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Multiple statistical models
reveal specific volatile organic
compounds affect sex
hormones in American adult
male: NHANES 2013–2016
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Background: Some VOCs are identified as endocrine-disrupting chemicals

(EDCs), interfering with the effect of sex hormones. However, no studies

focused on the common spectrum of environmental VOCs exposure

affecting sex hormones in the average male population.

Objectives: We aimed to explore the association between VOCs and sex

hormones in American adult males using multiple statistical models.

Methods: The generalized linear (GLM), eXtreme Gradient Boosting (XGBoost),

weighted quantile sum (WQS), Bayesian kernel machine regression (BKMR) and

stratified models were used to evaluate the associations between Specific

Volatile Organic Compounds and sex hormones in American adult male from

NHANES 2013–2016.

Results: Pearson correlation model revealed the potential co-exposure pattern

among VOCs. XGBoost algorithm models and the WQS model suggested the

relative importance of VOCs. BKMR models reveal that co-exposure to the

VOCs was associated with increased Testosterone (TT), Estradiol (E2), SHBG

and decreased TT/E2. GLM models revealed specific VOC exposure as an

independent risk factor causing male sex hormones disorders. Stratified

analysis identified the high-risk group on the VOCs exposures. We found

Blood 2,5-Dimethylfuran in VOCs was the most significant effect on sex

hormones in male. Testosterone increased by 213.594 (ng/dL) (124.552,

302.636) and estradiol increased by 7.229 (pg/mL) for each additional unit of

blood 2,5-Dimethylfuran (ng/mL).
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Conclusion: This study is an academic illustration of the association between

VOCs exposure and sex hormones, suggesting that exposure to VOCsmight be

associated with sex hormone metabolic disorder in American adult males.
KEYWORDS

volatile organic compounds (VOCs), testosterone (TT), estradiol (E2), SHBG,
machine learning
1 Introduction

Volatile organic compounds (VOCs) are a broad class of

chemicals. Apart from natural sources (1), many VOCs are

produced by anthropogenic activities, including fuel

combustion, petroleum refining, vehicle emissions, and

chemical processes in the industry (manufacturing of paints,

solvents, and other oil derivatives) (2, 3). Since these compounds

can volatilize, dissolve in water and adhere to particles, people

absorb them unconsciously by inhalation, dermal contact, and

consuming of polluted water and food (2, 4). The amount of

exposure to VOCs is assessed by monitoring their concentration

in the relevant space or by measuring the quantity of VOCs and

their metabolites in blood and urine (5).

A considerable amount of literature has been published on

various aspects of health hazards caused by exposure to VOCs. A

study demonstrated that VOCs showed significant toxicity to

mouse testis by altering testosterone levels and testicular marker

enzyme activity. Song has reported DNA damage to the

spermatic cord for two years in 27 workers exposed to

benzene (86.49±2.83mg/m) (6). Similarly, low sperm motility

was noted in 50 aircraft maintenance workers exposed to

benzene containing jet fuel (7). However, the effect of VOCs

on human sex hormones has not been clarified.

Sex hormones are essential for the development and

function of the reproductive system. Total testosterone (TT)

and estradiol (E2) are two main critical sex hormones in the

human body. TT plays a key role in the differentiation of the

reproductive system, spermatogenesis, and development of

secondary sexual characteristics in males. Similarly, E2

promotes female sexual development and stimulates the

maturation of primary and secondary sex characteristics in

females (8). Estrogen is of significance to males as well,

regulating bone formation, nutrient metabolism and

reproductive function (9). In contrast, Sex hormone-binding

globulins (SHBGs) are a group of transporter proteins in plasma

that bind and transport testosterone and estradiol, regulating the

concentration of non-protein-bound sex hormones recognized

as biologically active (10).

Benzene, toluene, ethylbenzene, and xylene are identified as

endocrine-disrupting chemicals (EDCs), interfering with the
02
effect of sex hormones (11, 12). However, till now, there have

been nearly no studies focused on the common spectrum of

environmental VOCs affecting the levels of sex hormones in the

average male population. We hypothesized that VOCs might

contribute to reproductive toxicity, which leads to changes in sex

hormone concentration. In order to verify our hypothesis, we

explored the U.S. National Health and Nutrition Examination

Survey (NHANES) for secondary analysis. We controlled the

potential confounders, including age, race, education level,

marital status, poverty to income ratio, BMI, alcohol drinks,

and smoking which might be related to both the exposure as well

as the outcome. Moreover, we constructed machine learning of

XGBoost algorithm models, Weighted Quantile Sum (WQS)

regression, generalized linear (GLM) and stratified analysis to

explore the relative importance of selected VOCs on sex

hormones. Furthermore, we implemented Bayesian kernel

machine regression (BKMR) to identify the overall effect of the

eight specific blood VOCs exposure on every single sex

hormone. We aim to illustrate the VOCs’ influence on

reproductive health among U.S. males, helping humans avoid

impaired reproductive VOCs.
2Methods

2.1 Availability of data

The National Health and Nutrition Examination Survey

(NHANES) is a large-scale cross-sectional survey in the

United States collecting citizens’ personal and health-relevant

data through interviews, examinations and laboratory tests. It

has been conducted to assess Americans’ health and nutritional

status since the early 1960s under the guidance of the National

Center for Health Statistics (NCHS) and the Centers for Disease

Control and Prevention (CDC). All these data and the process of

data collecting and measurement are available for the public on

its official website. Since NHANES processes were permitted by

the NAHNES Institutional Review Board (IRB)/NCHS Research

Ethics Review Board (ERB), there are no additional approvals

required for our study (13).
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2.2 Study population

NHANES released its data in two-year cycles since 1999.

Our study included participants from the latest two cycles, 2013-

2016, whose relevant data was available on the NHANES

website. Owing to lacking the complete results of sex

hormones measurement, the data before 2013 were excluded.

Sociodemographic data, comorbidities data, medical

examination, and personal life history data, as well as

laboratory data of sex hormone concentrations and blood

VOCs, have been included in our study for the secondary

analysis. To be eligible for analysis, participants had to meet

the following inclusion criteria: (1) male subjects (n = 9,895); (2)

20 years old or older (n = 5,803); (3) Tested for VOCs (n =

3,065); (4) Tested for sex hormones (n = 2,791); (5) have data

about covariates of following (n = 2,641): race/ethnicity;

educational level; marital level; family poverty income ratio;

body mass index (14–16). The exclusion criteria were as follows:

(1) female subjects (n = 10,251); (2) aged below 20 years old (n =

4,092); (3) missing/without VOCs testing (n = 2,738); (4)

missing/without sex hormones results including Testosterone,

Estradiol and SHBG (n = 4,092); (5) do not have data about

covariates at least one of following (n = 173): race/ethnicity;

educational level; marital level; family poverty income ratio;

body mass index. There were 2,641 participants out of 20,146 left

in the analysis after selecting and excluding according to the

criteria mentioned above (Figure 1). In addition, the whole

process of our study complied with the Helsinki Declaration of

the World Medical Association (17).
2.3 Sex hormones measurement

After dissociation from binding proteins and removal of

potentially interfering compounds, the total amount of

testosterone and estradiol in serum are determined by isotope

dilution high-performance liquid chromatography-tandem mass

spectrometry (ID-LC-MS/MS) using stable isotope-labelled

internal standards and external calibrators. Subsequent to the

reaction of SHBG with immuno-antibodies and exerting a

magnetic which leads to the capture of microparticles on an

electrode, SHBG can be gauged indirectly by a chemiluminescent

measurement via photomultiplier tube. Testosterone/Estradiol

was used to estimate the proportion of the sex hormones. The

details of measurement can be found in the laboratory procedure

manual on the NHANES website.
2.4 VOCs measurement

VOCs are widely used in industry and daily life.

Biomonitoring of blood VOCs provides valuable information on

exposure and their internal dose. Volatile organic compounds are
Frontiers in Endocrinology 03
measured in especially collected whole blood samples by

headspace sol id-phase microextraction (SPME)/gas

chromatography/isotope dilution mass spectrometry. This

method is efficient for quantifying a broad range of VOCs in a

small amount of blood. Furthermore, it is also suitable for

detecting blood VOCs of the average individuals for its shallow

detection limit. By minimizing the sources of contamination,

maintaining laboratory performance and retesting 2% of all

specimens randomly, the quality of data was guaranteed. In our

research, we included the main VOCs exposures, including Blood

2,5-Dimethylfuran, Blood Tetrachloroethene, Blood Benzene,

Blood 1,4-Dichlorobenzene, Blood Ethl Acetate, Blood Furan,

Blood Toluene and Blood m-/p-Xylene (14). For VOCs, if those

analytical results are below the lower limit of detection, an

estimated fill-in value that is the lower limit of detection divided

by the square root of two will be put in the analytical results.
2.5 Other variables

Based on previous studies, other variables which may affect

sex hormone concentrations were included in our study as well.

In detail, sociodemographic variables contained age (year),

poverty to income ratio, race/ethnicity (Mexican American,

other Hispanic, non-Hispanic white, non-Hispanic black,

others), level of education (less than 9th grade, 9-11th grade,

high school graduate, AA degree, college graduate, don’t know),

marital status (married, widowed, divorced, separated, never

married, living with a partner, don’t know). Moreover, selected

comorbidities data comprised drinking (Had at least 12 alcohol

drinks/1 year) and smoking (Smoked at least 100 cigarettes in

life). Last, we also introduced body mass index (Kg/m2) as

medical examination and personal life history data. More

complex variables can be found on the NHANES official

website (18).
2.6 Statistical analysis

Adhering to the CDC guidelines’ criteria, we conducted a

statistical analysis of the serum VOCs and sex hormone levels

(https://www.cdc.gov/nchs/nhanes/index.htm). The analytic

guidelines from NHANES were referred for statistical analysis

(https://wwwn.cdc.gov/nchs/nhanes/tutorials/default2.aspx).

For weighted analysis, we utilized the subsample weights

provided in the VOCs sample. The continuous variables, such

as VOCs and sex hormone concentrations, were described by the

normal distribution with mean m and standard deviation s. The
categorical variables were presented as a percentage

or frequency.

First, the participants were divided into three terciles based

on age as a continuous variable. We applied the Kruskal Wallis

rank sum test to calculate the p-value of the continuous variables
frontiersin.org
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whose theoretical number is greater than or equal to 10. While

for those continuous variables having a theoretical number < 10,

Fisher’s exact probability test was employed to calculate the p-

value. In the case of categorical variables, we utilized the

weighted chi-square to calculate the p-value. Results are shown

in Table 1. Second, we set up a Pearson correlation model among

specific VOCs to investigate potential co-exposure patterns and

co-toxicity effects. Then, we constructed the XGBoost algorithm

model (19)of machine learning to explore the relative

importance of influence that serum VOCs exert on sex

hormone concentrations by analyzing the contribution (gain)

of sex hormone concentrations that VOCs brought (20).

Furthermore, the Weighted Quantile Sum (WQS) regression

model (21) was utilized to evaluate the weights of each specific

blood VOCs on every single sex hormone with adjustment or
Frontiers in Endocrinology 04
not. The WQS index was calculated by dividing eight kinds of

VOCs into quartiles, and the weight of each VOCs was estimated

by bootstrapping (n = 1000). Moreover, we built three kinds of

multivariate weighted linear model analysis between VOCs and

sex hormone concentrations with different ranges of adjustment

to variables to further clarify the relationship between the two.

The generalized linear (GLM) results were based on Rubin’s

rules and calculated dataset. Last, we implemented Bayesian

kernel machine regression (BKMR) to identify the overall effect

of the eight specific blood VOCs exposure on every single sex

hormone (22). The BKMRmodel underwent 20,000 iterations of

the Markov chain Monte Carlo technique. Besides, we

investigated the univariate exposure-response relationship

between each log-transformed VOCs concentration and

estimates of sex hormone with all other VOCs held at their
FIGURE 1

Flowchart of studied participants selection (N=2641) and analysis process, NHANES, USA, 2013-2016.
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TABLE 1 Baseline characteristics of selected participants.

Exposure Low Exposure* High Exposure*

N 1320 1321

Sociodemographic variables

Age, mean±SD (years) 49.863 ± 18.051 48.339 ± 16.078 0.022

Poverty to income ratio, mean±SD 2.789 ± 1.594 2.123 ± 1.417 <0.001

Race/Ethnicity (%) <0.001

Mexican American 189 (14.318%) 181 (13.702%)

Other Hispanic 141 (10.682%) 134 (10.144%)

Non-Hispanic White 566 (42.879%) 482 (36.488%)

Non-Hispanic Black 184 (13.939%) 357 (27.025%)

Other race/ethnicity 240 (18.182%) 167 (12.642%)

Education (%) <0.001

Less than 9th grade 117 (8.864%) 161 (12.188%)

9-11th grade 124 (9.394%) 245 (18.547%)

High school graduate 264 (20.000%) 384 (29.069%)

AA degree 361 (27.348%) 363 (27.479%)

College graduate 454 (34.394%) 166 (12.566%)

Don’t know 0 (0.000%) 2 (0.151%)

Marital status (%) <0.001

Married 798 (60.455%) 654 (49.508%)

Widowed 45 (3.409%) 35 (2.650%)

Divorced 94 (7.121%) 159 (12.036%)

Seperated 14 (1.061%) 58 (4.391%)

Never married 264 (20.000%) 257 (19.455%)

Living with partner 104 (7.879%) 158 (11.961%)

Don’t know 1 (0.076%) 0 (0.000%)

Medical examination and personal life history <0.001

Body mass index, mean ± SD (Kg/m2) 29.055 ± 6.258 27.954 ± 5.988

Comorbidities (%)

Had at least 12 alcohol drinks/1 year? <0.001

Yes 1008 (76.364%) 1098 (83.119%)

No 312 (23.636%) 223 (16.881%)

Smoked at least 100 cigarettes in life <0.001

Yes 555 (42.045%) 1002 (75.852%)

No 764 (57.879%) 317 (23.997%)

Sex hormones

Testosterone, mean ± SD (ng/dL) 402.229 ± 163.278 448.004 ± 202.493 <0.001

(Continued)
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50th percentiles. We further constructed the subgroup analysis

to identify the stratified associations between blood VOCs and

sex hormones through stratified multivariate logistic regression.

Results showed that there exists no significant difference

between the complete data and the original data. Overall,

multiple analysis results were based on the calculated dataset

as well as Rubin’s rules. All kinds of statistical analyses were

conducted by R software (Version 4.0.2) using the R package

(http://www.R-project.org, The R Foundation) (23). The

software of EmpowerStats provided significant help in the

process of our research (http://www.empowerstats.com, X&Y

Solutions, Inc., Boston, MA, USA). In our study, it is considered

to be of statistical significance when the p-value is less than 0.05.
3 Results

3.1Baseline characteristics of selected
participants, NHANES, USA, 2013–2016

The baseline characteristics of American adult males from

2013 to 2016 were presented in Table 1, which grouped the

population by two groups respectively according to the exposure

of VOCs as well as weighted distribution. We identify the

summary of VOCs as the total exposure and group them into

second classification including low exposure and high exposure. A

total of 2641 participants were included in our study. Variables

included sociodemographic variables, comorbidities, medical

examination and personal life history, sex hormones and blood

VOCs. The distribution of eight specific VOCs exposure showed

statistical difference compared with two exposure groups. Among
Frontiers in Endocrinology 06
male sex hormones in various exposure groups, we found the

distribution of testosterone and SHBG indicated statistical

difference with p values < 0.05, estradiol and TT/E2 showed no

statistical difference with p values > 0.05. Interestingly, the

distribution of age, poverty to income ratio, race, education

level, marital status showed statistical difference compared with

two exposure groups (Table 1).
3.2 Correlation analysis among
specific VOCs

In order to explore the potential co-exposure pattern, we

have constructed a Pearson correlation model among specific

VOCs, and we presented the results as the heatmap in (Figure 2).

We found Blood 2,5-Dimethylfuran was strongly correlated with

Blood Furan (r=0.94). Meanwhile, Blood Benzene was strongly

correlated with 2,5-Dimethylfuran (r=0.67) and Blood Furan

(r=0.67). Strong correlations may indicate co-exposure or co-

toxicity effect. Other correlations were not significant among

these VOCs.
3.3 XGBoost algorithm models reveal the
relative importance of VOCs on
sex hormone

We further constructed machine learning of XGBoost

algorithm models to explore the relative importance of

selected VOCs on sex hormones. We found that blood

Toluene was the most critical variable in testosterone, followed
TABLE 1 Continued

Exposure Low Exposure* High Exposure*

Estradiol, mean ± SD (pg/mL) 24.808 ± 9.655 24.605 ± 9.789 0.591

SHBG, mean ± SD (nmol/L) 43.391 ± 24.753 48.290 ± 28.113 <0.001

Testosterone/Estradiol, mean ± SD 14.346 ± 10.403 14.953 ± 8.393 0.099

Blood VOCS

Blood 2,5-Dimethylfuran, mean (SD) Median (Min-Max) (ng/mL) 0.009 (0.005) 0.008 (0.008-0.057) 0.089 (0.112) 0.055 (0.008-1.450) <0.001

Blood Tetrachloroethene, mean (SD) Median (Min-Max) (ng/mL) 0.039 (0.021) 0.034 (0.034-0.321) 0.120 (0.827) 0.034 (0.034-16.000) <0.001

Blood Benzene, mean (SD) Median (Min-Max) (ng/mL) 0.024 (0.020) 0.017 (0.017-0.285) 0.178 (0.273) 0.109 (0.017-6.290) <0.001

Blood 1,4-Dichlorobenzene, mean (SD) Median (Min-Max) (ng/mL) 0.057 (0.055) 0.028 (0.028-0.372) 1.706 (7.329) 0.085 (0.028-115.000) <0.001

Blood Ethl Acetate, mean (SD) Median (Min-Max) (ng/mL) 0.116 (0.034) 0.112 (0.112-0.407) 0.699 (3.920) 0.112 (0.112-62.300) <0.001

Blood Furan, mean (SD) Median (Min-Max) (ng/mL) 0.018 (0.002) 0.018 (0.018-0.078) 0.056 (0.057) 0.033 (0.018-0.605) <0.001

Blood Toluene, mean (SD) Median (Min-Max) (ng/mL) 0.074 (0.047) 0.060 (0.018-0.317) 0.518 (0.794) 0.340 (0.018-14.700) <0.001

Blood m-/p-Xylene, mean (SD) Median (Min-Max) (ng/mL) 0.049 (0.034) 0.040 (0.024-0.305) 0.284 (0.907) 0.163 (0.024-19.600) <0.001

Our data included Sex hormones, Blood VOCs, Sociodemographic variables, Medical examination and personal life history data and Comorbidities for the secondary analysis.
*We identify the summary of VOCs as the Total exposure and group them into second classification including low exposure and high exposure.
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by blood Benzene, blood 2,5-Dimethylfuran, blood Furan and

blood m-/p-Xylene. For the estradiol, the order of relative

importance was blood Toluene, blood 2,5-Dimethylfuran,

blood 1,4-Dichlorobenzene, blood Benzene and blood m-/p-

Xylene. For the SHBG, blood Toluene was the most important

factor, followed by blood m-/p-Xylene, blood Furan, blood

Benzene and blood 1,4-Dichlorobenzene. Furthermore, blood

Ethl Acetate was the most critical variable on TT/E2 (Figure 3).
3.4 WQS regression analysis of
associations between VOCs and sex
hormones

We constructed WQS regression to analyze the possible

association between selected VOCs exposure and sex hormones

(Figure 4). Results showed positive associations between all

VOCs and testosterone, estradiol and the SHBG. A negative

relationship existed between VOCs and TT/E2. After

adjustment, we found the VOCs of the largest weight in

testosterone, Estradiol and the SHBG effect was blood

Benzene. For the testosterone, estimated weight followed by

blood 1,4-Dichlorobenzene, blood Toluene. For the estradiol, the

estimated weight was followed by blood 2,5-Dimethylfuran and

blood Ethl Acetate. For the SHBG, the estimated weight was

followed by blood m-/p-Xylene and blood Toluene. Moreover,

Blood Ethl Acetate was the largest weight in TT/E2.

Weight quantification of WQS analysis was in the

(Supplementary Table 1).
3.5 Independent associations between
VOCs exposure and sex hormones

The generalized linear (GLM) models were used to explore

the association between the blood VOCs and sex hormones
Frontiers in Endocrinology 07
which is shown in Figure 5. For the sex hormones of

testosterone, we found that blood 2,5-Dimethylfuran, blood

Benzene, blood Furan, and blood Toluene shows positive

associations with statistical significance. In the model 3 (fully

adjusted model), results indicated that testosterone increased by

213.594 (ng/dL) (124.552, 302.636) for each additional unit of

blood 2,5-Dimethylfuran (ng/mL), meanwhile, increased by

339.849 (ng/dL) (166.770, 520.928) for each additional unit of

blood Furan (ng/mL). For the estradiol, we found that only

blood 2,5-Dimethylfuran shows a positive association with

statistical significance. In model 3 (fully adjusted model),

results indicated that estradiol increased by 7.229 (pg/mL)

(2.726, 11.732) for each additional unit of blood 2,5-

Dimethylfuran (ng/mL). For the SHBG, blood 2,5-

Dimethylfuran, blood Furan and blood Toluene show positive

associations with statistical significance. In model 3 (fully

adjusted model), results indicated that SHBG increased by

26.226 (nmol/L) (14.353, 38.098) for each additional unit of

blood 2,5-Dimethylfuran (ng/mL), increased by 49.013 (nmol/L)

(25.963, 72.063) for each additional unit of blood Furan (ng/mL)

and increased by 2.303 (ng/dL) (0.729, 3.877) for each additional

unit of blood Toluene (ng/mL). Multivariate regression models

show no association between TT/E2 and VOCs with statistical

significance. These results suggested that long-time

environmental VOCs exposure as an independent risk factor

may cause males metabolic disorders damage, especially in the

male reproductive gland.
3.6 The association between VOCs and
sex hormones by BKMR analysis

We further constructed BKMR models to assess the

combined effect of specific VOC exposure on sex hormones.

For the sex hormones of testosterone, estradiol and SHBG, we

found a positive overall association among the participants with

above 50th percentile-level VOCs exposure, which was similar to

each other. For the TT/E2, the overall negative association

among the participants with above 50th percentile-level VOCs

exposure. By contrast, multiple VOCs exposure showed a

negative association with sex hormones, including

testosterone, estradiol, SHBG and TT/E2 among those with

below 50th percentile-level exposure (Figure 6). Meanwhile, we

also investigated the exposure-response relationships between

each of the seven VOCs and hormones when the exposure levels

of the VOCs were at their representative 50th percentiles

(Figure 7). We observed the positive nonlinear effects on blood

2,5-Dimethylfuran and testosterone, as well as estradiol.

Negative nonlinear effects on blood Benzene and SHBG, as

well as TT/E2, were also found. The interaction relationship

between the eight specific VOCs and sex hormones was

explored. We investigated the bivariate VOCs-response

function of a single VOC, in which the second VOC was fixed
FIGURE 2

Heatmap of Pearson correlation analysis among specific VOCs.
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at the 25th, 50th and 75th percentiles to see the interactions

between every two VOCs. There was a potential interaction

between blood Benzene and blood m-/p-Xylene in the SHBG

model: the slope for blood Benzene decreased in the case of

blood m-/p-Xylene, increasing from 25th to 75th (Figure 8). The

other slopes of the bivariate VOCs-response function of certain

VOCs were similar at different quantiles of another phthalate

metabolite, with others fixed at their middle levels, which

indicated no interactions.
3.7 Stratified associations between blood
VOCs and sex hormones

We further ANALYZED stratified associations between

blood VOCs and sex hormones in a specific subgroup by BMI

shown in Table 2. Surprisingly, we found the association

between the blood VOCs and the sex hormones concentrated

in the specific subgroup among American adults. Testosterone

increase by 277.712 (ng/dL) for each unit of Blood 2,5-
Frontiers in Endocrinology 08
Dimethylfuran, increase by 106.272 (ng/dL) for each unit of

Blood Benzene, increase by 534.327 (ng/dL) for each unit of

Blood Furan among the population whose BMI above 28 with

statistical difference. Moreover, Testosterone decreased by

-2.753 (ng/dL) for each unit of Blood 1,4-Dichlorobenzene,

increased by 37.528 (ng/dL) for each unit of Blood Toluene

and increase by 326.571 (ng/dL) for each unit of Blood Furan

among the population whose BMI below 25. SHBG changed

with various VOCs exposure in the specific subgroup.

Population with BMI above 28 indicated that SHBG increase

by 33.207 (ng/dL) for each unit of Blood Furan. Among the

population whose BMI below 25, SHBG increase by 6.100 (ng/

dL) for each unit of Blood Toluene and increased by 7.614 (ng/

dL) for each unit of Blood m-/p-Xylene.
3.8 Sensitivity analysis

In the sensitivity analysis, we refitted the models with

urinary levels of mandelic acid and 2-methylhippuric acid and
A B

DC

FIGURE 3

XGBoost models indicate the relative importance of specific blood VOCs on sex hormones and the corresponding variable importance score.
(A) The relationship between testosterone and VOCs. (B) The relationship between estradiol and VOCs. (C) The relationship between SHBG and
VOCs. (D) The relationship between the TT/E2 and VOCs. The X-axis indicates the importance score, the relative number of a variable used to
distribute the data; the Y-axis shows the specific blood VOC.
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blood levels of 1,4-dichlorobenzene, 2,5-dimethylfuran, benzene,

furan, tetrachloroethene, and toluene. The associations of the

studied VOCs with sex hormones were similar to those of the

main analysis (Supplementary Figures 1–3).
Frontiers in Endocrinology 09
4 Discussion

To date, our research was the first to evaluate complex

associations between Specific blood VOCs exposure and Sex
A B

D

E F

G

C

H

FIGURE 4

The WQS regression model estimated weights of each specific blood VOCs associated with sex hormones. (A) Weights in the WQS index
containing specific blood VOCs in the models of male testosterone before adjustment. (B) Weights in the WQS index containing specific blood
VOCs in the models of male testosterone adjust for age, race, education, marital status, body mass index, race, family income to poverty ratio,
smoking and drinking. (C) WQS model of VOCs and male estradiol before adjustment. (D) WQS model of VOCs and male estradiol after
adjustment. (E) WQS model of VOCs and male SHBG before adjustment. (F) WQS model of VOCs and male SHBG after adjustment. (G) WQS
model of VOCs and male TT/E2 before adjustment. (H) WQS model of VOCs and male TT/E2 before adjustment.
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A

B

D

C

FIGURE 5

Multivariate weighted linear model analysis between VOCs and sex hormones. (A) Models of blood VOCs and male testosterone. (B) Models of
blood VOCs and male estradiol. (C) Models of blood VOCs and male SHBG. (D) Models of blood VOCs and male TT/E2. Model 1: adjusts for
none. Model 2: Minimally adjusted model which adjusts for age, race/ethnicity, education level, poverty income ratio, and marital status. Model
3: Fully adjusted model which adjusts for age, race, education, marital status, body mass index (kg/m2), family income to poverty ratio, smoking
and drinking.
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Hormones in American adult males in the 2013-2014 and 2015-

2016 NHANES study populations. Considering the large-scale

sample size, we examined the independent and combined

associations using multiple methods: the generalized linear

models (GLM), XGBoost models, WQS regression analysis and

BKMR analysis. Blood 2,5-dimethylfuran was found to be

significantly and positively associated with testosterone and

SHBG in multivariate weighted linear model analysis and had a

marginal effect on Estradiol and TT/E2 after adjusting for the

potential confounders. The findings of WQS regression suggested

evident associations between co-exposure to all eight blood VOCs

and increased testosterone, Estradiol and SHBG, which were mainly

driven by Blood Benzene, Blood 1,4-Dichlorobenzene, Blood 2,5-

Dimethylfuran and Blood Toluene. The univariate exposure-

response function of the BKMR model revealed nonlinear
Frontiers in Endocrinology 11
relationships of Blood 2,5-Dimethylfuran, Blood Benzene, Blood

Ethl Acetate with testosterone, Blood 2,5-Dimethylfuran and Blood

Benzene with Estradiol and Blood Benzene and Blood

Tetrachloroethene with SHBG. Furthermore, the bivariate

exposure-response function suggested a potential interaction of

Blood Ethl Acetate and Blood Benzene affecting TT/E2. The

consistency of findings from traditional linear regressions and

multipollutant effect analyses revealed that Blood 2,5-

Dimethylfuran exposure might contribute to increased Male

sex hormone.

Previous studies have shown that active smoking increases

levels of different VOCs in the breath and blood (24, 25).

Moreover, it has been reported that 2, 5-dimethylfuran is a highly

selective biomarker of smoking status due to the compound’s ability

to discriminate between social smokers and non-smokers (26).
A B

DC

FIGURE 6

The overall effect of the eight specific blood VOCs exposure on (A)male testosterone, (B) male estradiol, (C) male SHBG and (D) TT/E2 using the
BKMR model. The vertical ordinate showed the estimated change in sex hormones in relation to the eight specific blood VOCs at a particular
percentile (labelled at the X-axis) compared to corresponding medians.
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A

B

D

C

FIGURE 7

Univariate exposure-response relationship between each log-transformed VOCs concentration and estimates of sex hormone all other VOCs
were held at their 50th percentiles. (A) Models of blood VOCs and male testosterone. (B) Models of blood VOCs and male estradiol. (C) Models
of blood VOCs and male SHBG. (D) Models of blood VOCs and male TT/E2. Models adjusted for age, race, education, marital status, body mass
index (kg/m2), family income to poverty ratio, smoking and drinking.
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Moreover, studies have shown that smoking affects male sex

hormones (27). And most studies on SHBG levels agree that

smokers have higher SHBG levels (28, 29), wang etc (30)

demonstrated that smokers had significantly higher total

testosterone and free testosterone levels compared to nonsmokers.

Therefore, the positive correlation between smoking and male sex

hormones may be due to Blood 2,5-Dimethylfuran.

In our study, a nonlinear exposure–response relationship

was found between blood Benzene concentrations and increased
Frontiers in Endocrinology 13
testosterone and Estradiol. Benzene is a chemical pollutant from

natural and man-made sources, widely existing in the indoor

and outdoor atmosphere (31). The Pearson correlation

coefficient showed that a significant inverse correlation

between the blood Benzene and testosterone (32), which is not

consistent with our results. The possible reason is that this study

is the first to examine the relationship between blood benzene

and male sex hormones in humans exposed to natural

conditions, while the above article is about occupational
A B

DC

FIGURE 8

Bivariate exposure-response relationship between VOCs and sex hormones. (A) Models of blood VOCs and male testosterone. (B) Models of
blood VOCs and male estradiol. (C) Models of blood VOCs and male SHBG. (D) Models of blood VOCs and male TT/E2. Each VOCS presented
on the upper coordinate axis and sex hormones index when the corresponding VOCs on the right longitudinal are axis fixed at the 25th, 50th,
and 75th percentiles and the remaining metals are held at the 50th percentiles. Models adjusted for adjusts for age, race, education, marital
status, body mass index (kg/m2), family income to poverty ratio, smoking and drinking.
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TABLE 2 Stratified associations of blood VOCs on sex hormones in the prespecified and exploratory subgroup.

Blood 2,5-
Dimethylfuran N Testosterone Estradiol SHBG Testosterone/Estra-

diol

Stratified by BMI

≤25 774
248.161 (88.477, 407.846)

0.0024
8.324 (0.813, 15.835)

0.0302
19.021 (-2.153, 40.195)

0.0787
3.162 (-3.972, 10.296)

0.3852

25-28 625
120.792 (-53.911, 295.495)

0.1759
2.554 (-7.858, 12.966)

0.6308
21.031 (-3.017, 45.079)

0.0870
0.892 (-7.195, 8.979)

0.8289

>28 1242
277.712 (167.753, 387.672)

<0.0001
3.784 (-3.303, 10.871)

0.2955
12.619 (-1.330, 26.569)

0.0765
5.500 (-1.838, 12.839)

0.1421

Blood Tetrachloroethene N Testosterone Estradiol SHBG Testosterone/Estradiol

Stratified by BMI

≤25 774 5.254 (-16.856, 27.364) 0.6415
-0.302 (-1.339, 0.735)

0.5680
0.155 (-2.766, 3.075)

0.9174
-0.104 (-1.086, 0.878)

0.8356

25-28 625 4.176 (-15.114, 23.466) 0.6715
-0.152 (-1.300, 0.996)

0.7953
1.847 (-0.806, 4.501)

0.1730
0.526 (-0.365, 1.417)

0.2477

>28 1242 7.608 (-9.016, 24.232) 0.3699
0.480 (-0.582, 1.541)

0.3759
0.184 (-1.907, 2.276)

0.8630
-0.317 (-1.417, 0.782)

0.5719

Blood Benzene N Testosterone Estradiol SHBG Testosterone/Estradiol

Stratified by BMI

≤25 774 -23.767 (-75.601, 28.066) 0.3691
-1.727 (-4.156, 0.702)

0.1639
-0.606 (-7.454, 6.243)

0.8624
-0.430 (-2.733, 1.874)

0.7149

25-28 625 8.808 (-74.091, 91.707) 0.8351
-0.141 (-5.075, 4.793)

0.9553
4.110 (-7.307, 15.527)

0.4807
0.871 (-2.960, 4.702)

0.6559

>28 1242
106.272 (38.585, 173.960)

0.0021
1.382 (-2.956, 5.719)

0.5325
5.655 (-2.885, 14.195)

0.1946
1.180 (-3.313, 5.674)

0.6067

Blood 1,4-Dichlorobenzene N Testosterone Estradiol SHBG Testosterone/Estradiol

Stratified by BMI

≤25 774 -2.753 (-5.314, -0.192) 0.0355
-0.139 (-0.259, -0.019)

0.0234
-0.330 (-0.668, 0.009)

0.0565
-0.044 (-0.158, 0.070)

0.4514

25-28 625 0.911 (-1.786, 3.608) 0.5082
0.047 (-0.113, 0.208)

0.5655
-0.071 (-0.443, 0.301)

0.7083
0.039 (-0.086, 0.163)

0.5421

>28 1242 1.253 (-0.340, 2.845) 0.1233
-0.021 (-0.123, 0.080)

0.6816
0.175 (-0.026, 0.375)

0.0875
-0.060 (-0.165, 0.046)

0.2663

Blood Ethl Acetate N Testosterone Estradiol SHBG Testosterone/Estradiol

Stratified by BMI

≤25 774 -1.659 (-5.324, 2.007) 0.3754
0.013 (-0.159, 0.185)

0.8864
0.027 (-0.457, 0.512)

0.9124
-0.098 (-0.261, 0.064)

0.2369

25-28 625 -5.940 (-14.035, 2.156) 0.1509
-0.305 (-0.787, 0.177)

0.2148
-0.676 (-1.792, 0.440)

0.2353
-0.183 (-0.558, 0.191)

0.3378

>28 1242 -2.285 (-6.028, 1.458) 0.2317
0.007 (-0.232, 0.247)

0.9515
0.006 (-0.465, 0.477)

0.9796
-0.127 (-0.374, 0.121)

0.3165

Blood Furan N Testosterone Estradiol SHBG Testosterone/Estradiol

Stratified by BMI

≤25 774
326.571 (11.124, 642.019)

0.0428
4.143 (-10.688, 18.975)

0.5842
33.408 (-8.296, 75.112)

0.1168
4.866 (-9.182, 18.913)

0.4974

(Continued)
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exposure. Importantly, we found Blood 2,5-Dimethylfuran in

VOCs was the most significant effect on sex hormones in male.

Testosterone increased by 213.594 (ng/dL) (124.552, 302.636)

and estradiol increased by 7.229 (pg/mL) for each additional unit

of blood 2,5-Dimethylfuran (ng/mL).

In industry, 1,4-Dichlorobenzene is used as a chemical

intermediate for 1,2,4-trichlorobenzene, polyphenylene sulphide

resin and dyes (33), 1, 4- Dichlorobenzene is prone to

sublimation. Therefore, 1, 4- Dichlorobenzene is mainly exposed

through inhalation (34). It is reported that exposure to 1, 4-

Dichlorobenzene has been shown to increase white blood cell

count and ALT activity (34). Moreover, research indicated that 1,

4- Dichlorobenzene may result in changes in endocrine functions

and may affect the reproductive success of this and other species

(35). However, there are no studies on the relationship between 1, 4-

Dichlorobenzene and male sex hormones. We are the first study to

suggest that 1, 4- Dichlorobenzene is negatively correlated with

estradiol and TT/E2, with a large weight.

Also, our study has several advantages. Firstly, the individual

and overall effects of blood VOCs exposure on male sex

hormones were evaluated using WQS regression and the

BKMR model, two methods for assessing the effects of

multiple pollutants. In addition, the BKMR model was used to

estimate the relationship between the nonlinear exposure effects
Frontiers in Endocrinology 15
and interactions of VOCs and male sex hormones. However,

some limitations should also be noted. First, the study was based

on data from the U.S. population, and there was a lack of data

from other regions; Second, our study used a cross-sectional

design, which limits causal inferences about the relationship

between blood VOCs and male sex hormones studied. More

prospective studies are needed to validate our findings. Third,

VOCs have a relatively short half-life. There may be a time lag

between male sex hormones and blood VOCs exposure. Forth,

the weight factor was not taken into the BKMR model due to a

lack of weight arguments, which may influence the extension of

the result from the BKMR model. Finally, Residual confounding

of unmeasured factors may bias our results to some extent.
5 Conclusion

In all, the WQS regression and XGBoost models were applied

to find the relative important exposure factor to sex hormones

among US adults. BKMR models reveal that Co-exposure to the

VOCs was associated with increased TT, E2 and SHBG were the

main contributors. GLM models revealed that specific VOC

exposure as an independent risk factor might cause males

metabolic disorders damage. We also identified the high-risk
TABLE 2 Continued

Blood 2,5-
Dimethylfuran N Testosterone Estradiol SHBG Testosterone/Estra-

diol

25-28 625
260.056 (-61.475, 581.586)

0.1134
0.393 (-18.784, 19.570)

0.9680
34.551 (-9.754, 78.856)

0.1269
6.068 (-8.816, 20.952)

0.4245

>28 1242
534.327 (305.695, 762.959)

<0.0001
2.288 (-12.432, 17.008)

0.7607
33.207 (4.266, 62.148)

0.0247
11.408 (-3.829, 26.644)

0.1425

Blood Toluene N Testosterone Estradiol SHBG Testosterone/Estradiol

Stratified by BMI

≤25 774 37.528 (8.544, 66.512) 0.0114
0.545 (-0.820, 1.909)

0.4343
6.100 (2.280, 9.919)

0.0018
-0.051 (-1.344, 1.242)

0.9381

25-28 625 3.290 (-19.239, 25.818) 0.7748
-0.564 (-1.904, 0.776)

0.4099
-0.272 (-3.376, 2.832)

0.8637
0.477 (-0.564, 1.518)

0.3693

>28 1242 5.267 (-7.596, 18.130) 0.4224
-0.322 (-1.143, 0.499)

0.4420
0.374 (-1.244, 1.992)

0.6503
0.022 (-0.829, 0.873)

0.9597

Blood m-/p-Xylene N Testosterone Estradiol SHBG Testosterone/Estradiol

Stratified by BMI

≤25 774 53.465 (-1.598, 108.528) 0.0574
-0.905 (-3.493, 1.683)

0.4932
7.614 (0.345, 14.883)

0.0404
0.012 (-2.440, 2.464)

0.9925

25-28 625 -2.973 (-17.777, 11.832) 0.6941
-0.279 (-1.160, 0.602)

0.5346
-0.285 (-2.325, 1.755)

0.7842
0.328 (-0.356, 1.011)

0.3482

>28 1242 3.607 (-8.008, 15.221) 0.5429
-0.357 (-1.098, 0.384)

0.3452
-0.447 (-1.908, 1.014)

0.5486
0.583 (-0.184, 1.351)

0.1367

Models adjusted age, race/ethnicity, education level, marital status, poverty to income ratio, Had at least 12 alcohol drinks/1 year, smoked at least 100 cigarettes in life.
Bold values indicated statistical difference with p values < 0.05.
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group on the VOCs exposure. Our research was a cross-sectional

design. Further prospective and experimental studies are worth

conducting to verify our findings and clarify the underlying

biological mechanisms.
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