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Objective: Primary bilateral macronodular adrenal hyperplasia (PBMAH), a rare

cause of Cushing syndrome, is often diagnosed as a bilateral adrenal

incidentaloma with subclinical cortisol production. Circulating microRNAs

(miRNAs) are a characteristic of adrenocortical adenomas, but miRNA

expression in PBMAH has not been investigated. We aimed to evaluate the

circulating miRNA expression in patients with PBMAH and compare them with

those in patients with non-functioning adrenocortical adenoma (NFA) and

cortisol-producing adrenocortical adenoma (CPA).

Methods: miRNA profiling of plasma samples from four, five, and five patients

with NFA, CPA, and PBMAH, respectively, was performed. Selected miRNA

expressions were validated using quantitative RT-PCR.

Results: PBMAH samples showed distinct miRNA expression signatures on

hierarchical clustering while NFA and CPA samples were separately clustered.

PBMAH was distinguished from the adenoma group of NFA and CPA by 135

differentially expressed miRNAs. Hsa-miR-1180-3p, hsa-miR-4732-5p, and

hsa-let-7b-5p were differentially expressed between PBMAH and adenoma

(P = 0.019, 0.006, and 0.003, respectively). Furthermore, PBMAH could be

classified into two subtypes based on miRNA profiling: subtype 1 with a similar

profile to those of adenoma and subtype 2 with a distinct profile. Hsa-miR-631,

hsa-miR-513b-5p, hsa-miR-6805-5p, and hsa-miR-548av-5p/548k were

differentially expressed between PBMAH subtype 2 and adenoma (P = 0.027,

0.027, 0.027, and 1.53E-04, respectively), but not between PBMAH, as a whole,

and adenoma.
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Conclusion: Circulating miRNA signature was identified specific for PBMAH.

The existence of subtype-based miRNA profiles may be associated with the

pathophysiological heterogeneity of PBMAH.
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Introduction

Primary bilateral macronodular adrenocortical hyperplasia

(PBMAH) is a rare cause of ACTH-independent Cushing

syndrome. It is usually identified by adrenal imaging and is

characterized by bilateral enlarged adrenal masses (symmetric or

asymmetric) composed of multiple bilateral macronodules

(>10 mm) with hyperplasia and/or inter-nodular atrophy (1).

PBMAH is being diagnosed at an increasing rate due to the

incidental detection of clinically mild or asymptomatic cases

during abdominal imaging performed for unrelated reasons.

Currently, PBMAH is characterized by high clinical

heterogeneity, with respect to both severity of cortisol excess

and morphological appearance of the adrenals (2). A large

cohort study reported that among the patients with PBMAH,

43% had clinically overt Cushing syndrome and 47% had a

subclinical phenotype (3). With the development of gene

sequencing technology, gene mutations related to familial and

sporadic PBMAH, such as ARMC5 mutations have been

discovered (3–7). However, the involvement of ARMC5

inactivation during PBMAH pathogenesis is not fully

understood (8). Patients with PBMAH can generally be grouped

into two categories: those with multiple adenomas and inter-

nodular atrophic cortical tissue, and those with diffuse hyperplasia

and no residual normal or surrounding atrophic adrenal cortex (9,

10). Although it was reported that some patients with familial

PBMAH harboring MEN1 and APC mutations showed the

phenotype of the first group (9), the detailed relationship

between the sub-groups and their clinical and molecular

features remains to be elucidated.

MicroRNAs (miRNAs) are small, non-protein-coding RNA

molecules that are 16–24 nucleotides long in their single-stranded

mature form. More than 50% of human protein-coding genes are

predicted to be modulated by miRNAs (11). miRNAs, as

epigenetic regulators, are mainly involved in the post-

transcriptional regulation of gene expression (11). The

development of next-generation sequencing techniques has

provided rich information on miRNA profiles in adrenocortical

tumor tissues. For example, miRNAs that play functional roles in
02
adrenal tumorigenesis, including benign and malignant

adrenocortical tumors have been identified (12). Further,

miRNA profiles distinct from that of tumor tissues were

observed in benign and hyperfunctioning adrenocortical tumors

such as aldosterone-producing adenoma (APA) (13) and cortisol-

producing adenoma (CPA) (14). In addition to the evaluation of

miRNA expression in tumor tissues, recent studies have detected

specific circulating miRNAs in blood samples of patients with

APA (15) and CPA (16). Thus, circulating miRNA signatures of

hyperfunctioning adrenocortical tumors have been suggested to

be useful as non-invasive biomarkers. They may provide insights

into the pathophysiological roles of circulating miRNAs in

hyperfunctioning phenotypes. miRNA expression of bilateral

adrenal hyperplasia has been examined (17, 18). Recently,

specific miRNA profiles of sporadic and familial PBMAH tissue

samples have been reported and their implications in pathogenesis

have been suggested (19). However, circulating miRNAs of

patients with PBMAH have never been reported. The aim of

this study was to elucidate the signatures of circulating miRNAs

specific in patients with PBMAH compared to those in patients

with other forms of adrenocortical tumors, including CPA and

non-functioning adenoma (NFA). miRNAs that are distinct in

PBMAH samples can distinguish them from other forms of

adrenocortical tumors and would provide new insights into the

unique pathophysiological features of PBMAH.
Materials and methods

Patient cohort

The study protocol was approved by the Ethics Committee

for Human Research at Tokyo Medical and Dental University

(Tokyo, Japan) (G2020-027), Kyoto University (Kyoto, Japan)

(G1186-3), and the NHO Kyoto Medical Center (19-005, 18-

008). Written informed consent was obtained from all the

participants. Plasma samples were obtained from four patients

with NFA, five patients with CPA, and five patients with

PBMAH. The hormonal profile was examined in all cases, and
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the diagnosis of hypercortisolism was based on the current

guidelines (20, 21). We included only one patient with overt

Cushing syndrome in the CPA and PBMAH groups. The clinical

characteristics of the three cohorts are summarized in Table 1.

Patients with PBMAH had no family history of endocrine

disease including PBMAH and suggested sporadic forms.

Plasma samples were collected prior to surgery in operated cases.
Sample preparation

EDTA-anticoagulated blood was collected from the patients

in the morning and processed for plasma isolation immediately

after blood collection. Plasma was obtained by centrifuging the

whole blood at 1000 × g for 10 min at 4°C. All extracted plasma

samples were stored at −80°C until further application. Total

RNA was isolated from plasma using the miRNeasy Micro Kit

(QIAGEN, Valencia, CA, USA).
miRNA profiling analysis

The total RNA obtained from each sample was subjected to a

sequencing library construction procedure using the QIAseq

miRNA Library Kit (QIAGEN, Valencia, CA, USA) according to

the manufacturer’s protocols. The QIAseq miRNA Library Kit

integrates a unique molecular index (UMI) system, which

enables accurate counting of unique miRNA molecules in

samples. The quality of the libraries was assessed using an

Agilent 2100 Bioanalyzer High Sensitivity DNA Kit (Agilent

Technologies, Santa Clara, CA, USA). The equally pooled
Frontiers in Endocrinology 03
libraries were sequenced using NextSeq 500 (Illumina, Inc.,

San Diego, CA, USA) as 76-base-pair (bp) single-end reads.

The QIAseq miRNA library kit adopts a UMI-system,

enabling unbiased and accurate quantification of mature

miRNAs. The original FASTQ files generated by NextSeq were

uploaded to the Qiagen GeneGlobe Data Analysis Center

(https://geneglobe.qiagen.com) and aligned to miRBase v21

(http://www.mirbase.org) and piRNABank (http://pirnabank.

ibab.ac.in/). All reads assigned to a particular miRNA or

piRNA were counted and the associated UMIs were

aggregated to count unique molecules. A matrix of the UMI

counts of miRNA or piRNA was subjected to downstream

analyses using the StrandNGS 3.4 software (Agilent

Technologies, Santa Clara, CA, USA). UMI counts were

quantified using the trimmed mean of M-value (TMM)

method (22). miRNAs were annotated using miRBase

(Release 21).
miRNA qRT-PCR

Reverse transcription (RT) was performed on the miRNAs

using a TaqMan Advanced miRNA cDNA Synthesis Kit

(Applied Biosystems, Thermo Fisher Scientific, Waltham, MA,

USA) according to the manufacturer’s protocol. The protocol

consisted of four steps: (1) addition of a poly(A) tail, (2) adaptor

ligation, (3) reverse transcription to cDNA, and (4) miRNA

amplification. The converted cDNA templates were diluted for

miRNA expression analysis using the QuantStudio 7 Flex Real-

Time PCR System (Applied Biosystems, Thermo Fisher

Scientific). The Ct values were converted into copy numbers
TABLE 1 Patient characteristics.

Sample
number

Sex Age at
blood

sampling

BMI
(kg/
m2)

Type Hormonal
activity

Basal
ACTH
(pg/ml)

Basal
Cortisol
(mg/dl)

Cortisol after
LDDST (mg/

dl)

UrinaryFree
Cortisol (mg/

day)

DHEAS
(ng/ml)

Tumor
diameter
(mm)

1 M 60 22.2 NFA – 19.5 14.5 1.3 14.2 392 12

2 F 64 27.1 NFA – 8.3 8.4 1.2 38.3 140 27

3 F 66 19.6 NFA – 22.1 20.1 1.2 32.5 1532 35

4 F 62 21.8 NFA – 6.4 7.5 0.9 19.8 302 18

5 F 57 20.6 CPA SCS 2.6 6.3 5.2 21.2 <50 20

6 F 53 21.5 CPA SCS 3.2 11.3 11.9 15.4 160 24

7 F 50 23.6 CPA CS 1.0 18.3 19.8 118 <50 27

8 M 72 22.4 CPA SCS 11.2 10.2 5.7 33 213 43

9 F 53 27.3 CPA SCS 6.3 12.1 6.8 16.5 <50 30

10 M 67 22.3 PBMAH SCS 2.00 18.7 15.5 151 188 R: 39, L: 54

11 F 73 28.9 PBMAH CS 1.00 19.5 24.4 155 <50 R: 42, L: 31

12 F 77 18.2 PBMAH SCS 1.9 11.3 12.6 75.6 <50 R: 18, L: 42

13 M 72 26.9 PBMAH SCS 5.2 10.1 8.2 54.6 115 R: 58, L: 49

14 M 44 22.8 PBMAH SCS 4.8 6.08 3.15 176 52 R: 39, L: 19
fr
M, male; F, female; BMI, body mass index; NFA, non-functioning adenoma; CPA, cortisol-producing adenoma; PBMAH, primary bilateral macronodular adrenal hyperplasia; SCS,
subclinical Cushing syndrome; CS, Cushing syndrome; LDDST, low-dose dexamethasone suppression test; DHEAS, dehydroepiandrosterone sulfate.
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(copy no. = 2^(−Ct)) and normalized to an endogenous

reference gene. The candidate endogenous reference miRNAs

were selected from the TaqMan Advanced miRNA Assays white

paper (Applied Biosystems, Thermo Fisher Scientific) and

evaluated for stable expression across miRNA-Seq data using

the following criteria: (a) high read count in all samples and (b)

no inter-group differential expression (P-value < 0.05). In

addition, Normfinder algorithms (23) determined hsa-miR-16-

5p to be the most stable endogenous normalizer. Thus, we

selected it as an internal reference as previous articles used

(24–27).
miRNA pathway analysis

Functional pathway analysis for differentially expressed

miRNAs was conducted by miR+Pathway, a pathway database

that integrates and provides visualization of the 8882

experimentally validated human miRNA-target interactions

and 150 KEGG pathways (http://www.insect-genome.com/

miR-pathway) (28).
Statistical analysis

The set of differentially expressed miRNAs were determined

by miRNA-profiling analysis. The threshold of the absolute

value for fold change was set as ≥ 2 and that of the adjusted P-

value, estimated using a moderated t-test followed by

Benjamini–Hochberg multiple testing corrections, was set at <

0.05. For the identification of differentially expressed miRNAs by

qRT-PCR tests between two groups, Student’s t-test and Mann–

Whitney U test were performed based on the results of the

Shapiro–Wilk normality test. For the identification of those

between the three groups, one-way ANOVA followed by

Tukey’s post Hoc test or Kruskal–Wallis test followed by

Dunn test were used based on the results of Shapiro–Wilk

normality test. A P-value < 0.05 was considered statistically

significant. The diagnostic applicability of miRNAs in adenoma

(NFA and CPA) and PBMAH was analyzed by receiver

operating characteristic (ROC) curves.
Results

Demographics

The clinical characteristics of 14 patients (five men and nine

women with an average age of 62 ± 10 years and an average body

mass index (BMI) of 23.2 ± 3.2 kg/m2 during blood collection)

with adrenal diseases are summarized in Table 1. Our cohort
Frontiers in Endocrinology 04
included four patients with NFA (one man and three women

with an average age of 63 ± 2 years and an average body mass

index (BMI) of 22.7 ± 3.2 kg/m2 during blood collection), five

with CPA (one man and four women with an average age of 57 ±

9 years and an average body mass index (BMI) of 23.1 ± 2.6 kg/

m2 during blood collection), and five with PBMAH (three men

and two women with an average age of 67 ± 13 years and an

average body mass index (BMI) of 23.8 ± 4.2 kg/m2 during blood

collection). One patient was diagnosed with overt Cushing

syndrome and four patients with subclinical Cushing

syndrome in both the groups of patients with CPA and

PBMAH each.
miRNA profiles and
phenotype correlation

miRNA profiling was conducted on plasma blood samples

from 14 patients, and 2652 miRNAs were detected.

Unsupervised hierarchical clustering analysis (Figure 1A) and

principal component analysis (Figure 1B) showed that samples

of NFA and CPA, both of which were diagnosed as adenomas,

clustered into a single group (“adenoma”), in contrast to the

more distinct profiles of PBMAH samples. miRNA signatures of

PBMAH were classified into two subtypes: subtype 1: including

two samples (of patients No. 11 and 14) and subtype 2: including

three samples (of patients No. 10, 12, and 13).

The “adenoma” group showed a tendency to discriminate

between NFA and CPA. Only one CPA sample (No. 5) was

included in the cluster consisting of four NFA samples

(Figure 1A). Comparison of miRNA profiles based on tumor

phenotypes by including combinations such as “adenoma (NFA

and CPA) vs PBMAH” and “autonomous cortisol secretion (CPA

and PBMAH)” were also performed, and the number of

differentially expressed (|fold change| >2.0 and adjusted p <0.05)

miRNAs was estimated (Table 2). The maximum differentially

expressed miRNAs (243) were obtained on comparison of NFA

and CPA samples. “Adenoma (NFA and CPA)” versus “PBMAH”

analysis identified 135 miRNAs while, “autonomous cortisol

secretion (CPA and PBMAH)” versus “NFA” identified 44

differentially expressed miRNAs. As morphological differences

such as hyperplasia or adenoma were more discriminative factors

than autonomous cortisol secretion ability, we treated NFA and

CPA samples under a single “adenoma” group during

further analysis.

Additionally, no differentially expressed miRNAs (|fold

change| >2.0 and adjusted p <0.05) were discovered in any of

the samples during comparison based on clinical features such as

sex (male versus female), age (younger than median versus older

than median), and body mass index (> 25 kg/m2 versus within

18.5 to 25 kg/m2) revealed.
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Comparison of miRNA expression
between adenoma and PBMAH

Clustering analysis and differentially expression results

between miRNAs of tumor phenotypes suggested that

circulating miRNA expression could discriminate PBMAH from

adenoma. 29 discriminative miRNAs were detected with high
Frontiers in Endocrinology 05
average reads (>10) (Table 3). Expression analysis of miRNAs in

plasma samples from the 14 patients was performed using RT-

qPCR. Data are shown with respect to each tumor type

(Figure 2A). The comparison between “Adenoma (NFA and

CPA) and PBMAH” was emphasized and significantly lower

expression of hsa-miR-1180-3p and hsa-miR-4732-5p in

PBMAH (P = 0.019 and 0.006, respectively, Figure 2A) was
B

A

FIGURE 1

Circulating miRNA expression signatures of NFA, CPA and PBMAH. Unsupervised hierarchical clustering analysis (A) and principal component
analysis (B) of circulating miRNA profiles of NFA (n = 4), CPA (n = 5), and PBMAH (n = 5), with respect to tumor type and hormonal activity.
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observed. Additionally, we evaluated the expression of hsa-let-7b-

5p using RT-qPCR because hsa-let-7b-5p was abundant in the

plasma samples (average reads > 230,000) and its relevance to

primary pigmented nodular adrenocortical disease (PPNAD), a

bilateral adrenal disease with hypercortisolemia has been reported

(18). Hsa-let-7b-5p, although not detected as a discriminative

miRNA during miRNA profiling (1.92-times downregulated in

PBMAH compared to adenoma, adjusted P = 0.059), was found to
Frontiers in Endocrinology 06
be significantly downregulated in PBMAH (P = 0.003, Figure 2A)

during qRT-PCR. On the other hand, among the miRNAs

showing significant differential expression between adenoma

and PBMAH in miRNA profiles (Table 3), the expressions of

hsa-miR-631, hsa-miR-513b-5p, hsa-miR-6805-5p, and hsa-miR-

548av-5p/548k were not significantly altered during validation by

qRT-PCR (P = 0.606, 0.606, 0.438, and 0.926, respectively;

Figure 2A). The comparison of miRNA expressions between
TABLE 3 miRNAs with significantly different expression (adjusted p < 0.05) between PBMAH and adenoma.

miRNAs Fold change P-value adjusted P-value PBMAH/adenoma

hsa-miR-4743-3p 0.08 3.79E-07 1.76.E-04 down

hsa-miR-548h-5p 7.04 1.30.E-06 3.66.E-04 up

hsa-miR-8082 0.10 3.01E-06 0.001 down

hsa-miR-7160-3p 0.08 5.24E-06 0.001 down

hsa-miR-593-3p 0.10 1.25E-05 0.001 down

hsa-miR-4711-5p 0.12 4.58E-05 0.003 down

hsa-miR-1180-3p 0.18 6.90E-05 0.004 down

hsa-miR-4732-5p 0.26 1.31E-04 0.006 down

hsa-miR-6753-5p 0.12 1.35E-04 0.006 down

hsa-miR-651-5p 5.08 1.72.E-04 0.007 up

hsa-miR-4799-5p 10.96 2.14.E-04 0.008 up

hsa-miR-631 0.10 3.22E-04 0.012 down

hsa-miR-7114-3p 0.13 3.65E-04 0.013 down

hsa-miR-4485-5p 0.13 3.71E-04 0.013 down

hsa-miR-4476 0.12 5.56E-04 0.018 down

hsa-miR-652-5p 9.12 6.11.E-04 0.019 up

hsa-miR-513b-5p 0.10 7.09E-04 0.020 down

hsa-miR-301a-5p 5.40 0.001 0.027 up

hsa-miR-6805-5p 0.20 0.001 0.027 down

hsa-miR-219a-5p 8.62 0.001 0.028 up

hsa-miR-23c 4.28 0.002 0.036 up

hsa-let-7i-3p 5.92 0.002 0.039 up

hsa-miR-539-3p 4.63 0.002 0.039 up

hsa-miR-548av-5p/548k 4.95 0.002 0.039 up

hsa-miR-32-3p 10.87 0.002 0.040 up

hsa-miR-5580-3p 0.33 0.002 0.041 down

hsa-miR-4508 0.32 0.002 0.042 down

hsa-miR-513b-3p 14.30 0.002 0.043 up

hsa-miR-7159-5p 0.29 0.002 0.045 down
TABLE 2 Number of differentially expressed miRNAs when comparing tumor phenotypes.

Comparison between tumor phenotypes Number of differentially expressed miRNAs

CPA vs NFA 243

Adenoma (NFA and CPA) vs PBMAH 135

NFA vs PBMAH 99

CPA vs PBMAH 54

Autonomous cortisol secretion (CPA and PBMAH) vs NFA 44
The number of differentially expressed (|fold change| >2.0, adjusted p <0.05) miRNAs was calculated for each combination of tumor phenotypes.
NFA, nonfunctioning adenoma; CPA, cortisol-producing adenoma; PBMAH, primary bilateral macronodular adrenal hyperplasia.
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B

A

FIGURE 2

Evaluation of miRNAs expression between adenoma (NFA and CPA) and PBMAH. (A) RT-qPCR analysis of hsa-miR-1180-3p, hsa-miR4732-5p,
hsa-let-7b-5p, hsa-miR-631, hsa-miR513b-5p, hsa-miR6805-5p, and hsa-miR-548av-5p/548k. Data were normalized to hsa-miR16-5p and are
shown with regard to the classification of adenomas including NFA (blue circle, n = 4), CPA (red circle, n = 5), and PBMAH (green circle, n = 5).
Patients with PBMAH were divided into two subtypes based on hierarchical clusters. Subtype 1 (green open circles) includes sample numbers 11
and 14, and subtype 2 (green closed circles) includes sample numbers 10, 12, and 13. Student’s t-test or Mann-Whitney U test was used for the
classification of adenoma versus PBMAH and bar plots with mean ± SD or box plots with the upper and lower quartiles and the median were
shown for each analysis, respectively. *P < 0.05, **P < 0.01. (B) ROC curves for the prediction of PBMAH by hsa-miR-1180-3p, hsa-miR4732-5p,
and hsa-let-7b-5p. Area under the curve (AUC) and P-values are also shown.
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CPA and PBMAH was also performed to focus only on tumors

with hormonal activity. The expressions of hsa-miR-1180-3p and

hsa-miR4732-5p showed a trend toward a decrease in PBMAH (P

= 0.093 and 0.061, respectively, Supplemental Figure 1), and those

of hsa-let-7b-5p showed a significant decrease in PBMAH in spite

of small sample size (P = 0.013, Supplemental Figure 1).

qRT-PCR data for hsa-miR-1180-3p, hsa-miR-4732-5p,

and hsa-let-7b-5p predicted the diagnosis of PBMAH with high

accuracy (area under the curve (AUC) = 0.867, 0.933, and 0.956; P

= 5.42E-4, 2.26E-11, and 1.24E-17, respectively; Figure 2B).
Comparison of PBMAH subtypes

Clustering analysis of the circulating miRNA profiles

revealed two subtypes of PBMAH. Subtype 1 profile was more

similar to that of adenoma (NFA and CPA) than that of subtype

2 (Figures 1A, B). Hence, a comparison among “adenoma”,

“PBMAH subtype 1” and “PBMAH subtype 2” was performed.

Discriminative miRNAs between adenomas and PBMAH

(Figure 2) were estimated again with this classification.

Expressions of hsa-miR-1180-3p, hsa-miR-4732-5p, hsa-let-7b-

5p, hsa-miR-631, hsa-miR-513b-5p, hsa-miR-6805-5p, and hsa-

miR-548av-5p/548k were found to be significantly lower in

PBMAH subtype 2 than those in “adenoma” (P = 0.014, 0.009,

0.013, 0.027, 0.027, 0.027, and 0.010, respectively; Figure 3).

Expression of those miRNAs were also found to be lower in

PBMAH subtype 2 than those in “PBMAH subtype 1” although

statistically significance was only observed in the expression

levels of hsa-miR-548av-5p/548k (P = 1.53E-04) due to small

sample size. The comparison of miRNA expressions among

CPA, PBMAH subtype 1 and PBMAH subtype 2 was also

performed to focus only on tumors with hormonal activity. In

comparison to CPA, the expressions of hsa-miR-1180-3p, hsa-

miR4732-5p, hsa-miR-631 and hsa-miR-513b-5p showed a

trend toward a decrease in PBMAH (P = 0.088, 0.075, 0.110

and 0.110, respectively, Supplemental Figure 2), and those of

hsa-let-7b-5p, hsa-miR-6805-5p and hsa-miR-548av-5p/548k

showed a significant decrease in PBMAH subtype 2 in spite of

small sample size (P = 0.042, 0.043 and 0.007, respectively,

Supplemental Figure 2).

Although clinical characteristics such as age, sex, BMI,

hormonal activity, tumor size and cortisol value after

LDDSAT between PBMAH subtype 1 and 2 was examined

and found all parameters overlapped between subtypes

(Supplemental Figure 3), the computed tomography (CT)

images suggested morphological differences between PBMAH

subtypes 1 and 2. The adrenal mass of subtype 1 contained both

multiple adenomas and adjacent adrenal tissues without

hyperplasia; in contrast, those of subtype 2 was constituted

entirely by adrenal nodular hyperplasia (Figure 4).
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Pathway analysis of
discriminative miRNAs

Target gene and pathway analyses were performed to obtain

insights into miRNA functions. The PBMAH-specific circulating

miRNAs hsa-miR-1180-3p, hsa-miR-4732-5p, and hsa-let-7b-5p

were examined individually and as combinations in the miR

+pathway server. Pathway analysis of hsa-miR-4732-5p extracted

“ErbB signaling pathway,” “Melanoma,” and “Chronic myeloid

leukemia” (P = 0.015, 0.042 and 0.047, respectively, Table 4A).

These pathways comprisedMAP2K7, ERBB3, MAP2K2, CDKN1A,

and TGFBR2 as target genes. The combination of hsa-miR-4732-5p

and hsa-miR-1180-3p as an input for pathway analysis provided

“thyroid cancer” as an altered pathway (P = 0.037, Table 4A),

including MAP2K2, CDKN1A, and TRP as target genes. Pathways

of discriminative miRNAs for PBMAH subtype 2, focusing on hsa-

miR-631, hsa-miR-513b-5p, hsa-miR-6805-5p, and hsa-miR-

548av-5p/548k, were also analyzed. When using hsa-miR-4732-

5p, pathway analysis extracted “Antifolate resistance” (P = 0.008,

Table 4B) as an altered pathway that included SHMT1, SHMT2,

and ABCC5 as target genes. “Small cell lung cancer” was also

extracted (P = 0.040, Table 4B) and included RXRB, E2F1,

CDKN1A, and TRAF3. The combination of hsa-miR-6805-5p and

hsa-miR-513b-5p for pathway analysis also provided “Antifolate

resistance” (P = 0.016, Table 4B) as the resultant pathway with

SHMT1, SHMT2, ABCC5, and IKBKG as the target genes.
Discussion

This is the first study to compare the circulating miRNA

profiles of PBMAH with that of adenomas with and without

cortisol excess. The analysis enabled us to elucidate the

differences between the circulating miRNA profiles of PBMAH

and adenomas. miRNAs, such as hsa-miR-1180-3p, hsa-miR-

4732-5p, and hsa-let-7b-5p, were downregulated in PBMAH. In

addition, we revealed heterogeneity in PBMAH samples based

on circulating miRNAs and accordingly identified profiling-

based subtypes. In addition to the previously mentioned hsa-

miR-1180-3p, hsa-miR-4732-5p, and hsa-let-7b-5p miRNAs,

the subtype 2-specific miRNAs, hsa-miR-631, hsa-miR-513b-

5p, hsa-miR-6805-5p, and hsa-miR-548av-5p/548k were

downregulated, hence, we hypothesized that the subtypes

observed based on circulating miRNAs might be in accordance

with the morphological heterogeneity of PBMAH (2).

A previous study has demonstrated PBMAH-specific miRNAs

in adrenal tissues (17). A comparison between tissues with massive

macronodular adrenocortical disease, which corresponded to

PBMAH, and normal adrenal glands extracted 37 differentially

expressed miRNAs out of the total detected 365 miRNAs (17).

Another similar study that explored miRNA expression in
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PBMAH tissues compared to normal adrenal glands identified 16

and 8 differentially expressed miRNAs in familial and sporadic

phenotypes, respectively (19). In both these studies, there were no

common miRNAs that showed PBMAH-specific expression, and

additionally the miRNA hsa-miRNA-130a even showed opposing

results in both. With regards to the statistical tests, previous studies

adopted only fold-change or non-adjusted P-values to extract

specific miRNAs. It seemed difficult to find an apparent

discrimination between the miRNA profiles of PBMAH tissues

and normal adrenal glands from tissue samples. In contrast, our

analysis focused on circulating miRNA profiles of patients with

NFA, CPA, and PBMAH and successfully demonstrated clear
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distinction between PBMAH and adenoma (NFA and CPA)

phenotypes by clustering analysis. Our analysis showed that

NFA and CPA were distinct from each other with 243

differentially expressed circulating miRNAs. However, the

PBMAH group showed a higher degree of separation from both

NFA and CPA during hierarchical clustering and principal

component analysis. It is noteworthy that comparison focused

on “autonomous cortisol secretion (CPA and PBMAH) versus

NFA” provided only fewer differentially expressed miRNAs (one-

third of what was obtained from “PBMAH versus adenoma”

analysis). Thus, during circulating miRNA profiling of benign

adrenal neoplasms including PBMAH, cortisol secretion ability
FIGURE 3

Evaluation of miRNAs expression among the group “adenoma”, “PBMAH subtype 1” and “PBMAH subtype 2”. RT-qPCR analysis of hsa-miR-1180-3p,
hsa-miR4732-5p, hsa-let-7b-5p, hsa-miR-631, hsa-miR513b-5p, hsa-miR6805-5p, and hsa-miR-548av-5p/548k. Data were normalized to hsa-
miR16-5p and shown with regard to the classification of “adenoma” (NFA: blue circle, n = 4, and CPA: red circle, n = 5), “PBMAH subtype 1” (green
open circle, n = 2)” and “PBMAH subtype 2” (green closed circle, n = 3). One-way ANOVA followed by Tukey’s post Hoc test or Kruskal–Wallis test
followed by Dunn test were used and bar plots with mean ± SD or box plots with the upper and lower quartiles and the median were shown for
each analysis, respectively. *P < 0.05, **P < 0.01, ***P < 0.001. Broken lines indicate the maximum value of PBMAH subtype 2 for reference.
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seemed to be a less important factor than morphological

differences, such as hyperplasia and adenoma.

Based on the previous article regarding blood miRNA

signatures in CPA (16), hsa-miR-22-3p, hsa-miR-27a-3p and

hsa-miR-320b were significantly upregulated in samples of CPA

compared to those of NFA and our data showed that hsa-miR-

22-3p showed a tendency to be upregulated in samples of CPA

compared to those of NFA (fold change = 1.92, P-value = 0.033,

adjusted P-value = 0.361). Hsa-miR-27a-3p and hsa-miR-320b

showed upregulation in CPA without statistically significance

(fold change = 1.99 and 1.76, P-value = 0.099 and 0.206, adjusted

P-value = 0.511 and 0.607, respectively). Accurate overlap was

not observed; however, all miRNAs were consistently

“upregulated” in CPA in both studies. It was speculated that

the difference of miRNA extraction method, in which miRNAs

were extracted from extracellular vesicle in the previous article,

would affect the results
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Some genetic information on PBMAH, such as the nature of

ARMC5 mutation, is known. Germline heterozygous mutations

are present in the ARMC5 gene of 10% to 55% of patients with

PBMAH, and the second somatic inactivating mutation in the

ARMC5 gene in adrenal hyperplasia tissue suggests that this

gene acts as a tumor suppressor gene (4, 29, 30). Previous studies

on non-small cell lung carcinoma demonstrated that circulating

miRNA expression signature was associated with the existence of

tumor-specific mutation status, such as the EGFR gene mutation

(31, 32) It can be hence presumed that genetic alteration in

PBMAH would affect tissue miRNA expression and systemic

response due to adrenal hyperplasia formation and induce

unique circulating miRNA profiles.

Our analysis revealed that the three circulating miRNAs could

discriminate PBMAH from adenomas. The miRNA pathway

analysis revealed that hsa-miR-4732-5p has putative downstream

targets involved in the melanoma, chronic myeloid leukemia, and
FIGURE 4

Images of adrenal glands of patients with PBMAH. White arrows indicate adrenal lesions. Red arrows show suspected adrenal tissue lesions
without hyperplasia in patients with PBMAH subtype 1.
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ErbB signaling pathways. Thus, our results suggest that pathways

related to malignant tumors were affected in Patients with

PBMAH, although PBMAH is considered a pathologically

benign disease without a propensity for invasion and metastasis.

Interestingly, consistent with a previous study that investigated the

miRNA profile of PBMAH tissues and predicted the involvement

of MAPK and TGF-b signaling pathways (6), putative targets of

hsa-miR-4732-5p comprised genes related to the MAPK signaling

(MAP2K2 and MAP2K7) and TGF-b signaling (TGFBR2)

pathways. Further laboratory investigation is expected to dissect

the pathophysiological roles of the MAPK and TGF-b signaling

pathways in PBMAH because of their association with cell

development and cell cycle regulation (33), and involvement of

the TGF-b signaling pathway in steroidogenesis of the human

adrenal cell line (34). Low abundance was observed for hsa-miR-

1180-3p and hsa-let-7b-5p. Hsa-miR-1180-3p was downregulated

in the blood samples of non-functioning pituitary adenomas

compared to that in healthy subjects (35). Although the

functional role of hsa-miR-1180-3p is unknown, alterations in

the blood samples of endocrine neoplasms including PBMAH and

pituitary adenoma, suggests its involvement in the development of

specific endocrine diseases. Hsa-let-7b-5p was reported to be a core

miRNA in the regulation of candidate genes involved in glioma

development and was suggested to inhibit the migration, invasion,

and cell cycle of glioma cells (36). Downregulation of hsa-let-7b-5p

may be related to adrenal hyperplasia.

One of the important findings in our analysis was the

heterogeneity of the circulating miRNA profiles of PBMAHs.
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Based on clustering analysis, we documented two subtypes in

PBMAH samples, and the profiles of subtype 1 were more

similar to those of the adenoma phenotype. The similarities

between the subtype 1 and adenoma groups were also validated

using qPCR data. Although clinical features such as cortisol

excess did not explain the subtyping, information from CT

images was speculative. CT images of PBMAH subtype 1

consisted of multiple adenomas with possibly atrophic

adjacent adrenal glands, whereas those of PBMAH subtype 2

showed diffuse hyperplasia. It should be noted that the

characteristics of subtype 1 with multiple adenomas may

contribute to the similarity of its miRNA profiles to those of

the adenoma group than those of subtype 2. Our subtyping,

based on comprehensive miRNA profiling, seemed to

correspond to known pathological subgroups: multiple

adenomas with inter-nodular atrophic cortical tissue and

diffuse multinodular hyperplasia (9, 10). As pathological

subgroups should be evaluated at the microscopic histological

level, our proposal remains a matter of speculation.

Nevertheless, it can be presumed that circulating miRNA

profi le reflects the heterogeneity of the molecular

pathophysiology of PBMAH. In addition, pathway analysis of

PBMAH subtype2-specific miRNA extracted “Antifolate

resistance” including SHMT1 and SHMT2 genes as target

genes of hsa-miR-6805-5p. SHMT1 and SHMT2 both encode

serine hydroxymethyltransferase, which is a pyridoxal

phosphate-dependent enzyme responsible for regulating the

serine/glycine one−carbon metabolic network. SHMT catalyzes
TABLE 4 Pathway analysis of discriminative miRNAs for PBMAH and PBMAH subtype 2.

A

Pathway analysis results for PBMAH-specific miRNAs: hsa-miR-1180-3p, hsa-miR-4732-5p, and hsa-let-7b-5p.

miRNA Pathway P-value Target Genes

hsa-miR-4732-5p ErbB signaling pathway P-value Target Genes

Melanoma 0.042 MAP2K2, ERBB3, CDKN1A

Chronic myeloid leukemia 0.047 MAP2K2, ERBB3, CDKN1A, TGFBR2

hsa-miR-4732-5p Thyroid cancer 0.037 MAP2K2, CDKN1A

hsa-miR-1180-3p TPR

B

Pathway analysis results for PBMAH subtype2-specific miRNAs: hsa-miR-631, hsa-miR-513b-5p, hsa-miR-6805-5p, and hsa-
miR-548av-5p/548k.

miRNA Pathway P-value Target Genes

hsa-miR-6805-5p Antifolate resistance 0.008 SHMT1, SHMT2, ABCC5

Small cell lung cancer 0.040 RXRB, E2F1, CDKN1A, TRAF3

hsa-miR-6805-5p Antifolate resistance 0.016 SHMT1, SHMT2, ABCC5

hsa-miR-513b-5p IKBKG
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the conversion of serine to glycine, simultaneously hydrolyzing

5,10-tetrahydrofolate (THF) into methylene-THF and

accelerating cell proliferation (37, 38). The ectopic expression

of SHMT genes has been reported in various human cancers as

an oncogenic driver. It is conceivable that unique cell

proliferation mechanisms involving SHMT1 and SHMT2 gene

expression through the downregulation of hsa-miR-6805-5p are

relevant to the pathophysiology of PBMAH subtype 2.

In the future, the identification of different subtypes by

circulating miRNA profiling has the potential to support the

choice for adrenal surgical methods. Bilateral adrenalectomy or

removal of larger adrenal glands is often performed. It is also

known to use image techniques such as scintigraphy to decide

which side of adrenal glands to be removed (39), however, the

information is only about the size or hormonal activity of

adrenal disease and not able to suggest the partial

adrenalectomy. The current evidence regarding the use of

partial adrenalectomy is limited (40). If circulating miRNA

expression can predict the subtypes of PBMAH in addition to

imaging information, partial adrenalectomy could be adopted

more often in cases of multiple adenoma types, which can’t be

distinguished from hyperplasia types using scintigraphy.

Our study has some limitations. First, our cohort included

only five patients with PBMAH. We should prepare additional

samples from PBMAH patients to confirm reproducibility, after

that, a study including a larger number of patients would be

planned to validate our data in the future, although our cohort

was comparable to that in a previous study of PBMAH and

provided unique circulating miRNA profiles in relation to

adrenal disease phenotype. Second, pathological specimens of

PBMAH samples were not obtained and analyzed in the study as

no patients with PBMAH were surgically treated. The

relationship between the miRNA profiles from adrenal tissues

and those of circulating miRNAs should be examined to evaluate

their pathophysiological significance. In addition, detailed

pathological diagnoses, such as multiple adenomas or

hyperplasia, could provide more insights into our hypothesis

regarding subtyping based on circulating miRNA profiles.

Finally, the genomic ARMC5 mutation status was not asserted

in our cohort. It is possible to say that genomic information

would be useful for understanding the molecular basis of the

heterogeneity of PBMAH, as observed during circulating

miRNA profiling.
Conclusion

We identified signatures of circulating miRNA specific to

patients with PBMAH. We hypothesized that miRNA profiling

subtypes are associated with the pathophysiological

heterogeneity of PBMAH.
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