with the invasiveness of PAs (33). However, the
Frontiers in Endocrinology 10
mechanism underlying invasion and proliferation have yet to be

fully elucidated. The BM is a special type of extracellular matrix

that is present in epithelial-derived tumors. Tumor cells must

repeatedly destroy and overcome this barrier to invade adjacent

structures or metastasize (34, 35). Once integrity is lost, forces

from overlying differentiated tumor cells may mechanically drive

the invasion of tumor progenitor cells at stromal boundaries

(36). Previous studies have shown that the TME is essential for

tumor growth, invasion and metastasis (37) and the interaction

between tumor cells and associated stroma also represents a

powerful relationship that might affect disease initiation,

progression and prognosis (38). As an important component

of the TME and an indispensable extracellular matrix of PAs, the

BM not only affects immune infiltration, but also affects tumor

invasiveness. Since the structure and properties of the BM are

encoded and regulated by specific genes expressed in the BM, we

specifically investigated the mechanistic action of BM genes

in IPAs.

Four datasets, featuring IPAs and NIPAs, were downloaded

from the GEO database, merged, and then screened for DEGs.

Enrichment analysis of the DEGs suggested that GO terms were

mainly enriched in signal transduction, extracellular matrix, and

channel activity. KEGG analysis revealed enrichment in

neuroactive ligand-receptor interaction, the cAMP signaling

pathway and ECM-receptor interaction. Signal transduction

and channel activity play an important role in the endocrine
B

C D E

A

FIGURE 9

qPCR detection. (A) Preoperative MRI scans from five patients with NIPAs. (B) Preoperative MRI scans from five patients with IPAs. (C–E) Expression
levels of THBS2, SDC4 and LUM in IPA and NIPA tissues along with statistical results arising from unpaired t-tests, * indicates P < 0.05.
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function of the pituitary gland (39). As a key element of the

TME, ECM degradation affects the proliferation, invasion and

metastasis of tumor cells (40). These pathways may be involved

in the disease progression of IPAs under the regulation of the

DEGs identified.

In order to further investigate the roles and mechanistic

actions of BM genes in IPAs, we extracted 13 BM genes from the

DEGs. After removing the irrelevant genes by PPI network

analysis, a cluster composed of 11 closely connected BM genes

was obtained, including SPARCL1, GPC3, LAMA1, SDC4, GPC4,

ADAMTS8, LAMA2, LAMC3, SMOC1, LUM and THBS2. Most

of the genes were expressed at low levels and may contribute to
Frontiers in Endocrinology 11
the reduction or degradation of BM stiffness to promote tumor

invasion; similar results were reported previously (36). Next, we

used the 11 BM genes to generate a BM genes-TFs interaction

network and a BM genes-miRNAs interaction network to

identify transcriptional and post-transcriptional regulators. Of

the identified TFs, FOXC1 is known to inhibit the migration and

invasion of pituitary tumor cells under the regulation of has-mir-

133; furthermore, members of the FOXC1 family are already

known as drug targets for cancer (41, 42). PPARG has been

found to directly regulate pituitary function in mice (43). YY1, as

a transcriptional repressor, has been found to be related to the

sequence of hypersensitive site V in the control region of the
TABLE 2 The top 10 recommended drugs.

Name P-value Chemical Formula Structure

Dasatinib
CTD 00004330 0.00224428 C22H26ClN7O2S

Progesterone
CTD 00006624

0.002262266 C21H30O2

Retinoic acid
CTD 00006918 0.002879104 C20H28O2

Trichostatin A
CTD 00000660

0.006687154 C17H22N2O3

Arbutin
CTD 00005438 0.010086441 C12H16O7

Decitabine
CTD 00000750

0.012900927 C8H12N4O4

Mifepristone
CTD 00007083

0.013922574 C29H35NO2

Furazolidone
HL60 DOWN

0.020167647 C8H7N3O5

Latamoxef
HL60 UP

0.024508037 C20H20N6O9S

Cyclosporin A
CTD 00007121

0.029019386 C62H111N11O12
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human growth hormone gene locus (44). The expression of

GATA2 in PAs can be detected by immunochemistry and used

to identify gonadotropic PAs; furthermore, the interaction

between GATA2 and Pit-1 can lead to gene-specific action and

the differentiation of TSH-secreting PAs (45, 46). Previous

studies have shown that miRNA markers are promising

biomarkers for the treatment of different types of PAs (47).

For example, has-mir-34c-3p, has-mir-34B-5p, has-mir-378 and

has-mir-338-5p were all significantly down-regulated in in

prolactin PAs, while the down-regulation of has-mir-493-5p

and the up-regulation of has-mir-181b-5p has been detected in

NFPAs (48). Furthermore, the expression of has-mir-184 was

found to be significantly up-regulated while the expression of

has-mir-124-3p was down-regulated in GH-secreting PAs (48).

Furthermore, has-mir-143 has been shown to inhibit cell

proliferation and promote cell apoptosis by targeting K-Ras

(49). In a previous study, Vicchio et al. found that the

downregulation of has-mir-26b-5p and has-mir-30a-5p was

negatively associated with ki-67, atypical morphological

features, and invasion of the cavernous sinus (50). Of these

interrelated miRNAs, hsa-mir-128-3p, hsa-let-7e-5p, hsa-mir-

98-5p, hsa-mir-29a-3p, hsa-mir-140-5p, hsa-mir-34a-5p, and

hsa-mir-20a-5p have all been related to the occurrence and

development of tumors (51). Investigating the underlying

mechanisms of TFs and miRNAs may be important for

understanding the invasiveness of IPAs and may help us to

d i s c o v e r n ew po t e n t i a l b i om a r k e r s a n d y i e l d

innovative therapies.

Next, we compared immune infiltration between IPA tissues

and NIPA tissues. We identified significant differences between

the two groups with regards to DCs, B cells, neutrophils, Th1

cells and Thf cells. DCs have been shown to be present in the

pituitary gland and play an important role in immune activation

of the hypothalamic-pituitary-adrenal (HPA) axis; the

maturation and migration of DCs to lymphatic tissue is key to

developing an immune response or maintaining tolerance (52).

B cells have been shown to exhibit higher levels of infiltration in

aggressive GH-secreting PAs; this was related to overactivation

of the JAK-STAT pathway (53). In addition, the expression of

IL-10 by tumor cells and macrophages has been shown to

promote the survival of B cells and lymphomas by producing

TNF family member B cell activators and IL-10, thus

suppressing the adaptive immune response; this mechanism is

thought to facilitate the evasion of immune surveillance (54).

Neutrophils, Th1 cells and Thf cells are important immune cells

in the TME. Research has shown that neutrophils may

determine tumor proliferation and angiogenesis while the

polarization of immune response in Th1 cells can stimulate

anti-tumor immunity and inhibit the progression of PAs. The

IL-21 produced by Thf cells has been shown to be necessary for

the inhibition of tumor and CD8 cell function (55–57). In the

present study, the immune cells and immune functions in the

two groups of samples were found to be interrelated; the
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strongest correlation among immune cells was between

macrophages and TILs. The lactic acid secreted by IPAs can

promote M2 polarization in macrophages, thus contributing to

angiogenesis and the inhibition of immune response; this

process can also cause the release of CCL17 to enhance the

invasion of PAs via the CCL17/CCR4/mTORC1 axis (58, 59).

TILs were found to be positively related to macrophages and is

currently being used as an emerging immunotherapy for solid

tumors; in addition, TILs have been successfully applied for the

treatment of some tumors (60). These results are consistent with

the positive correlation between various co-inhibition and co-

stimulation in the correlation analysis of immune function in the

samples. Moreover, we identified many important immune

correlations; these correlations and targets may provide new

concepts for the treatment of IPAs. On this basis, we performed

correlation analysis between the 11 BM genes and immunity and

found that the 11 genes were all correlated with immunity to

differing degrees; THBS2, LUM, SDC4, SMOC1 and ADAMTS8

exhibited the most immune-related items or higher correlation

coefficients. THBS2 had the largest number of association items;

most of these were positively correlated. Moreover, the value of

THBS2 in tumor immunity and diagnosis has been confirmed in

several previous studies (61–64); however, the value of THBS2 in

IPAs has not been reported previously. LUM, a member of the

small leucine-rich proteoglycans (SLRP) family, is a component

of the extracellular matrix (65). Low expression levels of LUM at

the tumor margin in malignant melanoma may promote the

proliferation of melanoma cells; however, whether LUM acts as a

tumor suppressor or oncogenic gene depends on the cellular

environment and thus related to the TME (66). Analysis showed

that SDC4 and SMOC1 had similar immune-related

performance and both exhibited strong positive correlations

with DCs; other genes exhibited negative correlations. SDC4 is

a transmembrane proteoglycan that binds to the ECM and

soluble factors via extracellular glycosaminoglycan chains. In a

previous study, Horiguchi et al. demonstrated that SDC4

mediated the formation of stress fibers in the anterior pituitary

hair follicle cells of rats, thus resulting in key morphological

changes (67). SMOC1 was first discovered in 2002, is widely

distributed in the basement membrane ECM of many tissues

(68), and is known to be upregulated in oligodendrocytoma and

astrocytic tumors and can inhibit the migration of glioma U87

cells induced by tenascin C (69). As a therapeutic target for T

cell-associated immune responses, ADAMTS8 was negatively

correlated with most of the immune responses in the result. The

only immune cell that was positively correlated with ADAMTS8

was Tfh; this association helped to develop or support the

recruitment sites of CD8+T cells, NK cells, and macrophages,

while supporting the anti-tumor antibody response of B cells

(70, 71). LAMA2, GPC4 and SPARCL1 have been found to be

associated with NFPAs in recent studies; the expression and

methylation status of LAMA2 are known to be related to the

invasiveness of NFPAs (72). Furthermore, a previous study
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identified significant differences in the expression levels of GPC4

when compared between normal pituitary glands and invasive

NFPAs (73). Thus, SPARCL1 can be used as a potential

diagnostic or prognostic marker in patients with NFPAs and

also represents a potential therapeutic target (74). LAMC3 (75),

LAMA1 (76) and GPC3 (77) also play important roles in the

progression of malignant tumors and immunotherapy.

Although associations between IPAs and genetic or clinical

variables have been reported previously, it is rare to include

multiple variables in the assessment of invasiveness. In this

study, a risk model for IPAs was established based on the

immune infiltration results of 11 BM genes that exhibited

complex associations with IPAs. The low expression levels of

THBS2, SDC4, LUM, SPARCL1, LAMA2, LAMC3, and

ADAMTS8 could increase the risk of PA invasiveness, especially

low expression levels of THBS2, SDC4 and LUM, as verified by

qPCR. Furthermore, the high expression levels of GPC4, SMOC1,

LAMA1 and GPC3 could increase the risk of PAs invasiveness.

Collectively, the expression levels of each gene in the model

collectively correspond to the risk coefficient of IPAs. The

predictive value of the model was evaluated by calibration curve

and ROC analysis; these analyses proved that the accuracy of the

model for predicting the invasiveness of PA was satisfactory

(AUC=0.7886194), thus providing a reference for clinical

diagnosis and individualized treatment planning. Finally, 10

possible drugs were recommended for the 11 BM genes included

in the model, which may provide the possibility of drug treatment

for IPAs and facilitate researchers interested in this field to conduct

further research from the perspective of genes and drugs.

To the best of our knowledge, this is the first comprehensive

study to predict the invasiveness of PAs based on the

correlations between BM genes and immunity. Our findings

may provide new possibilities for the prevention, diagnosis and

treatment of IPAs. However, this study still has some limitations

that need to be considered. Firstly, this study involved a

comprehensive prediction model based on multiple types of

PAs from multiple centers; thus, the model may show bias when

predicting the invasiveness of a specific type of PA. Additional

validation, incorporating more accurate and extensive clinical

data is now needed to improve the accuracy of the model.

Secondly, although qPCR showed that the expression levels of

BM genes were consistent with the results of bioinformatics, the

specific role and biological mechanisms underlying the action of

BM genes in the invasiveness of PAs need to be investigated

further. Furthermore, our findings, and the potential

mechanisms involved in the correlations between the 11 BM

genes and immune infiltration also need to be verified and

explored by complex molecular biology experiments or flow

cytometry analysis in future research.
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Conclusion

We used a variety of bioinformatics methods to develop a

nomogram model to predict the invasiveness of PAs based on

the correlations between 11 selected BM genes and immune

infiltration. These findings may facilitate closer surveillance and

early diagnosis to prevent or treat IPAs in patients. our findings

may also improve the awareness of clinicians with regards to

patients at high risk of IPAs.
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