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Wound healing is a programmed process of continuous events which is impaired

in the case of diabetic patients. This impaired process of healing in diabetics leads

to amputation, longer hospitalisation, immobilisation, low self-esteem, and

mortality in some patients. This problem has paved the way for several

innovative strategies like the use of nanotechnology for the treatment of

wounds in diabetic patients. The use of biomaterials, nanomaterials have

advanced approaches in tissue engineering by designing multi-functional

nanocomposite scaffolds. Stimuli-responsive scaffolds that interact with the

wound microenvironment and controlled release of bioactive molecules have

helped in overcoming barriers in healing. The use of different types of

nanocomposite scaffolds for faster healing of diabetic wounds is constantly

being studied. Nanocomposites have helped in addressing specific issues with

respect to healing and improving angiogenesis. Method: A literature search was

followed to retrieve the articles on strategies for wound healing in diabetes

across several databases like PubMed, EMBASE, Scopus and Cochrane database.

The search was performed in May 2022 by two researchers independently. They

keywords used were “diabetic wounds, nanotechnology, nanocomposites,

nanoparticles, chronic diabetic wounds, diabetic foot ulcer, hydrogel”.

Exclusion criteria included insulin resistance, burn wound, dressing material.

KEYWORDS

nanocomposites, scaffolds, hydrogen-based scaffolds, Chitosan-based scaffolds,
diabetic wound healing
Abbreviations: AgNP, Silver Nanoparticle; PVA, Polyvinyl alcohol; HA, Hydroxyapatite; VEGF, Vascular

Endothelial Growth Factor; CD31, Cluster of differentiation 31; CuNP, Copper nanoparticle; MnO2,

Manganese dioxide; PCL, Polycaprolactone; ROS, Reactive Oxygen Secies; MMP, Matrix

Metalloproteinases; MAPk, Mitogen-Activated Protein kinases.
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Introduction

Nanomedicine is one of the fastest-growing fields offering

several avenues for therapy, diagnostics, delivery systems and

improving efficiency (1). The superior properties of the ‘nano’

components have been used in tissue engineering for the repair

and regeneration of several organs and tissues. Wound healing is

a normal process involving a series of steps; however it is affected

by a number of variables like age, obesity, stress, diseases, habits,

infections, trauma etc. (2). But in certain conditions, healing is

halted at the second phase, i.e., the inflammatory phase which

could be due to chronic conditions. Many diseases that cause

impaired blood flow, such as in the case of diabetic foot ulcers or

pressure ulcers are the contributing factors. Common wound

pathogens, nosocomial infections are also known to hinder the

progression of healing to the third phase, which is proliferation.

Several factors are attributed to patients with diabetes mellitus

such as the improper function of macrophages and growth

factors, and low blood circulation; the major factor for delayed

wound healing (3). The incidence of diabetes is seen to be

increasing at a steady rate globally, with a mortality rate of 1.5

million deaths in 2019. The indirect death due to diabetes was

460,000 due to kidney disease, and 20% due to cardiovascular

complications (4). Diabetic patients are prone to develop

diabetic foot ulcers and the percentage affected is more than

20% (5). To treat such chronic wounds, newer therapies such as

cell/gene therapy, and engineered biomaterials are sought after

due to unsuccessful treatment modalities. Tissue engineering has

led researchers to explore several new skin substitutes using

natural, synthetic, and semi-synthetic polymers. They are often

used in combination with biomolecules, proteins, and

polysaccharides (6). To overcome the existing limitations, they

have been combined with nanomaterial to form a highly

functional, multi-modal, smart nanocomposite to treat chronic

wounds such as in the case of diabetes (7). The major advantages

of nanotherpay are due to the charge, and large surface area to

volume ratio that enhances the interaction with the target area

(8). The ability to encapsulate and control the drug release by

attaining a sustained release of the desired biomolecules leads to

accelerated healing (9). Figure 1 represents the types of

nanocomposites and its advantages in wound healing.

Various factors, including pH, temperature, blood sugar

level, and oxygen saturation, are important in the healing of

wounds. Scaffolds have attracted interest recently as a novel

dressing and provide an innovative perspective on tissue

regeneration (10, 11). Researchers state that the design of the

dressing material spatially is of utmost importance for a

biomaterial to function as an effective regenerative scaffold,

which is now possible through nanocomposites which have

been summarised in this review.
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Nanoparticle based composite
scaffold for enhanced healing

While researchers are experimenting with effective and

scarless wound healing strategies, wound management in

diabetes itself is a tedious process for the patients and the

healthcare sector. So, several advanced techniques and

technology have been employed in the remedial measures for

diabetic wounds.

Several types of metal nanoparticles, metal oxide

nanoparticles, nanotubes, and polymeric nanoparticles have

been used in wound healing. Because of their innate

antimicrobial property, the silver nanoparticle has been

extensively used in wound care management. It is strikingly

important to note that silver nanoparticles are effective against

nosocomial infections and multidrug-resistant pathogens (12,

13). At a concentration of 50 mg/ml silver nanoparticles were

observed to destruct the bacterial cell membrane and kill S.

aureus and E. coli (14).

A nanocomposite was fabricated with polyethylene glycol

diacrylate, silica, bioactive glass nanoparticles, sodium alginate

and copper. This silica-based nanocomposite was found to be an

excellent injectable with elastomeric, biomimetic, and

antibacterial properties. The regeneration of blood vessels was

observed with high collagen deposition, and VEGF expression in

a full-thickness diabetic wound model (15). Table 1 indicates the

different types of nanocomposites employed for diabetic

wound healing.

Nitric oxide (NO) induces the formation of blood vessels

and the migration of endothelial cells by eNOS or MAPk

pathways. Zinc oxide is known to induce NO production,

hence several scaffolds for wound healing have incorporated

ZnO NP’s nanofibers fabricated using poly-caprolactone with

ZnO NP’s which exhibited high proliferation of fibroblast cells.

A higher rate of vascular regeneration was observed because of

the expression of VEGF and FGF (27). Cerium oxide

nanoparticles were used in combination with microRNA

(miR-146a) for faster healing in diabetic wounds. The

synergistic role of scavenging the free radicals and modulating

the inflammatory pathway proved to increase the synthesis of

collagen, thereby higher rate of angiogenesis and low

inflammation; this aided in a significantly higher rate of

wound closure (28).

Poly-N-acetyl-glucosamine based nanofibrous scaffold was

prepared to overcome the limitations in treating a diabetic

wound. This bioactive scaffold was found to enhance cell

metabolism, and migration of endothelial cells with a higher

rate of wound closure in a full- thickness diabetic mice model.

The gene expression of uPAR, VEGF, Il-1 and MMP responsible

for migration, angiogenesis, inflammatory activity, and matrix
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TABLE 1 Types of nanocomposites employed for diabetic wound healing.

Nanocomposite Role in wound healing Reference

Polyurethane nanoparticles Induces angiogenesis, cell proliferation (16)

AuNPs with epigallocatechin and
lipoic acid

Regulated angiogenesis and inflammation to accelerate faster healing (17)

Bioactive glass with Cu Stimulation of CD31, HIF-1a, VEGF expression. Antibacterial activity (18)

Silicate Bioglass NPs Increased proliferation of epithelial cells and nitric oxide expression that enhanced angiogenesis (19)

45S5 bioglass with Strontium and
Copper

Aided the differentiation of stem cells to vascular endothelial cells, formation of tubular vein endothelial
cells.

(20)

CuNPs in carbon nanofibers Upregulation of placental growth factor, VEGF, hypoxia inducible growth factor. Increased vascularisation
and wound closure rate

(21)

CuNPs in hyaluronic acid hydrogel Upregulation of the growth factor, VEGF. Promoted angiogenesis and collagen deposition (22)

PCL nanofibers with curcumin Distinct granulation tissue formation. Increased fibroblast proliferation, collagen content, and faster
regeneration.

(23)

AgNPs in hyaluronic acid
nanofibers

Antibacterial activity. Accelerated healing in wounds (24)

Cellulose nanocrystals in PLGA
fibers

Inflammatory cytokines, IL-1 and IL-6 were reduced. Higher rate of epidermal and dermal regeneration. (25)

Chitosan in PVA nanofibers Upregulation of HIF-1 and VEGF. Improved interaction among endothelial cells and fibroblasts (26)
F
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FIGURE 1

Types of nanocomposites and its advantages as a wound dressing.
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remodelling was observed (29). Another study found that short-

fibre poly-N-acetyl glucosamine nanofibers were used alongside

the vacuum-assisted closure of complex wounds. This aided in

controlling the blood loss by acting as a hemostatic agent

activating platelets and better granulation. The presence of

collagen I and the wound contraction rate was significant in

the treated groups (30).
Stimuli-responsive scaffold for
modulated healing process

The ulcers in diabetic wounds are caused by oxidative stress,

so researchers prepared Prussian blue nanoparticles (PBNP’s) to

scavenge the free radicals generated at the wound site. This

PBNP was encapsulated in a heat-sensitive gel using poly (d, L-

lactide)-poly (ethylene glycol)-poly (d, L-lactide) (PDLLA-PEG-

PDLLA) hydrogel (PLEL). It was confirmed that the

nanoparticle was able to protect the cells and mitochondria

against reactive oxygen species (ROS). In an animal model, it

was found to progress diabetic wound healing at a faster rate,

reduce ROS production, and enhance cell survival and growth

simultaneously reducing the interleukin and tumor necrosis

factor (31).

A pH-responsive scaffold was developed which aided in

faster healing with less scar formation. This injectable scaffold

was prepared with polysaccharides and exhibited antibacterial

activity against multi-drug resistant bacteria. In vivo studies

showed that the exosome released promoted angiogenesis in

the full-thickness wound (32). A dual responsive scaffold that

modulates the release based on pH and metformin release was

prepared using PEG. The active components encapsulated were

phenylboronic acid, benzaldehyde, L-arginine, and chitosan

which exhibited anti-inflammatory effects and promoted

angiogenesis. The synergistic healing of metformin and

graphene oxide was observed in a rat model with type II

diabetic foot ulcer. Based on the stimulus it was found to

release the drug, metformin which was faster healing in

chronic diabetic athletic wounds (33).

Silver nanoclusters were conjugated with vancomycin in a

gelatin-based hydrogel along with nimesulide that is pH

sensitive. This complete biomaterial containing phenylboronic

acid and polyvinyl alcohol also contained ROS and exhibited

anti-inflammatory action. It was found to be biocompatible, with

excellent cell-adhesive behaviour and aided healing in wounds

with infection. Because of its sensitive and dual-responsive

properties, hydrogel was found to be good for treating chronic

diabetic wounds (34). A thermos-responsive scaffold that is skin-

friendly and designed for infants and diabetic patients with

sensitive skin was attempted by researchers. This non-irritable

hydrogel patch was designed with a protein-polyphenol complex

that was activated upon reaction to the body temperature upon
Frontiers in Endocrinology 04
application. This was found to be skin-friendly and gentle even

for a prolonged period of use because of its immune-modulatory

action (35).
Hydrogel-based scaffold

Hydrogels are the most preferred dressing agent for wound

healing owing to their capability to retain moisture at the site of

wounds, agent because hydrogels are designed to hold moisture

at the wound surface, and create the best setting for healing,

balancing skin hydration and in the removal of necrotic tissue.

They could be prepared with ease providing sustained drug

release. Both natural and synthetic polymers could be used in the

preparation of hydrogels. These may include, fibrin, hyaluronic

acid, cellulose derivatives, copolymers and others (36).

Hydrogels are exceptional in providing a humid atmosphere for

the healing of wounds and ensure permeable water vapours with

microbial entry prevention at the wound site. A heparinised PVA-

based hydrogel formulated demonstrated significant antibacterial

activity without any cellular toxic effects (37). Another hydrogel

containing coumestrol/hydroxypropyl-b-cyclodextrin was

developed using hydroxypropyl methylcellulose. The insoluble

coumestrol (helps with photoaging; improves elasticity of skin

during menopause) was solubilized using hydroxypropyl-b-
cyclodextrin to obtain a hydrogel which led to faster wound

healing process through the better propagation of cells. This also

demonstrated good cell adhesion and compatibility as observed

through Wistar rats (38). A gel-based hydrogel was formulated

using adipose-derived stem cells as a suitable wound healing agent

that was obtained from both mouse and porcine models. These in

vivo models demonstrated excellent healing of wounds (39). Topic

nitric oxide helps in the healing process of acute and chronic

wounds. An antibacterial peptide was developed based on this,

which could self-assemble with respect to changes in pH, and could

lead to the development of hydrogel with improved bactericidal

activity (40). A ZnO-based nanocomposite hydrogel demonstrated

significant antibacterial properties and was found biocompatible

and safe with a faster rate of wound healing (41). Though there are

many ongoing research on hydrogels related to skin repair, there is

another group of researchers who developed hydrogels containing

HA and carboxylated CS that mimics skin with high mechanical

strength. The in vitro studies on L929 cells demonstrate superior

biocompatibility with improved cell proliferation. Further, in vivo

studies also demonstrated a faster healing process and suggested

that this hydrogel as an ideal candidate suited for wound recovery

and healing (42). Though there are many ongoing research on

hydrogels used as wound dressing agent, we would like to identify

the importance of hydrogels as a potential wound dressing agent

with reference to diabetic wounds.

Diabetes being a chronic disease is yet challenging to cure and

the medical requirements are inadequate (43). The skin wounds
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caused by diabetes do not get completely healed due to limited

blood supply and deprived antimicrobial capability with the poor

inflammatory response (44). Among 750,000 emerging cases of

diabetic foot ulcer in America, nearly 10% of cases involved

amputation of limbs every year (45). Many measures are taken

for treating wound healing due to diabetes such as growth factor

and cellular-based therapy but the cost was too high (46–48). So,

there has been an increasing interest in bioactive biomaterials as a

potent wound dressing agent for treating in case of diabetic-based

wounds (49). Some of the biomaterials have progressed to clinics

such as biomedical hydrogels, films and ointments, and others (50).

On the other hand, multifunctional biomaterials are developed with

potent antioxidants, antibacterial activity and hemostasis (51–53).

Hydrogel biomaterial-based dressings are also developed with their

property similar to that of the extracellular matrix and this

demonstrated good wound healing (54–58).

Due to vascular impairment, diabetes-related wound healing

and skin regrowth remain a major concern. To overcome this, a

silica-based nanocomposite hydrogel scaffold that could promote

both wound healing and skin regeneration in diabetic conditions

was developed by enhancing early angiogenesis with no bioactive

factors. This injectable nanocomposite exhibits an excellent healing

pattern with superior antibacterial properties. Also, enables viability,

growth, and angiogenesis of endothelial progenitor cells through in

vitro studies. In vivo studies demonstrated restoration of blood

vessels through HIF-1a/VEGF and collagen deposition in diabetic

wound. It was also suggested to have its application in regenerative

medicine (15). Several tissue engineering strategies using

nanobiomaterials for vascular regeneration have been reported

(59). A multifunctional sprayable cross-linking bioadhesive

hydrogel-based nanocomposite was developed for diabetic wound

healing. Here, Kappa-carrageenan being the hydrogel matrix,

different concentrations of modified ZnO nanoparticles were

incorporated to improve their mechanical properties with good

antibacterial activity. To this, L-glutamic acid was also loaded into

this network to enhance the rate of wound healing. This

biocompatible nanocomposite also demonstrated elasticity similar

to human skin with adhesive nature and clotting capability. The in

vivo studies further demonstrated significant wound healing at a

faster rate without any infection (59). A 2-D nanoclay (Laponite

RD)/polymer-based nanocomposite hydrogels were developed as a

substitute for treating foot ulcers due to diabetes. It was also

suggested that enzymes or active compounds loaded to the

hydrogel could help in the healing of diabetic foot ulcers through

their antibacterial activity (60). Another research on zwitterionic

poly (sulfobetaine acrylamide) nanocomposite that was composed

of hectorite nanoclay demonstrated as a potent chronic wound

dressing agent. This hydrogel exhibited insignificant cytotoxicity

against NIH-3T3 fibroblast and was resistant against the adsorption

of BSA and certain bacterial strains. In vivo studies on both normal

and diabetic wounds were conducted in mice in comparison with

commercially available dressings. Histology confirmed significant

re-epithelialization and faster healing of diabetic wounds than the
Frontiers in Endocrinology 05
commercial products (61). A bioactive HQB nanocomposite

hydrogel was developed through the cross-linking of modified

hyaluronic acid with quaternized chitosan coated with bioactive

glasses. This demonstrated superior wound healing properties in

diabetic-induced rats and suggested it to have a good prospect in

clinical application (62). A cost-effective and simple dual-network

hydrogel comprised of MnO2 nanosheets was developed from silk

fibroin and carboxymethyl cellulose. This helped in angiogenesis,

reduced inflammation, and had remarkable healing rates

comparable to commercial dressing through in vivo studies (63).

An alginate and Eudragit nanoparticle-based nanocomposite

hydrogel comprising edaravone was produced for the highest

ROS sequestration to overcome chronic inflammation and

delayed wound healing in diabetes. A lower dosage of this

hydrogel enhanced wound healing, and a higher dosage impeded

the healing process in diabetic mice and suggested dosage levels

played a key role in the healing process (64). Some examples of

nanoparticle-based wound dressing materials for which clinical

trials are undertaken is listed in Table 2.
Chitosan-based scaffolds

The major risk associated with patients affected with diabetes

includes delayed wound healing and amputation. This is mainly due

to the reduced tissue blood circulation causing hypoxia and the

associated risks. A PVA/Chitosan-based nano fibre wound dressing

was developed with high antimicrobial activity, improved vapour

transmission rate, good odour-absorbing capacity and no cytotoxic

effects; and was proved to accelerate the diabetic wound healing

when tested in both diabetic and non-diabetic rats (72). A safe, cyto-

compatible, epidermal growth factor-modified curcumin-

incorporated chitosan nano-spray was developed that

demonstrated accelerated wound healing properties, improved

angiogenesis, and re-epithelialization with superior antibacterial

effects in rats. It was further suggested that this nano-spray could
TABLE 2 List nanocomposite scaffolds undergoing/completed
clinical trials.

Nanocomposite Wound type Reference

Hydrogel/Nano Silver-based Dressing Diabetic foot
wound

(65)

Wound Dressing FibDex
(Nanofibrillar cellulose)

Dermal burn (66)

AgNP Partial thickness
burns

(67)

Ag nylon Surgical wound (68)

AgNP- Acticoat Fresh burn (69)

Hydrofibre of Ag Pilonidal sinus (70)

Nanocrystalline silver Leg ulcer (71)
f
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help in the treatment of diabetic wounds and other skin injuries

(73). A formulation composed of poly lactic acid/chitosan

nanoscaffolds encapsulating cod liver oil was developed and

characterized which demonstrated significant wound healing

property to be used in the treatment of the most complicated

disorder, diabetic foot ulcers, seen in diabetic patients (74). A topical

formulation of lecithin-chitosan nanoparticles incorporated with

melatonin was developed with desirable properties such as

fibroblast induction, collagen deposition and promotion of

angiogenesis. The formulation demonstrated4 accelerated wound

closure in diabetic rats (75). A nanocomposite sponge comprised of

chitosan, hyaluronic acid and nano-silver was developed against

many antibiotic-resistant bacteria including methicillin-resistant S.

aureus. The excellent antibacterial action exhibited by this

nanocomposite sponge made it a suitable dressing agent for

diabetic foot ulcers with mild toxicity towards mammalian cells

(76). A hydrogel membrane composed of polyvinyl alcohol, starch,

chitosan and nano zinc oxide was prepared and was found effective

as a potent wound dressing agent in initial wound healing stages

through in vivo studies in rats and exhibited wide-spectrum

antibacterial action through in vitro studies (77). An injectable

nanocomposite composed of curcumin, chitosan and alginate was

identified as a promising wound dressing agent for wound recovery.

The in vivo studies in rats demonstrated that the nano-curcumin

based nanocomposite showed significant collagen deposition and

epidermis re-epithelialization in wounds (78).

Although there is a gap in the translation of nanomedicine,

the use of computer-aided analysis has become evident in this

area. This has led researchers get a clear vision on the behaviour

and application of nanoparticle- based therapy in reproductive

biology (79), transporting drugs across biological barriers like

the blood-brain barrier (80, 81). Another important aspect with

respect to the design and use of nanotherapeutics is the toxicity;

the understanding of which has been highly enhanced using

computational biology (82). Several machine-learning

approaches have been explored by the researchers that gives a

magnified view of the interaction of the nanomaterial with the

cells. This enables tailor-made and non-toxic application of

nanomedicine to improve healthcare (83).
Conclusion and future perspective

Several impeding factors in healing chronic wounds exist

using conventional treatment methods. Novel strategies have

been designed to overcome them using nanotechnology has

proved to be promising. The advanced biomaterials developed
Frontiers in Endocrinology 06
with cellular and acellular scaffolds in conjunction with

nanomaterials of suitable nature would prove to be an efficient

wound care management in diabetic ulcers. The ability to

modulate and control the release of active compounds and

drugs has added advantage of controlling infection in these

wounds significantly shortening the stay at the hospital for

patients. An in-depth analysis of the factors that promote

angiogenesis and wound closure at a faster rate by the use of

nanocomposite biomaterials would help in translating these

products to patients. Production of such tailor-made

biomaterial constructs with specific factors and design would

be the desired wound treatment strategy specifically in chronic

wounds. With the recent advancements in the field of artificial

intelligence the design of scaffolds could be customised to evade

toxicity and meet the scrupulous needs that exist in regenerative

therapy. This would help researchers validate and predict the

outcome of their research without the sacrifice of many animals,

avoid the strain of extraneous tasks involving the toxicological

assessment. So, by means of integrating artificial intelligence and

the lab-scale studies will yield effective translation of

nanotherapeutics in wound care management.
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