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With the global prevalence of diabetes mellitus over recent decades, more

patients suffered from various diabetic complications, including diabetic ocular

surface diseases that may seriously affect the quality of life and even vision

sight. The major diabetic ocular surface diseases include diabetic keratopathy

and dry eye. Diabetic keratopathy is characterized with the delayed corneal

epithelial wound healing, reduced corneal nerve density, decreased corneal

sensation and feeling of burning or dryness. Diabetic dry eye is manifested as

the reduction of tear secretion accompanied with the ocular discomfort. The

early clinical symptoms include dry eye and corneal nerve degeneration,

suggesting the early diagnosis should be focused on the examination of

confocal microscopy and dry eye symptoms. The pathogenesis of diabetic

keratopathy involves the accumulation of advanced glycation end-products,

impaired neurotrophic innervations and limbal stem cell function, and

dysregulated growth factor signaling, and inflammation alterations. Diabetic

dry eye may be associated with the abnormal mitochondrial metabolism of

lacrimal gland caused by the overactivation of sympathetic nervous system.

Considering the important roles of the dense innervations in the homeostatic

maintenance of cornea and lacrimal gland, further studies on the

neuroepithelial and neuroimmune interactions will reveal the predominant

pathogenic mechanisms and develop the targeting intervention strategies of

diabetic ocular surface complications.
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Introduction

Diabetes mellitus (DM) is an endemic disease that occurs all over the world, imposing

extensive health burden on society (1, 2). Diabetics with prolonged periods of

hyperglycemia suffer from numerous complications affecting almost every organ

system, including the ocular tissues (3, 4). DM-related ocular complications are the

leading cause of blindness, especially in developed countries. Although diabetic
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retinopathy is the most common and well-known ophthalmic

complication, DM also has profound clinically relevant effects on

the ocular surface (5, 6).

The corneal tissue composes five stratified layers: the

epithelium, Bowman’s layer, stroma, Descemet’s membrane

and the endothelium (7, 8). Corneal epithelium is the cornea’s

outermost layer, whose integrity is essential to maintaining

healthy vision. Corneal stroma, which is populated by

keratocytes, represents almost 90% of the thickness of the

cornea. Corneal endothelium, a single cell layer between the

corneal stroma and anterior chamber, exhibits barrier and

‘pump’ functions to maintain corneal dehydration. In

addtition, to maintain a healthy ocular surface, the lacrimal

gland and meibomian glands produce tears and lipids to prevent

excessive evaporation of the tear film. Dysfunctions of these

glands will cause dry eye disease (9, 10).

Although the structure of the ocular surface is relatively

uncomplicated, problems with either component may have

serious consequences. For DM-related ocular complications,

various primary pathological manifestations occur, such as

decreased corneal sensitivity, delayed epithelialization after

corneal abrasions, basement membrane abnormality, corneal

neuropathy, and endothelial decompensation (11, 12).

Generally, these changes are referred to as diabetic keratopathy

or diabetic neurotrophic keratopathy. Another common diabetic

complication in the ocular surface is dry eye, with the

involvement of lacrimal functional unit dysfunction (LFUD)

(13). These complications drastically influence on the quality of

l i fe of patients and are frequently underdiagnosed

and underestimated.

Current therapies for DK mainly include topical lubricants,

antibiotic ointments, patching, bandage soft contact lenses, and

corneal transplantation (14). Nevertheless, these treatments are

usually incurable for serious DK, even if in combination. For the

treatment of dry eye, identifying effective therapeutics remains

an urgent challenge. Thus, research on novel drug targets is vital

to the prevention and treatment for diabetic complications on

the ocular surface.

Herein, we review recent advances in the pathogenesis of

diabetic keratopathy and dry eye. We also evaluated the progress

in diagnosis and treatment. These novel findings will shed new

light on potential intervention strategies for diabetic ocular

surface complications.
Diabetic keratopathy

Diabetic keratopathy is the most common clinical disease in

which diabetes affects the ocular surface. It is a potential vision

threatening disease, mainly including epitheliopathy,

neuropathy and endotheliopathy.
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Diabetic corneal epitheliopathy

The corneal epithelium consists of 5-7 layers of non-

keratinized stratified squamous epithelium, which plays a key

role in maintaining corneal transparency and stability. Because

the cornea has no blood vessels, and the level of tear glucose level

is far less than that of aqueous humor and serum in diabetic

patients (15, 16), it is believed that the glucose in corneal

epithelial cells is mainly transported from aqueous humor

(17). The level of glycosylation in the corneas of diabetic

patients increased significantly (18), and the accumulation of

glycogen granules was observed in diabetic corneal epithelial

cells (19). In diabetic patients, corneal epithelial cells are exposed

to persistent high levels of glucose, resulting in various clinical

epithelial abnormalities.

Several studies have found that corneal epithelium in

diabetic patients tends to have increased fragility, lower cell

density, thinner thickness and reduced barrier function (20–22).

An electron-microscopic examination of corneal epithelium

showed an increased epithelial fragility in specimens of

diabetic patients (23). Saini and Khandalavla measured the

corneal epithelial fragility of healthy people and diabetic

patients using an esthesiometer (20). The results revealed that

the average corneal epithelial fragility of diabetic patients was

significantly higher than that of healthy people, and that the

epithelial fragility of diabetic retinopathy patients increased

more significantly. Increased corneal epithelial fragility was

also found in Goto Kakizaki rats with type 2 DM (24). A few

studies reported that there was no statistical significance in the

reduction of corneal basal epithelial cell density in diabetic

patients (25, 26). However, more clinical studies have

demonstrated that the density of corneal basal epithelial cells

was significantly reduced in type 1 and type 2 diabetic patients

(21, 27–29), which may be related to the reduction of corneal

innervation, impaired of basement membrane and higher

turnover rate (21). In the diabetic patients, the mean corneal

epithelium thickness was thinner (22, 30) which is associated

with the stage of the disease. Similarly, Cai et al. verified the

characteristics of the thinning of corneal epithelium and the

decreasing density of basal epithelial cells in the rodent model of

type 1 diabetes induced by streptozotocin (31). The changes of

corneal epithelial density and thickness reflect the imbalance

between cell proliferation, differentiation, migration and death.

The corneal epithelium has a strong barrier function, making it

the first line of defense for the eyeball to resist the external

environment. It has long been found that the barrier function of

diabetic corneal epithelium is weakened (32–34) which is related

to the increase of glycosylated hemoglobin level (34), and

correspondingly, diabetic corneas are more prone to infection

than healthy people (35–39). In vitro studies have proven that

high glucose exposure leads to the impairment of the human
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corneal epithelial cell barrier function, but this change was not

caused by the reduced expression of tight junction protein (40).

Clinically, epitheliopathy is characterized by superficial

punctate keratitis, recurrent epithelial erosion, persistent

epithelial defect and delayed and often incomplete wound

healing. In our previous review, according to Semeraro’s

classification criteria (41), we summarized the manifestations

of mild, moderate and severe diabetic corneal epithelial lesions

found in our hospital (4). Corneal abrasions in diabetic patients

can cause more serious damage, in some cases leading to

basement membrane detachment, and in other cases leading to

recurrent corneal erosion (42). Epithelial wound healing is

critical for restoring corneal barrier function after injury.

Corneal epithelial damage in diabetic patients often takes

longer to heal, even does not heal, which is also the main

reason why diabetic corneal erosion is difficult to treat (14).

The surgical treatment on diabetic patients will more often

lead to subsequent epithelial lesions, such as long-term erosion

of epithelial cells and poor healing of epithelial cell defects. It has

been confirmed that patients with diabetes who have undergone

corneal refractive surgery are at greater risk of developing

various epithelial diseases (43–45). Therefore, some

ophthalmologists suggest that refractive surgery for diabetic

patients should be carefully considered, especially for patients

with poor blood glucose control (44–47). A recent study showed

that DM is an important risk factor of corneal epithelial defect

after vitreoretinal surgery (48). Frequently, diabetic patients with

epithelial keratitis after cataract surgery have the characteristics

of rapid development, severe epithelial damage, and slow corneal

epithelial repair (49). Patients with diabetes are at a greater risk

of epithelial debridement due to impaired epithelial wound

healing (50).
Diabetic corneal neuropathy

Corneal nerves, a branch of the ophthalmic division of the

trigeminal nerve, enter the peripheral cornea in a radial fashion

parallel and then penetrate Bowman’s layer to form the corneal

sub-basal nerve plexus, which terminate in free nerve endings in

the corneal epithelium and comprises the outermost layer of the

cornea and protects cornea from microbial invasion (51, 52).

Diabetic peripheral neuropathy (DPN) is the most common

complication of diabetes, affecting up to 50% of diabetic patients

(53). Recent study reported that the density of corneal nerve fiber

and branch, and the corneal nerve fiber length are significantly

decreased in diabetic patients (12). Moreover, the loss of 6% or

more of corneal nerve fibers per year has been found in 17% of

diabetic patients (54, 55). Approximately 39% of diabetic patients

experience painful DPN when left untreated (56).

In type 1 and type 2 diabetic patients and animal models, the

length, branch and density of corneal nerve fibers in the sub-

basal nerve plexus near the corneal epithelium have been found
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to be reduced, which relates to the severity of diabetic

polyneuropathy (24, 31, 57–63). Detailed examination by in

vivo confocal microscopy has revealed increased corneal nerve

tortuosity and thickness in diabetic patients (60, 64–68).

Moreover, reduced corneal sensitivity is observed in diabetic

patients and animals, and the degree is correlated with the

severity of diabetes (60, 63, 67, 69–71). Pritchard et al.

reported that corneal sensation threshold was significantly

higher for patients with neuropathy compared to those

without neuropathy and controls (72). Recent studies have

identified corneal sensitivity as a potential marker of diabetic

neuropathy (73). In addition, the regeneration of corneal sub-

basal nerves is significantly slower in diabetic animals during

corneal epithelial wound healing (24, 74). Importantly, the

reduction of sub-basal nerve plexus density and corneal

sensitivity, which precedes other clinical and electrophysiology

tests, could be used as markers for DPN assessment (75, 76). In

addition, patients with diabetes often have burning, dryness or

painful feeling in the eye (77).
Pathologic mechanisms

The pathogenesis is difficult to investigate through human

epidemiological studies due to too many confounding factors.

Therefore, researchers often use animal diabetes models and in

vitro cell models to study pathogenesis (78, 79). The changes in

growth factors, immune cells and signal pathways in diabetic

keratopathy have been elaborated in previous reviews (4, 14, 17,

78, 80). Here, we mainly discuss the following aspects.

Chronic inflammation
As a significant characteristic of DM, low-grade chronic

inflammation is regarded as an important mechanism for the

development of DM and its complications, including diabetic

nephropathy, diabetic retinopathy, and diabetic cardiomyopathy

(81, 82). These chronic inflammatory scenarios was triggered

and sustained by immune cells and structural cells of specific

organs/tissues, which activated innate immunity mainly through

pattern recognition receptors (PRRs), such as Toll-like receptors

(TLRs) and nucleotide-binding oligomerization domain (NOD)-

like receptors (NLRs) (82, 83). Therefore, chronic inflammation

theoretically also contributes to the development of DK. Several

compelling evidence we found consolidated the pathogenic

involvement of chronic inflammation in the development of

DK (Figure 1).

NOD-like receptor protein 3 (NLRP3) inflammasome, a fully

characterized inflammasome, contains NLRP3, adaptor protein

ASC, and pro-caspase-1(pro-CASP1), and can be activated by

various stimuli, including pathogenic molecules, sterile insults,

and metabolic products (84, 85). NLRP3 inflammasome-mediated

inflammation plays key roles in the development and progression

of DM and its complications, such as diabetic nephropathy (83),
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diabetic retinopathy (86, 87), and diabetic cardiomyopathy (88).

Using genetic and pharmacological approach, we revealed that

persistent activation of NLRP3 inflammasome resulted in delayed

diabetic corneal wound healing and impaired re-innervation (89,

90). This was supported by the findings of hyper-activation of

NLRP3 inflammasome responsible for delayed diabetic skin

wound healing and diabetic foot ulcer closure (91–93).

Furthermore, we mechanistically revealed that the accumulated

advanced glycation end-products (AGEs) promoted

hyperactivation of NLRP3 inflammasome through ROS

production, ultimately resulting in impaired corneal wound

healing and nerve regeneration (89). The findings of AGEs

accumulation on the basement membrane of corneal epithelium

and Descemet’s membrane in diabetic patients (94–96) were

therefore mirrored the possibility of AGEs involving in the DK

progression via NLRP3 inflammasome signaling. Generally, the

assembly and activation of NLRP3 inflammasome results in the

CASP1-dependent secretion of interleukin (IL)-1b and IL-18, as

well as gasdermin D (GSDMD)-mediated pyroptosis (97). Yan

et al. found that the imbalance of IL-1b and IL-1RA (IL-1 receptor

antagonist) in DM corneas inhibited epithelial proliferation and

promoted apoptosis, further delaying corneal epithelial healing

and re-innervation (98). Inhibition of IL-1b signaling using

recombinant IL-1RA and IL-1b neutralizing antibody

significantly reversed the postponed diabetic corneal epithelial

closure and restored re-innervation (90, 99). In addition to the

elevated matured form of IL-1b, the activated form of GSDMD in

diabetic corneas after abrasion was also significantly increased

(89), which suggested that the GSDMD-executed pyroptosis could

be also probably responsible for the excessive inflammation and

the impaired corneal would healing and nerve regeneration.
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Therefore , NLRP3 inflammasome-mediated chronic

inflammation is one of important contributors to the

pathogenesis of DK, and targeting NLRP3 inflammasome could

a promising for DK treatment. Moreover, we also found that

blocking TLR4 signaling via TAK-242 expedited diabetic corneal

re-epithelialization and nerve regeneration. In addition to receptor

of AGEs (RAGE), AGEs also elicit inflammatory response

through TLR4 and myeloid differentiation 2 (MD2) (100).

AGEs/TLR4 mediated inflammatory response could be another

factor attributed to the postponed diabetic corneal wound healing

and impaired nerve regeneration.

Under normal conditions, the cornea is endowed with a

heterogeneous resident population of antigen-presenting cells,

including dendritic cells and macrophages (101–103). Several

lines of evidence revealed that specific deletion of dendritic cells

or macrophages results in a delayed corneal wound healing in

healthy or DM corneas (74, 104–106). Although accumulative

evidence indicates the essential role of macrophages and dendritic

cells in the pathogenesis and development of DM and its

complications (107–110), whether chronic inflammation

triggered by macrophages and dendritic cells contributes to DK

pathogenesis and progression remains elusive. Fewer neutrophils

are usually distributed in normal corneas, but more are recruited

after tissue injury or infection. During diabetic corneal wound

closure, the number of neutrophils was significantly heightened

(111), suggesting a pathogenic role for postponed corneal wound

healing and impaired nerve regeneration.

As a component of innate immune system, neutrophils carry

out numerous functions, including wound repair (112). During

normal wound healing, neutrophils undergo apoptosis after

accomplishing their functions, and are subsequently engulfed
FIGURE 1

The working model for the low-grade chronic inflammation contributing to diabetic keratopathy. In diabetic mellitus, numerous diabetes-
associated danger molecules (such as hyperglycemia, AGEs and NETs), persistently activate NF-kB signaling and NLRP3 inflammasome, resulting
in chronic inflammation and pyroptosis, which ultimately postpones corneal epithelial wound healing and impairs re-generation.
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by macrophages to resolve inflammation (112). However, the

DM triggered the neutrophils to NETosis (99, 113). During

NETosis, the neutrophils die through releasing web-like

chromatin structures loaded with cytotoxic proteins, which is

termed as neutrophil extracellular traps (NET) (114). A series of

evidence has revealed that NETosis primed by DM resulted in

the delayed wound healing and sterile inflammation (99, 113).

During diabetic corneal wound healing, NETs production was

pronouncedly elevated, and blockade of NETs formation using

DNase I or Cl-amidine not only improved inflammation

resolution, but also promoted corneal epithelial wound healing

and mechanical sensation restoration (115). Besides its crucial

role in innate host defense, NETs also fuel inflammatory and

autoimmune response, including NLRP3 inflammasome (92, 93,

116, 117). In this regard, NETs would be an essential driver for

chronic inflammation during DK pathogenesis and progression.
Neurotrophic function
The relationship between corneal nerves and epithelium has

been found interdependency and mutual support. The corneal

nerves maintain the integrity of corneal epithelium by releasing

neurotrophic factors (118). Our laboratory has been committed

to studying the role and mechanism of neurotrophic functions in

diabetic keratopathy. We found that the levels of many

neuropeptides, neurotrophic factors and axon guidance

molecules in diabetic corneas were lower than in normal

corneas, suggesting that the imbalance of neurotrophic

function may be among the critical mechanisms of diabetic

keratopathy (4).

Neuropeptides released from the sensory nerve terminals,

such as substance P (SP), vasoactive-intestinal peptide (VIP),

calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY),

and insulin–like growth factor -1 (IGF-1), play important roles

in maintenance and nutrition of the corneal epithelium by

promoting migration and proliferation (111, 119–127).

Substance P (SP) is an 11-amino acid (ARG-PRO-LYS-PRO-

GLN-GLN-PHE-PHE-GLY-LEU-MET) neuropeptide expressed

in the corneal nerves, cornealepithelium and stromal keratocytes

in the cornea (128–131). However, there has been no report on

the expression of SP in the resident immune cell population of

cornea. We found that SP content in cornea of type 1 diabetic

mice decreased significantly. Exogenous SP supplementation

markedly promoted epithel ia l wound heal ing and

cornealsensation recovery by augmenting mitochondrial

function, which was blocked by the antagonist of its NK-1R

receptor, indicating that SP-NK-1R signaling played a notable

role in regulating diabetic epithelial repair (Figure 2) (126).

Many studies have illustraed that SP-NK-1R pathway can

activate multiple signal pathways that promote epithelial

growth, migration and adhesion (122, 132–135). Moreover,

administration of eye drops containing SP and IGF-1

ameliorated the barrier function by promoting corneal wound
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healing in rats and rabbits with neurophic keratopathy (121, 136,

137). FGLM, a SP-derivedpeptide (PHE-GLY-LEU-MET),

combined with IGF-1, promoted the corneal epithelialwound

healing and has been used for the neurotrophic keratopathy

treatment in clinical successfully (138, 139). In addition, a

tetrapeptide (SSSR) derived from the IGF-1 combination with

FGLM also has the synergy in corneal epithelial wound healing

(140, 141).

Neurotrophin (NT) is a kind of protein molecule produced

by tissues and astrocytes dominated by nerves and necessary for

the growth and survival of neurons. Nerves can nourish corneal

epithelium, and neurotrophic factors derived from corneal

epithelium can also nourish nerves by promoting the growth

and survival of nerves. Hyperglycemia attenuates the expression

of nerve growth factor (NGF) and glial cell-derived nerve growth

factor (GDNF) in the corneal epithelium, while exogenous NGF

and GDNF increased the sub-basal nerve fiber density and

corneal sensitivity (142). In diabetic mellitus, the content of

CNTF and netrin-1 is lessened in diabetic mouse corneas, and

we have demonstrated exogenous CNTF improves the corneal

epithelial wound healing and nerve regeneration markedly (143).

Gao et al. pointed out that dendritic cells are also the main

source of CNTF. The reduction of CNTF levels caused by the

decrease in dendritic cells during diabetic corneal wound healing

is the potential mechanism of diabetic corneal neuropathy (106).

Mesencephalic astrocyte-derived neurotrophic factor

(MANF), first discovered as secreted proteins with trophic

activity, was expressed in the neuronal and non-neuronal

systems especially in high metabolic tissues (144–146). MANF

also plays an important role in diabetes. Notably, mice with the

konckout of MANF developed diabetes due to increasing

apoptotic cell death and reduced proliferation of pancreatic b
cells, while recombinant MANF could promote proliferation and

prevent cell death (146, 147). In addition, MANF has anti-

inflammatory abilities in human pancreatic b cells that protect

cells from cell death by repressing the NF-kB signaling pathway

(148). MANF has been newly identified in corneas and is

reduced in both unwounded and wounded corneal epithelium

of diabetic mice. Moreover, recombinant MANF significantly

promoted the wound healing of epithelium and nerve

regeneration by inhibiting hyperglycemia-induced ER stress

and ER-stress related apoptosis (149). Hence, MANF might be

a potential therapeutic target for treating diabetic keratopathy.

Besides neuropeptides and neurotrophic factors, there is also

a class of factors that play a key role in the repair of nerve

innervation, namely axon guidance molecules. These molecules

mainly include the Slits family, Netrins family, Ephrins family,

Semaphorins family, etc (150). We found that hyperglycemia

downregulates netrin-1 expression in corneal epithelium, and

the subconjunctival injection of netrin-1 promotes corneal

epithelial wound healing and nerve regeneration in diabetic

mice. Netrin-1 facilitates the proliferation and migration of

corneal epithelial cells under high-glucose conditions.
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Furthermore, we revealed that netrin-1 inhibited neutrophil

infltration, enhanced M2 macrophage transition, and

attenuated the expression of pro-infammatory factors in

diabetic mouse corneal epithelium via adenosine 2B receptor

(151). Bettahi et al. revealed that diabetes inhibited the

upregulation of Sema3c induced by corneal epithelial injury,

but had no effect on Sema3a (152). The diabetic corneal

epithelium and nerve regeneration can be promoted by
Frontiers in Endocrinology 06
exogenous supplementation with Sema3c (153). The above-

mentioned studies suggest that the reduction of axon guidance

factors, such as netrin and Sema3c, is partly responsible for

diabetic keratopathy.

Some growth factors and metabolites also have

neuroprotective effects. The expression of vascular endothelial

growth factor (VEGF)-B is decreased in the regenerated diabetic

corneal epithelium, and exogenous VEGF-B promotes the
B

C

A

FIGURE 2

SP-NK-1R signaling regulates diabetic corneal epithelial wound healing. (A) In the unwounded corneal epithelium, the elevation of p-Akt, p-
EGFR, and Sirt1 level by SP application was attenuated in NK-1 receptor antagonist L-733,060-injected SP-treated diabetic mice. (B) L-733,060
injection reversed the promotion of SP on diabetic corneal epithelial wound healing. (C) L-733,060 treatment reversed the promotion of SP on
p-Akt activation and proliferation in the regenerated corneal epithelium. ns, no significance; *p< 0.05. (ref 126).
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regeneration of diabetic corneal nerve fibers by reactivating the

PI-3K/Akt-Gsk3ß-mTOR signaling (154). Moreover, VEGF-B

also elevates the corneal content of pigment epithelial-derived

factor (PEDF). He et al. found PEDF plus docosahexaenoic acid

(DHA) could accelerate corneal nerve regeneration in diabetic

mice (155). Nicotinamide adenine dinucleotide (NAD) is

involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle,

and other cellular metabolic reactions, and has essential

biological functions (156). Our group demonstrated that

NAD+ biosynthesis plays an important role in maintaining

corneal homeostasis and innervation (157). In diabetic

corneas, NAD+ content was decreased, and elevated the levels

of NAD+ and its precursors NMN and nicotinamide riboside

(NR) markedly promoted epithelial and nerve repair by

activating SIRT1 and pEGFR, pAKT, and pERK1/2 signaling

(158). Another study found that nicotinamide mononucleotide

is helpful in improving cell viability and tight junctions in high

glucose treated human corneal epithelial cells through the

SIRT1/Nrf2/HO-1 pathway (159).

Neural ion channels changes
Corneal neurons express a range of membrane channels,

i n c l u d i n g c h em i c a l o r po l ymoda l n o c i c e p t o r s ,

mechanonociceptors, and thermal or cold receptors (160, 161).

Among corneal afferent neurons, approximately 45% expressed

TRPV1, 28% expressed Piezo2, and 8% expressed TRPM8, with

6% of TRPV1 neurons co-expressing TRPM8 (162). The

transient receptor potential (TRP) family is thought to

transduce environmental and endogenous stimuli to

electrophysiological signals. TRPV1 is a well-characterised

channel expressed by a subset of peripheral sensory neurons,

and canonically mediates inflammatory and neuropathic pain

(163). TRPV1 sensitization can be induced by capsaicin.

Nowadays, capsaicin 8% patch has been used to alleviate pain

in patients with peripheral neuropathic pain, which induced

fewer systemic side effects (164–169). Corneal TRPV1 is

involved in the maintenance of the corneal structure, re-

epithelialization, and inflammation in corneal injury (170). In

addition, blinking behavior in guinea pigs related to ocular

discomfort is reversed by treatment with the TRPV1 blocker,

capsazepine (171). Therefore, corneal TRPV1 may be important

for healing corneal tissue, and alleviating the pain in

inflammatory disorders of the ocular surface. The depletion of

TRPV1+ sensory nerves delayed corneal wound healing by

enhancing the recruitment of neutrophils and gd T cells,

increasing the number and TNF-a expression of CCR2+

macrophages and decreasing the number of CCR2–

macrophages and IL-10 expression (172). In diabetic

conditions, the TRPV1 expression in trigeminal ganglia is

increased and the integrity of TRPV1 neurons is important for

avoiding alveolar bone resorption and inflammation (173).
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Recently, cold receptors have come under greater scrutiny.

TRPM8, which is activated by temperatures lower than 25-28°C

and menthol, is widely expressed in corneal afferent fibers (174–

176). We found that in Trpm8-deficient mice, corneal wound

healing is accelerated, while squamous metaplasia occurred in

the central corneal opacity after multiple injuries (unpublished

data). TRPV1-dependent neuronal sensitization facilitates the

release of SP from TRPM8+ cold-sensing neurons to signal

nociception in response to cold (177, 178). Overexpression of

TRPV1 in TRPM8+ sensory neurons leads to cold allodynia in

both corneal and non-corneal tissues without affecting their

thermal sensitivity (177). Type 1 diabetic mice exhibit

heightened sensitivity to both heat and cold. In diabetic

hyperalgesic mice, the thermal hyperalgesia induced by an

increase in TRPV1 function is further aggravated by decreased

TRPM8 function (179). Abdulhakeem S. Alamri et al. found that

the density of corneal nerve fibers in mice fed a high-fat and

high-cholesterol diet and those with hyperglycemia had a similar

reduction. The reduction of nerve fibers expressing TRPM8

receptors in the corneas of the two models was more

significant than that of TrpV1 positive nerve fibers (180).

Diabetic autonomic neuropathy
Several influencing factors have been implicated in the

pathogenesis of diabetic neuropathy. The hyperglycemic

activation of the polyol pathway and protein kinase C may

reduce the neuronal blood flow causing direct neuronal damage

(181–183). In addition, the increased oxidative stress induced

excess nitric oxide production may result in the formation of

peroxynitrite and damage to neurons (184, 185). Moreover, the

reduction of neurotrophic growth factors, the deficiency of

essential fatty acids, and the accumulation of advanced

glycosylation end products may also cause less endoneurial

blood flow and nerve hypoxia which altered nerve function

(183, 186–188). Diabetic neuropathy has been classified as

diabetic peripheral and autonomic neuropathies based on

pathophysiological characteristics (127). However, few studies

have focused on the changes of autonomic nervous system in

diabetes keratopathy and its regulatory mechanism.

Diabetic autonomic neuropathy (DAN) is a serious and

common complication which has negative impact on the

survival and quality of life in patients’ with diabetes (189). DAN

may affect many organ systems throughout the body, such as

gastrointestinal, genitourinary, and cardiovascular (190). The

autonomic nervous system is divided into the sympathetic and

the parasympathetic nervous systems. In mammalian corneas, the

density of the sympathetic innervations which are from the

superior cervical ganglion, vary among species (191). The

sympathetic innervations compose about 10–15% of corneal

innervations in rabbit, mouse, rat and cat, whereas in primates,

they are rarely reported (52, 104, 192). The activation of the
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sympathetic nervous system has been found in type 1 and type 2

diabetic mice (193–196). In cornea, the activation of sympathetic

nervous system may inhibit the wound healing of corneal

epithelium and induce the expression of proinflammatory genes

in the CD64+CCR2+ macrophages through the b-2 adrenergic

receptor (ADRB2) (104). Moreover, we found that the abnormal

activation of sympathetic nerve in diabetic mice resulted in the

partial depletion of multiple neurotrophins in corneal epithelial

cells and dysfunction of limbal stem cells through ADRB2, which

further delayed the corneal sensory nerve regeneration and

epithelial wound healing (Unpublished data).

The parasympathetic innervations, which are from the

ciliary ganglion, exist in different species and vary among in

rats, cats, and mice (52, 104, 197). Conversely, the activation of

parasympathetic nerves promotes the wound healing of corneal

epithelium and enhances the expression of the anti-

inflammatory genes in CD64+CCR2- macrophages through a-
7 nicotinic acetylcholine receptor (a7nAChR) (104). VIP is

secreted predominantly by parasympathetic nervous system.

The distinct local macrophages have been found to be

activated by VIP, which further modulated inflammation and

epithelial renewal. Recently, we found VIP and its receptor are

decreased in diabetic corneas in the process of wound healing

compared with normal, while exogenous VIP attenuates the

wound healing of DM corneas by regulating the wounding

inflammatory response and nerve regeneration through Sonic

Hedgehog signaling pathway (111).

miRNAs and long noncoding RNAs
Generally, miRNA has been proven to be a key regulator of

gene expression and can target a variety of molecules that affect

cell physiology and disease development. Numerous reports

have shown that miRNA relates to the pathology of the

diabetic corneal epithelium and nerve damage, making

miRNA becoming a promising therapeutic approach for the

treatment of diabetic keratopathy.

As the source of corneal nerve fibers, changes in the trigeminal

ganglion (TG) caused by diabetes may contribute to corneal

neuropathy. Through RNA sequencing, our group found that

68 miRNAs and 114 mRNAs in the TG tissues of diabetic mice

diverged from those in normal TG tissues. We predicted that the

interaction of miR-350-5p and Mup20, miR-592-5p and Angptl7,

and miR-351-5p and Elovl6 may be related to diabetic corneal

neuropathy (198). Jianzhang Hu et al. found that inhibiting the

expression of miR-181a and miR-34c in TG of diabetic mice

promoted the growth of trigeminal sensory neural cells and the

regeneration of corneal nerve fibers by regulating autophagic

activation (199, 200). Our study revealed that the expression of

miR-182 was downregulated in the TG tissue of diabetic mice,

which was a key molecule downstream of the endogenous

protective gene Sirt1 in TG. And NOX4 was a key target gene

for miR-182 to regulate diabetic corneal epithelial and nerve repair
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(201). Targeting NOX4 and Sirt1 could effectively mitigate the

severity of diabetic keratopathy (201, 202).

We also screened differentially expressed miRNAs in the

regenerated corneal epithelium of normal and type 1 diabetic

mice, and found that miR-223-5p was significantly upregulated,

which may be involved in regulating the delay of diabetic corneal

wound healing. In the next validation experiment, we confirmed

that inhibition of miR-223-5p accelerated the regeneration of

diabetic corneal epithelium and nerves, which mediates

inflammation response and epithelial cell proliferation through

its target gene Hpgds (203). In 2016, our group also found that

miR-204-5p, which can directly regulate sirt1, has increased

expression in diabetic corneas, and inhibition of miR-204-5p

promotes corneal epithelial regeneration by accelerating cell

cycle (204).

Compared with normal diabetic mice, diabetic miR-146a

KO mice had significantly delayed epithelial wound healing of

cornea and skin, and increased neutrophil infiltration. The

potential mechanism was that miR-146a KO induced an

imbalance in the IL-1b, TNF-a, IRAK1, TRAF6 and NF-kB
signaling pathways. Interestingly, there was no difference in

corneal wound healing between miR-146a KO and normal

mice with normal blood glucose (205). Subsequently, another

group’s research in cultured human limbal epithelial cells

showed that overexpression of miR-146a reduced the

expression of proinflammatory TRAF6, IRAK1 and

downstream target NF-kB; and inhibited the expression of

cytokine IL-1a, IL-1b, IL-6 and IL-8 and chemokines CXCL1,

CXCL2, and CXCL5, which were significantly upregulated in

diabetic corneal limbal epithelial cells (206). These studies

indicate that miR-146a plays an important role in the

regulation of corneal epithelial homeostasis and regeneration

under diabetic conditions.

lncRNAs are a class of noncoding RNA molecules with a

length of more than 200 nucleotides, which have been reported

to play a regulatory role in diabetic complications, retinopathy,

pterygium and other eye diseases. Xiaxue Chen and Jianzhang

Hu analyzed the differentially expressed lncRNAs (DELs) in the

regenerated corneal epithelium of type 1 diabetic and normal

corneas. In the diabetic group, 111 upregulated DELs and 117

downregulated DELs were detected. The authors conducted in-

depth research on lncRNAs Rik, which is significantly

downregulated in diabetes, and found that Rik can be

combined with miR-181a-5p as a ceRNA, thus promoting the

healing of diabetic corneal epithelial wounds (207).

Limbal stem cell dysfunction
The corneal epithelium is self-renewed and regenerated by

limbal stem cells (LSCs) that reside in the basal epithelial layer of

the limbus, which plays a key role in corneal epithelial wound

healing (208–211). A study based on the alteration of LSCs in

patients with diabetes found that the expression of markers of
frontiersin.org

https://doi.org/10.3389/fendo.2022.1079541
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhou et al. 10.3389/fendo.2022.1079541
LSCs such as DNp63a, ATP-binding cassette sub-family G

member 2 (ABCG2), N-cadherin, K15, K17, K19, and b1
integrin was decreased significantly in the diabetic limbus

(212). In vitro cultured LSCs from healthy and diabetic

patients were subjected to immunofluorescence staining with

LSC markers, and it was also found that the expression of LSCs

markers DNp63a, PAX6, ABCG2, K15 and K17 in diabetic

patients was reduced markedly, especially K15 and K17 (213).

Similarly, type 1 and type 2 diabetic mice also showed a

significant reduction of LSCs markers in corneal limbus (143,

214). Thus, the loss or dysfunction of the resident LSCs could be

responsible for clinically observed delayed corneal epithelial

wound healing in diabetic corneas. Therefore, improving the

function of diabetic LSCs through genes or growth factors is

expected to be an effective means to promote diabetic corneal

epithelial wound healing.

We found that the expression of neurotrophic factor CNTF

was significantly reduced in corneal epithelium of STZ-induced

type 1 diabetic mice. Studies in cultured mouse corneal epithelial

stem/progenitor cells found that CNTF increases the efficiency

of clone formation, promotes cell proliferation, and upregulates

the expression level of corneal epithelial stem/progenitor cell-

related transcription factors by activating Stat3 signal (143). It

can also upregulate MMPs by activating Akt signal to promote

the migration of corneal epithelial stem/progenitor cells (215).

CNTF supplementation by subconjunctival injection can

promote the corneal epithelial would healing both in normal

and diabetic mice, and is accompanied by the enhancement of

corneal epithelial stem/progenitor cell proliferation activity

(Figure 3). In contrast, the application of CNTF neutralizing

antibody significantly impairs the normal repair function of

corneal epithelium. Hiroki Ueno et al. reported that insulin-like

growth factor-I (IGF-I) is capable of protecting against corneal

stem/progenitor cells and nerve damage in diabetes (214). Taken

together, growth factors, such as CNTF and IGF-1, have

potential effects in ameliorating limbal stem cell deficiency and

treating diabetic keratopathy by enhancing LSCs functions.

Some compounds also have the effect of enhancing the

stemness of limbal stem cells, such as ascorbic acid (216),

ROCK inhibitor Y-27632 (217), and pluripotin (218). Recently,

we found that the proinflammatory cytokines IL-1b and TNF-a
were overexpressed during diabetic corneal epithelial wound

healing (219). Proinflammatory cytokines can suppress the LSCs

markers expression and the colony-forming capacity of corneal

epithelial stem cells, as well as destroy the normal ability for

corneal epithelial wound healing in a mouse model (220).

Proinflammatory cytokines regulate corneal epithelial wound

healing through p16Ink4a-STAT3 signaling, and knockdown of

p16Ink4a partially restores diabetic corneal epithelial repair

defects (221). Yuka Okada et al. confirmed that the sensory

nerve TRPV4 is essential for maintaining the stemness of LSCs

and is one of the main mechanisms for maintaining corneal

epithelial homeostasis (221). Thus, controlling inflammation and
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maintaining sensory nerve function are beneficial to diabetic

corneal epithelial wound healing.
Diabetic corneal endotheliopathy

Clinical manifestation
Corneal endothelial cells (CECs) can be characterized

according to the percentage of hexagonal cells (HEX) and the

coefficient of variation (CV) (222–225). The previous researches

are inconsistent regarding the effect of DM on CEC

pleomorphism and polymegathism. Many studies report that

the CECs of diabetic patients have a decreased HEX and an

increased CV compared to healthy controls (226–230), whereas

other studies show no differences (224, 225, 231, 232). Most

studies support the hypothesis that DM is associated with

worsening CEC pleomorphism and polymegathism. Especially,

studies comparing patients with type-1 and type-2 DM (T1DM

and T2DM, respectively) found that individuals with T1DM had

more remarkable changes in CEC morphology (230, 233, 234).

The rate of cell density loss stabilizes to approximately 0.5%

per year (235). Endothelial cell density (ECD) is an indirect

marker of endothelial health and function (223–225, 235–239).

The rate of CEC loss and the subsequent decrease in ECD speed

up in patients with DM (225, 230, 234, 237, 238, 240–244). It

should be noted that patients with T1DM (compared to T2DM)

and those with a longer disease duration sustain a more severe

decline in ECD.

It is widely known that an increase in central corneal

thickness (CCT) could serve as one of the earliest signs of

CEC dysfunction (245). Many researchers found that T1DM

subjects have a higher CCT (238, 245–247). In fact, there have

also been reports of a difference in CCT between T1DM and

T2DMwhile few studies have found CCT and DM are unrelated.

Pathologic mechanisms
The pathogenesis of corneal endotheliopathy in diabetes is

still less studied. The reported mechanisms mainly include

mitophagy impairment, endoplasmic reticulum (ER) stress

and pyroptosis.

Mitophagy is a highly selective form of autophagy that

eliminates dysfunctional or excess mitochondria under

stressful conditions, such as hypoxia (248). In our recent

study, we demonstrated that hyperglycemia causes abnormal

endothelial cell morphology and impaired mitophagy, leading to

the accumulation of damaged mitochondria. In vivo data also

confirmed that increased mitophagy had a protective effect on

the CE of diabetic mice. Our results suggest that regulating

mitophagy may be a promising strategy for the treatment of

diabetic corneal endothelial dysfunction (249).

The ER stress response is a vital regulatory mechanism that

maintains intracellular homeostasis (250, 251). The overactivation

of the ER stress response and mitochondrial dysfunction are
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FIGURE 3

CNTF promotes corneal epithelial wound healing in diabetic mice. (A) CNTF is decreased in diabetic corneas both in mRNA and in protein level.
(B, C) Subconjunctival injection of 50 ng CNTF significantly promotes the corneal epithelial wound healign in diabetic mice. (D) The expression
of DNp63 and Ki-67 in the regenerating corneal epithelium is upregulated after CNTF treatment. (E) CNTF activated Stat3 signaling in diabetic
wounded corneas. "*p< 0.05. (ref 215).
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prominent etiological factors in the development of diabetes (252).

We observed ER stress response activation in diabetic mice and

diabetic human corneal endothelial cells, which induced CEC-

specific morphological changes. Persistent ER stress response

activation can cause CEC loss and corneal endothelial

dysfunction (Figure 4). Consequently, in DM, the inhibition of

ER stress could mitigate endothelial cell loss and corneal edema via

the mitochondrial pathway (253).

Pyroptosis is a recently discovered form of programmed cell

death that is related to inflammation (254–256). Zhang et al.

unraveled the novel role of long non-coding (lnc) RNA

KCNQ1OT1 in pyroptosis, whereby KCNQ1OT1-repressed

micro-RNA (miR)-214 expression upregulated the expression

of the inflammatory molecule Caspase-1 and promoted

pyroptosis in vitro and in vivo. Additionally, KCNQ1OT1 acts

as a competing endogenous (ce)RNA that competitively binds

miR-214 to regulate Caspase-1 activity, thus promoting diabetic

corneal endothelium dysfunction. Further study of the role of

KCNQ1OT1 will be critical for understanding the pathogenesis

of diabetic corneal endothelium dysfunction and will help

identify new biomarkers or potential therapeutic targets to

treat this debilitating condition (257).
Diabetic related dry eye

Diabetic lacrimal gland disorder

Characteristics of diabetic lacrimal gland
Patients with DM may have a higher prevalence of dry eye

than the healthy population (258). It has been reported that dry

eye disease affects about one-fifth of patients with T2DM and

reduces the patients’ quality of life (13, 259, 260). Dry eye may be

caused by impaired tear production or excessive tear evaporation
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and is associated with photophobia, red eyes, vision impairment,

local pain, and pruritus. The tear film is the interface between the

ocular surface and the environment, and it contains a tightly

controlled complement of water, proteins and lipids. LG

secretion of proteins and fluid into the tear film is essential for

maintaining the health of the ocular surface.

DM impairs tear secretion and induces LG changes. Early

studies have identified the involvement of insulin in disorder of

LG, such as impaired secretion and a reduction in protein

secretion (261, 262). Subsequent studies validated that lipid

accumulation in the LG acinar increased with age in a non-

obese diabetic (NOD) mouse model. This change is along with

lymphocytic infiltration and destruction of the acini. In addition,

LG cholesteryl esters obviously increased in these mice (263).

Similarly, the polyol pathway was triggered by hyperglycemia in

type-2 diabetes, and the accumulation of sorbitol within cells led

to cellular edema and dysfunction, which finally resulted in LG

dysfunction and decreased tear secretion (264). Recently, He

et al. reported that hyperlipidemia affects LG function, including

the inhibition of tear secretion, rising lipid accumulation,

inflammation, and oxidative stress levels (265). Nakata et al.

demonstrated that diabetes suppresses hemodialysis-induced

increases in tear fluid secretion, which suggests that the

autonomic control of the LG function may be compromised

by neuropathy in patients with DM (266). Most recently, our

results suggested that streptozotocin-induced type-1 diabetic

mice exhibited the early onset of reduced tear secretion and

LG weight compared to the symptoms of diabetic

keratopathy (267).

Pathogenesis of diabetic lacrimal gland
Hyperglycemia, oxidative stress, nerve alterations may play

an important role in the development of LG impairment (268) in

DM. The detailed mechanisms have become clearer.
FIGURE 4

Proposed mechanism of endothelium dysfunction in the diabetic cornea. Endothelial cells from diabetic mice exhibit high levels of ER stress and
ER stress appears before morphological changes of the endothelium. Activation of ER stress can promote corneal endothelial dysfunction by
triggering mitochondrial dysfunction. Acute injuries, such as glaucoma, can lead to corneal edema and endothelial cell loss.
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Mitochondria is the major source of intracellular reactive

oxygen species and the target of oxidative damage (269–271).

Previous studies had confirmed the existence of oxidative stress

and mitochondrial dysfunction in the LG of dry eye mice (272,

273). In the type-1 diabetic model, oxygen consumption rate and

basal extracellular acidification rate detection results suggested

that the early onset of diabetic dry eye may be due to the

susceptibility to a mitochondrial bioenergetic deficit in diabetic

LG (Figure 5), while the application of mitochondria-targeted

antioxidant SKQ1 may ameliorate diabetic dry eye

and keratopathy.

It is recognized that inflammation plays a prominent role in

the development and propagation of dry eye. Hyperglycemia

initiates an inflammatory cascade that generates the innate,

adaptive immune responses of the lacrimal functional unit

(LFU). The downstream immune-inflammatory regulators

have been identified as matrix metalloproteinase-9 (MMP-9),

immature antigen-presenting cells (APCs), CD4+ helper T cells

(TH) subtype 1, and TH17 cell subsets, interferon-g (IFN-g)
chemokines, chemokine receptors, cell adhesion molecules

(CAMs), and interleukin-17 (IL-17) (274).

The neural response that regulates LG fluid secretion is an

integral part of the LFU, which consists of the sensory afferent

nerves of the cornea and conjunctiva, the efferent

parasympathetic and sympathetic nerves that innervate the

LG, the LG secretory cells, and the LG excretory ducts (275).

Both anatomically and functionally, the parasympathetic system

predominates, with overwhelming evidence indicating that the

loss of parasympathetic innervation blocks LG functioning

(276–283). Research has demonstrated that different densities

of sympathetic innervation in glandular areas and the

sympathetic denervation of the rabbit LG by ablating the

superior cervical ganglion did not alter the LG acinar

morphology and induced the denervation supersensitivity of

protein secretion (284, 285). In addition, researchers have

reported that the electrostimulation of the superior cervical
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ganglion increased tear secretion (286). However, the

involvement of sympathetic stimulation in LG in DM remains

poorly understood. Recently, we illustrated that the sympathetic

pathway is activated in the pathogenesis of diabetic dry eye and

may provide a potential strategy to counteract diabetic dry eye

by interfering with sympathetic activity (Unpublished data).
Diabetic meibomian gland dysfunction

Clinical manifestation
Meibomian gland dysfunction (MGD) is an important cause of

dry eye, and diabetes may be a risk factor. Studies reveal a high

incidence of MGD in patients with diabetes (287–289), especially

long-lasting diabetes (290, 291).Yu et al. (287) observed 132 eyes to

assess the changes of Meibomian Glands (MGs) in type 2 DM. As

the diabetes progressed, they found more MGs dropouts and

absence of MGs in the DM group, and MG bubbles density were

decreased with shape alterations, such as atrophy, fibrosis,

expansion. The opening of glandular duct appeared to be

atrophic and cornified. Additionally, lipid layer thickness (LLT),

lid margin abnormalities, and tear breakup time (BUT) were

significantly changed in diabetic patients; interestingly, the results

of LLT were varied in different investigations (289, 290), which

deserves further research. More importantly, some studies

suggested that diabetes was associated with asymptomatic MGD,

and it may be an early sign of ocular discomfort in T2D (290, 292).

These findings suggest a lack of association between signs and

symptoms. Therefore, it is alert to notice the signs of MGD in the

absence of symptoms and perhaps the necessary treatment should

be taken to prevent the progression of complications.

While MGD in type 2 DM has been widely investigated in the

literature, studies on type 1 DM were very limited. Previous studies

reported that BUT were lower in the Type 1 DM group and

significantly associated with the duration of DM (293, 294). Semer

et al. (295) evaluated the changes of MGs with Type 1 DM and

found that in diabetic children, a higher secretion score and total

eyelid score appeared. The thinning and shortening of MGs and

presence of ghost areas were more common. In Type 1 DM animal

model established by streptozotocin (STZ), more signs were

founded, such as acini dropout, condensed lipid deposition at the

orifice of the MG, disorganized acini and ducts, lipid metabolism

disorder compared to those of non-diabetic controls (296, 297).

Previous studies have documented peroxisome proliferator

activator receptor-g (PPARg) plays a dominant role in regulating

meibocyte differentiation and lipid synthesis (298, 299). Recent

study has confirmed the reduced PPARg in diabetic MGs, and

upregulation of PPARg could improve the production of lipid (300).

Taken together, these indicated that pathological process of MGD

could be observed in diabetic model induced by STZ, so, it may be

used as vital tool for studying the physiopathology of MGD

resulting from hyperglycemia. Generally, the pathogenesis of

Type 1 DM differs from that of Type 2 DM, and distinctions in
FIGURE 5

Mitochondrial dysfunction in diabetic lacrimal gland. Lacrimal
gland cells from the diabetic mice after 16 weeks were evaluated
with the seahorse XFp analyzer (ref. 267).
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the presentation and progression of MGs between DM types has

been seldom reported. Hence, future comparative investigations

are necessary.

Pathogenesis of diabetic meibomian
gland dysfunction

Unlike other sebaceous glands, the lipid secretion of MG is

controlled by various neurotransmitter-neuromodulator

mechanisms, and disparate neuropeptides/neurotransmitters

play a role in the functioning of MG cells (301–303). The

continuous proliferation and differentiation of MG cells are the

basis for maintaining the secretion of lipids. Neuropathy, one of

the most common complications of DM, may lead to MG

dysfunction by disrupting the function of MG cells. Peripheral

neuropathy may also alter meibum delivery to the ocular surface.

Clinical studies have revealed that peripheral neuropathy causes a

decline in nerve impulses emanating from the brain and corneal

hypoesthesia, which leads to reduced blink rates (69, 70, 304).

During blink movement, the muscle could produce a compression

force to the tarsal plate and facilitate the delivery of the lipid from

the MGs. Therefore, it is speculated that neuropathy leads to a

decline in the blinking rate and meibum delivery forces, and

ultimately leading to greater MGD prevalence in diabetes patients.

In diabetic patients, laser scanning confocal microscopy

(LSCM) displayed the infiltration of inflammatory cells in the

interstitial of gland bubble (305). In STZ-induced diabetic mouse

model, more CD45 positive cells, such as macrophage and

neutrophils, accumulated in MGs (297). Similarly, Yuli at al.

found more inflammatory cells and overexpressed inflammatory

factors in MG of diabetic rat. Genomic analysis techniques

revealed that inflammation-related genes were upregulated in

type 2 diabetic mice (306). In addition, more studies have

demonstrated that the lipid homeostasis is related to the

inflammation (307, 308). Many lipid species could regulate

inflammatory responses. In turn, inflammation can alter the

lipid metabolism. As a systemic metabolic disease, DM is closely

associated with the lipid metabolism, and it has been recognized

that diabetes induces the disruption of lipid homeostasis in MGs

(297, 309). It was suggested that phospholipids (PLs) may play a

key role in the inflammatory reaction. A higher level of PLs was

observed in the meibum with DM, and the overexpression of PLs

could release more inflammatory mediators, such as free fatty acid

(FFA). FFA was considered to be toxic hydrolysate generated by

microbial lipases from normal lipids, which would conversely

induce inflammation and hyperkeratinization, thus damaging the

ocular surface and MGs (310).
Potential treatment options

Diabetic ocular surface diseases is treated by local

symptomatic treatment (such as the use of steroids to treat

epithelial defect) on the premise of systemic control of blood
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glucose (such as insulin injection). However, the existing

primary treatment methods cannot fully meet the treatment

needs of diabetic ocular surface diseases, so it is necessary to find

alternative treatment targets.

Stem cells therapy have been proposed as an emerging

treatment option for diabetic keratopathy. Mesenchymal stem

cells (MSCs) are a good choice for stem cell therapy due to their

pluripotency and regenerative potential (311–314). MSCs exist

in various tissues, including bone marrow, peripheral blood,

adipose tissue, placenta, nervous tissue and so on. MSCs are

known to play an important role in regulating tissue repair and

immune inflammation through direct or indirect mechanisms.

Our study based on bone marrow mesenchymal stem cells (BM-

MSCs) on diabetic corneal wound healing found that the local

transplantation of BM-MSCs significantly promoted the repair

of corneal epithelium in type 1 diabetic mice. In mechanism,

BM-MSCs alleviate diabetic corneal impairment by promoting

the activation of corneal epithelial stem/progenitor cells and

accelerating the polarization of macrophages to anti-

inflammatory M2 phenotypes by secreting tumor necrosis

factor-a–stimulated gene/protein-6 (TSG-6) (315).

Based on its ability to self-renew and promote regeneration,

hemopoeitic stem cell (HSC) is another potential adult stem cell

for disease therapy. Maha et al. assessed the possible effect of

HSC therapy on STZ-induced diabetic keratopathy in albino rat

and found that a tail vein injection of HSC ameliorated the

changes of cornea and conjunctival epithelium caused by

diabetic keratopathy (316).

Many studies in stem cell therapy have been conducted to

restore corneal functioning, including autologous/allogeneic limbal

stem cell transplantation (317), embryonic stem cells (ES)/induced

pluripotent stem cells (iPS)-induced corneal cells (318, 319) and

various adult stem cell (320, 321) treatments. Some have entered

clinical trials; however, stem cell therapy in the field of diabetic

keratopathy is still in its early stages. Although MSC and HSC

transplantations have certain application prospects at the animal

level, they are still far from clinical application, and further

exploration is needed in the future.

Considering that cornea, lacrimal gland and meibomian

gland are densely innervated, and neuropathy is one of the

most common, complex and serious complications of diabetes

patients, treatment based on neural regulation has also been

emphasized. Exogenous supplementation of sensory

neuropeptide SP, CGRP and parasympathetic neuropeptide

VIP has been proven to effectively promote the regeneration of

corneal epithelium and nerves in the experimental stage. As

mentioned above, the therapeutic effects of various neurotrophic

factors and axon guidance molecules on diabetic ocular surface

diseases have also been successively verified in diabetic animal

models. It is worth mentioning that Cenegermin (Oxervate™),

an ophthalmic eye drops mainly composed of recombinant

human NGF, was recently approved by the FDA for the

treatment of neurotrophic keratopathy (322). In addition, our
frontiersin.org

https://doi.org/10.3389/fendo.2022.1079541
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhou et al. 10.3389/fendo.2022.1079541
latest study found that sympathetic overactivation caused by

diabetes also participated in the pathogenesis of diabetes

keratopathy and diabetes related dry eye (Unpublished data).

Sympathetic nerve-targeting regulation may also be a potential

therapeutic target for diabetic ocular surface disease.

In addition, recent research has also revealed many other

new methods to treat corneal epithelial defects, including the

application of natural Chinese medicine (such as lycium

barbarum polysaccharide) (323), various cell derived exosomes

(324), and biological materials (such as hydrogel) (325). The

mechanism revealed by these studies has something in common

with the pathogenesis of DK, and maybe also used for

developing new DK treatment methods, which may eventually

open up a new way for developing new treatment methods to

improve corneal wound healing.
Conclusion

With increasing clinical evidences of ocular surface damage in

diabetic patients, ophthalmologists have gradually recognized the

harm of diabetic ocular surface complications, and more basic

ophthalmic research has focused on the disclosure of the

pathogenesis and potential therapeutic targets of diabetic ocular

surface complications.

The defined pathogenesis of diabetes keratopathy includes the

accumulation of advanced glycation end products, the imbalance of

growth factors and signaling pathways, the occurrence of persistent

inflammation, the decline of neurotrophic function, the dysfunction

of stem cells, the impairment of mitochondrial function, excessive

oxidative stress, etc. Therefore, controlling inflammation and

excessive oxidative stress, improving the function of stem cells

and mitochondria, and targeting relevant growth factors,

neurotrophic factors and signal pathways will be the direction of

developing new targets for DK treatment, and guiding the clinical

treatment of DK.

Diabetic dry eye was found to be closely associated with the

abnormal mitochondrial function of lacrimal gland and the

abnormal lipid metabolism of meibomian gland. For the

treatment of dry eyes in diabetes, attention should be paid to

improving tear secretion and meibomian gland lipid metabolism.

Animal experiments have confirmed that promoting mitochondrial

function has a good therapeutic effect on diabetic dry eyes,

providing a basis for future clinical applications.
Frontiers in Endocrinology 14
Clinical prospective studies have discerned that the early

clinical symptoms of diabetic ocular surface complication are

dry eye and corneal nerve degeneration, suggesting that early

diagnosis should first examine corneal nerves changes using

confocal microscopy and examine dry eye related clinical

indicators. Further study on the interaction between neuro-

epithelium and neuro-immunity will help to reveal the key

pathogenic mechanism and formulate targeted intervention

strategies for ocular surface complications of diabetes.
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222. González-Méijome JM, Jorge J, Queirós A, Peixoto-de-Matos SC, Parafita
MA. Two single descriptors of endothelial polymegethism and pleomorphism.
Graefes Arch Clin Exp Ophthalmol (2010) 248(8):1159–66. doi: 10.1007/s00417-
010-1337-6

223. Larsson LI, Bourne WM, Pach JM, Brubaker RF. Structure and function of
the corneal endothelium in diabetes mellitus type I and type ii. Arch Ophthalmol
(1996) 114(1):9–14. doi: 10.1001/archopht.1996.01100130007001

224. Storr-Paulsen A, Singh A, Jeppesen H, Norregaard JC, Thulesen J. Corneal
endothelial morphology and central thickness in patients with type ii diabetes
mellitus. Acta Ophthalmol (2014) 92(2):158–60. doi: 10.1111/aos.12064

225. Sudhir RR, Raman R, Sharma T. Changes in the corneal endothelial cell
density and morphology in patients with type 2 diabetes mellitus: A population-
based study, Sankara nethralaya diabetic retinopathy and molecular genetics study
(Sn-dreams, report 23). Cornea (2012) 31(10):1119–22. doi: 10.1097/
ICO.0b013e31823f8e00

226. Itoi M, Nakamura T, Mizobe K, Kodama Y, Nakagawa N, Itoi M. Specular
microscopic studies of the corneal endothelia of Japanese diabetics. Cornea (1989)
8(1):2–6. doi: 10.1097/00003226-198903000-00002
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