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Endometriosis is a common reproductive disorder characterized by the

presence of endometrial implants outside of the uterus. It affects ~1 in 10

women of reproductive age. Endometriosis in the ovary, also known as

endometrioma (OMA), is the most frequent implantation site and the leading

cause of reproductive failure in affected women. Ovarian aging is one of the

characteristic features of OMA, however its underlying mechanism yet to be

determined. Accumulated evidence has shown that pelvic and local

microenvironments in women with OMA are manifested, causing detrimental

effects on ovarian development and functions. Whilst clinical associations of

OMA with poor ovarian reserve, premature ovarian insufficiency, and early

menopause have been reported. Moreover, surgical ablation, fenestration, and

cystectomy of OMA can further damage the normal ovarian reservoir, and

trigger hyperactivation of primordial follicles, subsequently resulting in the

undesired deterioration of ovarian functions. Nevertheless, there is no effective

treatment to delay or restore ovarian aging. This review comprehensively

summarised the pathogenesis and study hypothesis of ovarian aging caused

by OMA in order to propose potential therapeutic targets and interventions for

future studies.
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1 Introduction

Endometriosis is a chronic inflammatory disease characterized

by the presence of ectopic implants, including endometrium and

granules, outside of the uterus. Its prevalence reaches 15% of

reproductive-aged women and caused disturbances in their life

quality due to severe pain and infertility (1). Endometrioma

(OMA), the most common subtype of endometriosis, affects up to

44% of women with endometriosis worldwide (2). A strong

correlation between OMA and infertility has been indicated in lots

of prior studies to support the hypothesis that OMA per se and its

treatments may imply quantitative and qualitative disturbance of

ovarian reserve (3). OMAhas been related to a lower ovarian reserve

among infertile women, which is associated with ovarian aging and

earlymenopause (4–7).Although theassociation isnonlinear and the

underlying mechanism is obscured, molecular studies recently

emerged to point out the potential mechanisms including iron

accumulation, fibrosis, oxidative stress, DNA damage, genetics, and

folliculogenesis interruption create a detrimental environment to

impair follicle development and ovarian function, may subsequently

lead to ovarian aging and early menopause (8–10).

The fertility capacityhas longbeenknowntodiminishalongwith

chronological age increase. In addition to natural aging, premature

ovarian failure (POF)/primary ovarian insufficiency (POI) is defined

as primary hypogonadism in women before the age of 40,

characterized by interrupted folliculogenesis, reduced follicles, and

interferedhormoneproduction.POF/POIcanalso lead topremature

ovarian agingmanifested as earlymenopause and infertility (11–14).

To date, many clinical studies demonstrated POF/POI could be

induced by OMA and its treatments, crossing the bridge between

OMA and ovarian aging. It is reported that patients with OMAwho

underwent surgical interventions have an increased risk of POF/POI

[(15)]. It has been validated in animal models (16). Besides, it is

addressed that hyperactivation of dormant primordial follicles, the

onset of POF/POI, is induced by iron accumulation, fibrosis, and

oxidative stress from OMA lesions (16). Despite the cause-effect

relationship being under exploration, the investigations of the

association and underlying mechanisms of OMA and ovarian

aging are crucial for the development of potential therapies.

In this review, we thoroughly evaluated the clinical

relationship between OMA and ovarian aging, summarized

their potential mechanisms based on in vitro, in vivo, and

clinical studies, as well as point out therapeutic targets, which

may benefit the fecundity of infertile women with ovarian aging

induced by OMA.
2 Clinical relevance of oma and
ovarian reserve

Ovarian reserve is defined as the quality and quantity of the

ovarian dormant primordial follicles. It determines the ovarian

potential to provide functional eggs that are competent to
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fertilize (17). Only a limited number of primordial follicles are

recruited to develop into growing follicles which either be

selected for ovulation or go through atresia. Since most

growing follicles are destined toward apoptosis and

degeneration, only the left primordial follicles, remaining

dormant in the cortex, reflect the ovarian reserve (18, 19).

Ovarian reserve determines fecundity and fertility treatment

success, its decline dictates the onset of ovarian aging (18, 20–

22). Therefore, its assessment is pivotal for monitoring women’s

ovarian function during ovarian aging and reproductive

treatment. Due to the small size and lack of hormone

secretion of primordial follicles, a clinical tool to directly assess

primordial follicles does not exist (23). Currently available

assessment tools for ovarian reserve, i.e., serum follicle-

stimulating hormone (FSH), serum anti-müllerian hormone

(AMH), and antral follicle count (AFC), only assess a small

fraction of all follicles. Both FSH and AMH are predominantly

produced by the developing follicles rather than dormant

primordial follicles (24). Therefore the clinical value of serum

FSH is limited for predicting ovarian reserve from a meta-

analysis (25). The inaccuracy of serum AMH in resembling

the number of primordial follicles was also confirmed when

compared with ovarian cortical biopsies, which is a gold

standard for ovarian reserve assessment (26). In addition,

ultrasound detects AFC by identifying follicles with fluid-filled

antrum, while it is limited to identify follicles in earlier stages

and has difficulties in distinguishing healthy antral follicles from

the ones undergoing atresia (27). The biopsy is a traumatic

procedure that may decrease ovarian reserve and lead to other

complications if not done properly (28). In summary, there is a

lack of proper methods for assessing ovarian reserve accurately

and safely. In this review, we analyze the effect of OMA on

ovarian reserve according to the results from existing tools, but

we also provoke for more suitable tools to be explored for an

accurate assessment of ovar ian reserve wi th less

detrimental effects.

A meta-analysis presented that the ovaries with OMA had a

lower AFC before and after surgical removal of lesions compared

to the contralateral healthy ovaries, indicating both OMA itself

and its surgical intervention can affect the number of growing

follicles (29). Besides, a reduction in the serum level of AMH has

been reported in women with OMA before surgical treatment

(30). As a previous study has shown, there is a significantly lower

serum level of AMH in women with bilateral OMA than the

ones with unilateral or without OMA. Moreover, the extent of

reduction is positively associated with the size of endometriotic

lesions, indicating the OMA itself appears to be related to

impaired ovarian reserve, and the effect depends on the size

and bilaterality (31). Declined ovarian reserve after surgical

removal of endometriotic lesions in patients with OMA has

been widely reported in observational studies. A prospective

cohort study evaluated the consequence of laparoscopic

cystectomy of OMA on ovarian reserve and found a reduction
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in serum level of AMH postpone surgery (32). A decrease in

ovarian reserve assessed by basal FSH and ovarian response

during assisted reproductive technology (ART) treatment was

observed in patients after surgical removal of bilateral OMA, and

there is no correlation between the decline extend and the

patient’s age (33). With the undisputable destroy effect of

surgical interventions on the ovarian reserve of patients

suffering from OMA and the advancement in modern surgical

technology, some modifications were applied to the surgical

process, including the choice of cystectomy or drainage, and the

use of homeostatic agent during the surgical process. They were

evidenced to improve fertility preservation to some extent but

still cannot avoid the injurious impact of surgery (34–37).

Recently, it is revealed that diminished ovarian reserve might

be a consequence of premature primordial follicle activation,

which is regulated by the phosphoinositide 3-kinase (PI3K)/

Protein kinase B (Akt)/mammalian target of rapamycin (mTOR)

and PI3K/Phosphatase and tensin homolog (PTEN)/Akt/

Forkhead box protein O3 (FOXO3) signaling pathway (18,

38). The regulatory pathways are also proven to participate in

the pathophysiology of endometriosis which thereafter leads to

an increased rate of primordial follicle activation in ovaries with

OMA (39–41). It can be verified among patients with unilateral

OMA, whose density of primordial follicles in the ovarian cortex

is lower in ovaries with OMA than the contralateral ones (7).

Besides, the impact of surgical treatment on the activation of

primordial follicles through the PI3K/PTEN/Akt/FOXO3 and

mTOR signaling pathways has been addressed in both clinical

and animal studies (42, 43).

There is limited evidence to show a direct relationship

be tween ova r i an ag ing and OMA, howeve r , t he

hyperactivation of the primordial follicle in ovaries with OMA

leads to ovarian reserve exhaustion, which therefore accelerates

ovarian aging has been addressed in several studies (44). Since

ovarian reserve in females decreased with chronological age in

the natural aging process (45). It is reasonable to foresee that the

prematurely primordial activation leading to loss of ovarian

reserve may result in POF and subsequent ovarian aging. A

research article demonstrated the PI3K/Akt/FOXO3 signaling

pathway, which plays a main role in the primordial follicles

hyperactivation in ovaries with OMA, is also important in

females suffering from POF and the suppression of related

pathways could improve the pregnancy rate in patients (46).

POF represents the final stage of continuous loss of ovarian

function and the absence of menstruation is one of the diagnoses

of POF. Menopause represents the end of ovarian aging.

However, the transitional process from a normal to absolute

regression of ovarian function during the ovarian aging process

caused by OMA has yet to be clarified (47–49). There is a

commence of processes that took part in the pathogenesis of

both OMA and ovarian aging, for example, oxidative stress,

cytokines, DNA damage and repair, etc. On account of the
Frontiers in Endocrinology 03
limited studies to directly elucidate the association and

underlying mechanisms between OMA and ovarian aging,

extensive and longitudinal human studies are eagerly needed.
3 The mechanisms of OMA per se.
leading to ovarian aging

3.1 Hyperactivation of primordial follicles
and diminished ovarian reserve

The pool of dormant primordial follicles located in the

cortical region of ovaries reflects ovarian function, which

includes secreting ovarian steroids for homeostasis and

producing qual ified oocytes for fert i l izat ion (50) .

Folliculogenesis is a well-organized process that starts from

primordial follicle activation to ovulation (51). Its disturbance

during both physiological processes i.e., aging, or pathological

diseases may result in a diminished ovarian reserve and impaired

quality of oocytes (38, 51). Genome-wide microarray analysis of

mouse ovary reported that adverse influence on folliculogenesis

may contribute to the aging-dependent diminished ovarian

function (52). Ovaries surrounding OMA were found with

interrupted folliculogenesis, manifesting a decreased density of

primordial follicles while a higher distribution of growing

follicles compared with the contralateral healthy ovaries, which

indicates a potential activation of primordial follicles in ovaries

with OMA (53, 54). The initial activation of the primordial

follicle is mainly under the regulation of the PI3K/Akt/mTOR,

PI3K/PTEN/Akt/FOXO3 signaling pathways (18, 38). In

addition, the Hippo/Yes-association protein (YAP) pathway is

pertained to the process of primordial follicles by promoting

oocyte development and granulosa cell proliferation (38). The

involvement of PI3K/Akt/mTOR, PI3K/PTEN/Akt/FOXO3,

and Hippo/YAP pathways were reported in both the

pathophysiology of endometriosis and the physiological

ovarian aging, uncovering its role in bridging OMA and

ovarian aging (39–41, 55–57).
3.2 Fibrosis

In lots of tissues, especially the lung and liver, fibrosis is

recognized in related diseases and induces organ failure.

Characterized by excessive extracellular matrix (ECM)

deposition and connective tissue elongation, fibroblasts

developed and expand in response to constant tissue injury

and inflammation, as well as physiological processes such as

aging (58–60). With increased proinflammatory chemokines,

immune cells, mostly M1 macrophages, are recruited to the

damage site and trigger anti-inflammation which induces their

differentiation to M2 macrophages. The M2 macrophages
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subsequently stimulate adjacent fibroblasts to produce collagen

for scar formation and wound healing (61).

Increased collagen deposition has been demonstrated in the

ovaries of women post-menopause as well as in the animal

model of reproductive aging (62–67). A recent study

documented that ovarian fibrosis originates from cellular

stress-induced mitochondrial damage, which then leads to

declined bioenergetics, oxidative stress, inflammatory

mediators, and collagen accumulation, with reproductive

aging. The fibrosis within the ovarian stroma results in

anovulation, thereby causing fertility loss. The removal of

fibrotic collagen from ovaries was demonstrated to prolong the

female reproductive lifespan in mice (68).

Thepresenceofdensefibrosis in theovariancyst’spseudocapsule

is widely known, which is also an important characteristic of ovarian

OMA (69). One study revealed a higher fibrotic content in the

ovarian endometriotic lesions compared to other subtypes of

endometriosis (70). The expression of a-smooth muscle isoform of

actin (a-SMA), which is pivotal for microfibroblast activation, was

detected in ovarian cysts through immunostaining, suggesting

myofibroblast proliferation (71, 72). Additionally, fibrosis was

significantly extensive in ovaries with OMA compared to the

contralateral healthy ovaries (53). Therefore, it is hypothesized that

ovarian OMA affects the microenvironment and leads to fibrosis of

the surroundingovarian tissue.Thepresenceoffibrosis in theovarian

cortex adjacent toOMAmight furtherly result in a declined follicular

densityanddecreasedovarianreserve, eventuallyactingasacausative

factor for ovarian aging (70). The transforming growth factor-b
(TGF-b)/Smad signaling pathway was found essential to the

epithelial-to-mesenchymal transition of endometriotic cells derived

from OMA, which is involved in the pathophysiology of OMA.

Briefly, fibrosis formation can be accelerated by fibroblast-to-

myofibroblast transdifferentiation and subsequent surge in collagen

production and cell contractility. This process was proved to be

reversed by TGF-b blockade (73).
3.3 Stiff and stretch

Tissue stiffening is one of the hallmarks of fibrosis. Increased

stiffness accelerates themicrofibroblast to produce collagen and then

further promotes matrix stiffness, leading to a fibrotic

microenvironment of surrounding tissues over time (63, 74, 75).

Increased stiffness could activate EMT throughmyriad transcription

factors predominantly TGF-b1. TGF-b1 also underlies the

pathophysiology of endometriosis (76–78). Continuous stiffening

of surrounding ovarian tissues byOMA lesions has been assumed to

reduce ovarian reserve (79).

Stretch from OMA lesions may activate Yes-associated protein

(YAP) and transcriptional co-activator with PDZ- binding motif

(TAZ), the effectors in downstream of the Hippo signaling pathway,

in the adjacent ovarian cortex (80). A meta-analysis compared the
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serum level of AMH in patients with OMA or benign ovarian cysts.

Although the persistent stretch also presents in benign cysts, only the

ovaries with OMA presented a significantly reduced serum level of

AMH (30). While the reduction of AMH expression is independent

of the size ofOMAbefore surgical incision (81). Therefore, instead of

stretching alone, there might be other factors that incorporate the

mechanical stimuli to facilitate follicle loss in ovaries with OMA. An

in vitro study demonstrated stretch and stiffness share a similar

mechanotransduction mechanism, and there is an interconnected

effect of stretch and stiffness levels on cell phenotypes (82). It is

conceivable that stretch and stiffness co-ordinately induce

mechanotransduction to activate YAP/TAZ.

The hippo signaling pathway acts as a downstream effector

of Akt signaling and inhibits FOXOs and TSC1/TSC2 to activate

mTORC1 (83–85). However, sole activation of Akt is insufficient

to activate YAP/TAZ, mechanical stimulus such as stretch is also

needed (85). The hippo signaling pathway regulates the

activation of primordial follicles has been reported in mice

(83). During in vitro activation of human follicles, a reduced

expression of TSC1 and LATS1, inhibitors of Hippo and PI3K/

Akt/mTOR signaling pathways, was demonstrated (43). This

indicated that stiffness and stretch activate the related signaling

pathways of primordial follicle activation and subsequently

defect ovarian function.
3.4 Oxidative stress and cytokines

OMA cyst is proven to contain numerous toxic contents which

couldalso triggerhyperactivationofprimordial follicles anddiminish

the follicle density, therebyacceleratingovarianaging inpatientswith

OMA. According to the molecular milieu of endometriotic cysts, a

higher level of free iron was reported in both cyst wall and cyst fluid

for a long time (86). Unlike combined iron which plays an essential

role in several physiological activities, free iron mediates the

generation of reactive oxygen species (ROS) and produces oxygen-

free radicals through the Fenton reaction (87). The surrounding

ovarian cortex is affectedby excessive oxidative stress andpresented a

significantly increased expression level of 8-OHdG, a DNA damage

marker, compared with benign ovarian cysts (88). Oxidative stress

triggershyperactivationofprimordial follicles throughthePI3K/Akt/

mTORsignalingpathway inwhichPTENis inhibited andoncogenes

like Akt are activated (89). Meanwhile, myofibroblasts proliferation

and collagen production are stimulated by excessive oxygen stress,

therefore leading to tissue stiffening of the ovarian cortex similarly to

the phenotype of senescence (90). Since the guanine bases,

composing unit of telomeres, are vulnerable to oxidative damage

and the oxidized lesions are inefficient to be repaired, oxidative stress

is regarded as the main cause of telomere shortening, leading to

reproductive senescence (91).

Numerous chemokines, cytokines, and growth factors

arising from the OMA regulate PI3K/Akt/mTOR pathways
frontiersin.org

https://doi.org/10.3389/fendo.2022.1073261
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tan et al. 10.3389/fendo.2022.1073261
activation and therefore have a potentially detrimental effect on

follicle growth in the adjacent ovaries. Among factors involved

in the pathophysiology of OMA, some molecules like vascular

endothelial growth factor (VEGF) and interleukin (IL)-8 also

participate in the PI3K/Akt/mTOR pathways (92, 93). The

expression levels of proinflammatory cytokines such as tumor

necrosis factor-alpha (TGF-a), IL-1, IL-6, and IL-8 are

significantly increased in endometriotic lesions and fluids from

patients with OMA (86, 94–96). The pivotal role of IL-1 in

regulating folliculogenesis and the positive effect of IL-1b on the

activation of primordial follicles were verified in in vitro culture

system of the bovine ovary (97). The IL-16 promotes primordial

follicle activation and development during in vitro culturing of

the rat ovarian tissue (98). Recently, in an animal model of

ovarian aging, the cytokines including IL-6, IL-8, and TNF-a
were proved to contribute to the depletion of ovarian reserve

(99). It adds plausibility to the concept that chemicals derived

from OMA could result in ovarian aging although there is no

direct evidence from both human studies and animal models.
3.5 DNA damage and repair

Various DNA damage agents can be continuously exposed

to human beings which then impact health situations and

modulate disease states (100). However, intricate and

complicated systems in cells, involving DNA repair, damage

tolerance, cell death pathways, and cell cycle checkpoints,

faithfully protect DNA from deleterious consequences (100).

DNA repair pathways are intrigued by the robust DNA damage

response (DDR) followed by DNA damage. Major DNA repair

pathways such as homologous recombination (HR), mismatch

repair (MMR), nucleotide excision repair (NER), non-

homologous end joining (NHEJ), and base excision repair

(BER) are active along the cell cycle, permitting the DNA

damage in cells (100).

Preserving genomic sequence information is pivotal for life

perturbation. While the well-toned system of DNA damage/

repair has been disrupted or deregulated along natural aging and

many diseases, consequently, leading to declining fertility as the

earliest phenotype of human aging (101, 102). With the advent

of next-generation sequencing (NGS), alteration of proteins

charging DNA recombination and repair have been screened

in patients with POF (103–114). Minichromosome maintenance

(MCM) 8 and MCM9 belong to the Mini Chromosome

Maintenance family of proteins involved in HR (103). The

lack of MCM8 leads to sterility and degenerated ovarian

function in animal models (104). Consistent with the

observation, a missense variant in MCM8 was found in the

patients with POF and primary amenorrhea (105). Since HR

initiates DNA double-strand breaks and is important for

meiosis, the fibroblasts that come from the patient with POF
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and activity of MCM8 at the site of DNA breaks were revealed to

be impaired (105). Likewise, the absent expression of MCM9 in

mice impairs meiotic recombination and oocyte generation

(104). Pathogenic variants on MCM9 were also found to be

responsible for POF in several studies (109–111). In addition,

BRCA genes are involved in ataxia-telangiectasia-mutated

(ATM)-mediated DNA double-strand break repairing (115).

Mutations of BRCA1 and BRCA2 genes were found to boost

reproductive aging and premature infertility (116).

ROS, the pivotal mechanism of OMA-related infertility, was

reported to cause DNA damage via attaching DNA bases and

compromising the DNA backbone (100, 117). A decreased

expression level of copious genes implicated in DNA double-

strand break repair, including BRCA1, was found in patients

with endometriosis, and its level is positively correlated with

ovarian reserves (118). Mammalian oocytes respond to extensive

DNA damage at the prophase stage of meiosis through the

activity of the DDR and Spindle Assembly Checkpoint (SAC)

pathways (119, 120). It is verified by in vitro maturation of

mouse oocytes with follicular fluid (FF) from women with

endometriosis, in which the FF from patients with

endometriosis upraised ROS levels in oocytes and switch on

the DDR and SAC pathways. The sensitivity of oocytes to DNA

damage checkpoints is increased and prevents oocyte

maturation in women with endometriosis (121). A modulated

DNA damage response was also observed in the eutopic

endometrium of endometriosis, indicating the disturbance of

DDR and DNA repair genes and their implication for impaired

infertility in patients with endometriosis (122).

These studies highlight the role of pathogenic variants of

essential regulators during DNA damage/repair in maintaining

fertility in patients with ovarian aging and OMA. The

therapeutic targets of related genes may have the potential to

alleviate DNA damage and restore fertility potential for

these patients.
3.6 Dysregulation of ovarian
angiogenesis

Angiogenesis is a highly programmed process of growing

new blood vessels from existing vascular structures (123). Active

angiogenesis can be found in both physiological and pathological

conditions in the reproductive organs of adult females, such as

ovaries (124). Highly regulated angiogenesis is crucial for

reproduction to support folliculogenesis and endometrial

development (125). Dysregulation in angiogenesis, which

generates extensive blood vessels, may contribute to the onset

and development of many diseases (126).

Dysregulated angiogenesis plays a critical role in the

pathogenesis of endometriosis as it enables the engraftment of
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endometriotic implants and their subsequent progression (127).

Elevated expression of proangiogenic factors, such as vascular

endothelial growth factor (VEGF)-A and hypoxia-inducible

factor (HIF) -1/2a were found positively correlated to OMA,

aiding in the growth of endometriotic lesions (128).

Bevacizumab, an inhibitor of VEGF, showed no detrimental

effect on ovarian reserve while suppressing the progression of

endometriotic implants in a rat model of endometriosis (129).

Nevertheless, robust angiogenesis in ovarian follicles and

corpus luteum (CL) was recently uncovered with an imaging

system, confirming that the generation of new blood vessels was

pivotal to guaranteeing a sufficient supply of nutrients and

hormones during follicle maturation and development (130).

It was reported that the administration of axitinib, the blocker of

angiogenesis, decreased ovarian follicle consumption, postponed

ovarian aging, and extended female reproductive longevity by

suppressing follicle recruiting and development (130). It implied

a potential clinical approach to pause lesion progression and

delay ovarian aging in patients with OMA.
3.7 Genetics

Early menopause, the result of ovarian aging, can happen in

women with a disrupted ovarian function which stop producing

sexual hormones, especially estrogen. Age at menopause is
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estimated to be attributed 50% attributed to genetic factors

(131). The presence of myriad genetic aberrations has been

identified in POF genomics (132). Promising candidate genes

like Forkhead Box L2 (FOXL2), growth differentiation factor 9

(GDF9), and bone morphogenetic protein 15 (BMP15) are also

contribute to the pathophysiology of OMA (133–136). the

overlapped genetic aberrations are hardly surprising since both

OMA and POI potentially affect the formation of the ovarian

reserve from the primordial follicle pool, disrupt oogenesis and

meiosis, and lead to follicle dysfunction by interrupting

folliculogenesis (11, 132). The insights revealed the essence of

the genetic analysis point to potential new drug targets for

improving fertility in women with OMA-related-ovarian aging.

Figure 1 presented the potential mechanisms of OMA itself

which leads to ovarian aging.
4 The mechanisms of OMA
treatment leading to ovarian aging

4.1 Tissue damages

Because of the ineffectiveness of medical therapies, there is a

general consensus that OMA requires surgical treatment (137).

There are various surgical methods including ablation,

fenestration, cystectomy, etc. Thereinto, cystectomy by the
FIGURE 1

The potential mechanisms of ovarian aging in OMA per se and their potential target therapies. PI3K, phosphoinositide 3-kinase; PTEN,
phosphatase and tensin homolog; Akt, Protein kinase B; FOXO3, Forkhead box protein O3; mTOR, mammalian target of rapamycin; YAP, Yes-
associated protein; TGF, Transforming growth factor; FoxL2, Forkhead Box L2; GDF9, Growth Differentiation Factor 9; BMP15, Bone
morphogenetic protein 15; VEGF, Vascular endothelial growth factor; IL, interleukin; POF, premature ovarian failure; POI, premature ovarian
insufficiency.
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stripping method is the most common method applied to

patients with OMA, because of the lower recurrence rate and

more favorable reproductive outcomes compared with others

(138). However, OMA cysts are difficult to be removed without

damaging surrounding follicular tissue (139). Cystectomy may

also cause adhesion and injury to the surrounding blood vessel,

which further impeded the development of growing follicles

since they are extensively surrounded by blood vessels (140,

141). Moreover, the combination of bipolar diathermy will speed

up the damage to the follicles since it literately burns out the

follicles using thermal energy. In a word, it is hypothesized that

the damage to surrounding tissue and blood vessels may result in

impaired ovarian function and thereby speeds up ovarian

aging (142).

The hypothesis is supported by numerous clinical studies. It

was observed that after ovarian OMA excision, women’s

responsiveness to hyperstimulation was reduced and the

menopausal transition occurred earlier (15, 143). A

retrospective crossover study examined the ovulation rate in

28 infertile patients with unilateral OMA to evaluate the result of

ovarian cystectomy. It showed that the ovulation rate

significantly declined in the affected ovary after laparoscopic

cystectomy as compared with before surgery (144). A cohort

study presented that compared with the control group, women

with OMA had significantly lower AMH concentrations at

baseline and exhibited a further reduction at 6 months

postoperatively (145). A prospective randomized study

evaluated women who underwent ovarian surgery to remove

OMA underwent substantially longer stimulations and required

substantially higher dosages of recombinant FSH compared with

those who proceeded directly with IVF-ICSI. Additionally, these

patients with OMA surgery had a substantially lower oocytes

retrieval rate. However, for the fertilization and pregnancy rates,

there was no observed difference (146). Surgery for OMA greater

than 5 cm in diameter and bilateral OMA resulted in more

extensive damage to ovarian reserve (33, 147). Overall the

surgical incision of OMA potentially implies a detrimental

effect on the surrounding ovarian tissue which subsequently

boosts ovarian aging.
4.2 Hyperactivation of primordial follicles

The impact of surgical injury on primordial follicle

activation has been determined in several studies. An in vitro

study demonstrated that surgical injury to the surrounding

ovary could activate dormant primordial follicles near the

surgical incision through the mTOR signaling pathway (42).

mTOR plays an important role in ovarian aging. It allows

different types of cells to escape from the normal biochemical

system and regulates the balance between apoptosis and survival

(148). Furthermore, surgery could induce local inflammation.

The triggered cytokines could affect primordial follicles and/or
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ovarian reserve in ovaries with resected OMA. for instance, IL-

1a may play a pivotal role in the age-related exhaustion of the

ovarian reserve in mice by promoting apoptotic pathways and

enhancing the expression of pro-inflammatory cytokines IL-1b,
IL-6, and TNF-a (149). In addition, a mouse study presented

that lipopolysaccharide (LPS) accelerated primordial follicle

activation through the PI3K/PTEN/Akt/FOXO3 signaling

pathway (150). The activation of this pathway may lead to a

compromised DNA damage response, then impacting the

growth of primordial follicles and ovarian aging (55). An in

vitro experiment illustrated that human ovarian fragmentation

culturing resulted in immediate translocation of the Hippo/YAP

into the nucleus of granulosa cells (43). In specific regards to the

development of ovary tissue, and ovarian follicles, actin

polymerization-enhancing drugs promote ovarian follicle

growth mediated by YAP (151).

Taking all information together, when deciding whether a

patient needs to go through surgery to remove an OMA, every

clinician should not only consider symptom relief and

recurrence of disease but also ovarian responsiveness, chances

of conception during IVF cycles, ovarian reserve, and the

possible tendency of ovarian aging. The possible pathogenesis

of OMA interventions leading to ovarian senescence is

illustrated in Figure 2.
5 New treatment and target therapy

5.1 Therapeutic targets

Therapeutic targets aim at reversing ovarian aging and

thereby restoring fertility in the aspect of ovarian function are

essential for the investigation and development of novel drugs.

Based on the mechanisms of OMA leading to ovarian aging

described in parts 3&4, 15 drugs targeting the related

pathogenesis and signaling pathways were screened in the

Therapeutic Target Database (Table 1). Some of them are

already put on the market for other conditions, such as

myeloma, pulmonary fibrosis, and diabetes, but still with

potential applications in the area of OMA-induced ovarian

aging from related studies. For instance, both in-vitro and in-

vivo studies demonstrated that Sirolimus, which was approved

for myeloma, induced regression of endometriotic lesions

through inhibiting angiogenesis and proliferation (152–154).

Anti-fibrotic agent Pirfenifone was proven to reduce

postoperative adhesions for women with endometriosis (155).

Siltuximab, an antiviral agent targeting IL-6, is one of the drug

candidates for endometriosis-related infertility from the

computational drug discovery (156). In addition, Menotropins

stimulation may attenuate infertility caused by endometriosis

and benefit the IVF-ET outcome (157). And Bevacizumab, an

angiogenesis inhibitor, dramatically reduced the size of

endometriotic lesions with no impairment to ovarian reserve
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(129). In account of the utilization in reproductive medicine, the

pregnancy risk of the potential drugs is necessary to be

considered. According to the guidelines proposed by the

United States Food and Drug Administration, five-letter risk

categories (A, B, C, D, and X) indicate the potential of a drug to

induce birth defects if used during pregnancy (159). It is noted

that Menotropins are classified as category X, and thus need to

be applied under cautions and contraindicated if conception has

occurred. Furthermore, some preclinical therapeutic agents are

observed to reverse ovarian function in in-vitro and in-vivo

models of OMA and aging. Quercetin, an antioxidant, delayed

oocyte aging and improved the developmental potential of aged

oocytes during in vitro culturing system (160). Application of

ammonium trichloro (dioxoethylene-o,o’) tellurate (AS101), a

modulator of the PI3K-PTEN-Akt pathway, was proved to

preserve ovarian reserve in mice ovaries with OMA by

inhibiting the hyperactivation of primordial follicles (41). It

was first reported that ovarian fibrosis in reproductive-aged

mice could be reversed with antifibrosis drugs (pirfenidone

and BGP-15) and thereby improved female fertility (68). The

insights revealed in these therapeutic agents point to a

prospective application in treating women with OMA

accompanied by ovarian aging. More preclinical and clinical

trials should be launched for their further development.
5.2 Peri-surgical interventions

As mentioned above, the possible mechanisms of surgery-

related damage to ovarian reserve cannot be ignored.

Accordingly, some measures have been taken to optimize the
Frontiers in Endocrinology 08
procedure to minimize the deleterious effect on ovarian reserve.

A recent RCT randomized 200 women with unilateral OMA (≥5

cm) to receive bipolar coagulation or oxidized regenerated

cellulose (ORC) during drainage or cystectomy for hemostasis

(34). The trial showed that the use of ORC (drainage + ORC

group and cystectomy + ORC group) significantly reduced

recurrence rates, with minimal affection for the ovarian reserve

in the drainage + ORC group. The use of ORC was generally

safe, while encapsulation of fluid and foreign body

granulomatous reaction had been reported (161). Some other

RCTs also found that hemostatic sealant was non-inferior to

bipolar coagulation for hemostasis during laparoscopic

cystectomy for OMA patients and might be beneficial to

preserve ovarian reserve (36, 162–164).

Similarly, to minimize the use of electrocoagulation and

preserve ovarian reserve, some studies used vasopressin injection

or epinephrine compress technique to reduce intraoperative

bleeding, whereas there is a controversy as to whether this

approach could preserve ovarian reserve. Alborzi et al.

conducted an RCT to compare ovarian cystectomy after

vasopressin injection in the mesovarium space (n=60) and

direct cystectomy (n=60) for patients with unilateral OMA (3-

6 cm) (165). The results showed that the control group had

significantly higher hemostasis points and bleeding compared

with the vasopressin group, but there was no difference between

the two groups in postoperative serum levels of AMH and

pregnancy outcomes. However, another retrospective cohort

study indicated that for patients with bilateral OMA (>5cm),

vasopressin injection could preserve ovarian reserve (166). An

additional RCT revealed that the epinephrine compression

method for ovarian stripping had the benefit of the
FIGURE 2

The possible pathogenesis of ovarian senescence due to OMA interventions and their treatments.
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TABLE 1 Potential drugs targeting the signaling pathways and molecules of OMA related to ovarian aging.

Signaling
pathway/
molecules

Drug Drug
Type

Indication Therapeutic
Class

Clinical
Phase

Any study in
endometriosis

Pregnancy
Category

PI3K/AKT/
mTOR
pathway
(PAm
pathway)

Sirolimus Small
molecular
drug

Multiple myeloma; Organ
transplant rejection; Dutch elm
disease

Immunosuppressive
Agents

Approved Rapamycin induces
regression of
endometriotic
lesions (152–154)

C

Transforming
growth factor
beta (TGFB)

NIS7931 / Pancreatic ductal carcinoma;
Solid tumour/cancer

Anticancer Agents Phase 2 / /

Transforming
growth factor
beta 1
(TGFB1)

Pirfenidone Small
molecular
drug

Idiopathic pulmonary fibrosis Antifibrosis Agents Approved Pirfenidone
moderately reduced
postoperative
adhesions (155).

B3

Electron
transport
complex III
(Complex III)

Tafenoquine Small
molecular
drug

Malaria; Plasmodium vivax
malaria

Anti-Parasites
Agents

Approved / C

Reactive
oxygen
species (ROS)

Tafenoquine Small
molecular
drug

Malaria; Plasmodium vivax
malaria

Anti-Parasites
Agents

Approved / C

Signaling
pathway/
molecules

Drug Drug Type Indication Therapeutic Class Clinical
Phase

Any study in
endometriosis

Pregnancy
Category

Interleukin-1
alpha (IL1A)

MABp11 / Colorectal cancer; Acne
vulgaris; Atopic dermatitis;
Hidradenitis suppurativa;
Peripheral vascular disease;
Plaque psoriasis; Pyoderma
gangrenosum; Type-2 diabetes

Anticancer Agents Phase 2;
Phase 3

/ /

HUMAN
interleukin 6
(IL6)

Siltuximab1 Monoclonal
antibody

Anemia, Multiple myeloma,
Idiopathic multicentric
Castlemans disease; Coronavirus
Disease 2019

Antiviral Agents Approved;
Phase 3

Siltuximab is one of
the potential drug
treatments for
endometriosis-
induced infertility
(156)

C

HUMAN
interleukin 8
(IL8)

BMS-
9862531

Monoclonal
antibody

Coronavirus Disease 2019
(COVID-19)

Antiviral Agents Phase 2 / /

Tumor
necrosis factor
(TNF)

Infliximab1 Antibody Plaque psoriasis, Asthma,
Rheumatoid arthritis

Immunosuppressive
Agents

Approved Infliximab appears
not to affect pain
associated with deep
endometriosis (158)

B

Follicle-
stimulating
hormone
receptor
(FSHR)

Menotropins / Female infertility Fertility Agents Approved Menotropins
stimulation may
overcome some
causes of infertility
in patients with
endometriosis (159).

X

Signaling
pathway/
molecules

Drug Drug Type Indication Therapeutic Class Clinical
Phase

Any study in
endometriosis

Pregnancy
Category

HUMAN
vascular

Bevacizumab Monoclonal
antibody

Metastatic colorectal cancer Antiviral Agents Approved Reduce the size of
endometriotic

C

(Continued)
F
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preservation of the ovarian reserve, especially for those with

OMA, which might be attributed to epinephrine ameliorated

fibrotic changes and necrotic findings in the injured lesion (167).

Importantly, no matter which surgical strategy is applied, the

assessment of the ovarian reserve is crucial for counselling before

the operation. And the patient should be fully aware of the effect

of ovarian damage before proceeding to operation.

In addition, there are some studies discussing the impact of

hormone therapy on ovarian reserve after cystectomy for OMA.

A small single-center RCT compared two groups of women with

OMA who received perioperative GnRHa treatment (n=22) or

dienogest treatment (n=27) to study the effect on ovarian reserve

(168). They found that dienogest was effective for preserving

ovarian reserve by reducing the inflammatory response.

However, clinicians should aware that the different methods

of peri-surgical interventions could be effective to reduce

damage to the ovary, but the trauma still could not be

fully reduced.
5.3 Assisted reproductive technology

Around 25-50% of infertile patients are diagnosed with

endometriosis and up to 50% of women with endometriosis

are referred to IVF centers for ART intervention (169). Although

the mechanism of OMA-related infertility is unclear, previous
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studies suggested that the adhesion of the fallopian tube and

ovarian (170), the oxidative damage on oocytes (171), and

inflammation (172) might be responsible for it. In a systematic

review and meta-analysis, Hamdam et al. investigated the impact

of OMA on IVF/ICSI outcomes (173). The study showed that

although the mean number of oocytes retrieved per cycle

(MNOR) was lower and the cycle cancellation rate (CCR) was

higher in women with OMA compared with those without

OMA, the live birth rate (LBR) and the clinical pregnancy rate

(CPR) were similar between the two groups. In subgroup

analysis, women with OMA who received surgical treatment

before IVF/ICSI had a similar CPR, LBR, and MNOR compared

with those without surgical treatment. The results suggested that

surgical treatment of OMA did not affect the IVF/ICSI treatment

outcomes. Considering the surgical treatment of OMA might

reduce ovarian reserve, physicians should weigh the pros and

cons before stripping ovarian OMA prior to IVF/ICSI. HJ Park

concluded that surgery prior to IVF was necessary when patients

were suffering from severe dysmenorrhea or suspected of cancer.

And when the size of OMA was very large, laparoscopic ovarian

cystectomy could be considered before IVF (174).

Several studies compared GnRH agonist and GnRH

antagonist ovarian stimulation protocols in women with

endometriosis. An RCT found that the implantation rate and

clinical pregnancy rate were similar in a GnRH antagonist cycle

and a GnRH agonist protocol for women with stage I/II
TABLE 1 Continued

Signaling
pathway/
molecules

Drug Drug
Type

Indication Therapeutic
Class

Clinical
Phase

Any study in
endometriosis

Pregnancy
Category

endothelial
growth factor
(VEGF)

lesions, no
detrimental effect
on ovarian reserve
(129)

HUMAN
vascular
endothelial
growth factor
receptor
(VEGFR)

Axitinib Small
molecular
drug

Renal cell carcinoma Anticancer Agents Approved Under clinical trial
(NCT03481842)

D

Hypoxia-
inducible
factor 1 alpha
(HIF-1A)

HIF-1alpha1 Small
molecular
drug

Lymphoma Anticancer Agents Phase 4 / /

Hypoxia-
inducible
factor 1 alpha
(HIF-2A)

PT29771 / Renal cell carcinoma HIF inhibitors Phase 3 / /

Fibroblast
growth factor
receptor
(FGFR)

Erdafitinib / Bladder cancer Anticancer Agents Approved / X

1 Data were extracted from clinicaltrials.gov (NCT04935359, NCT03496974, NCT04322188, NCT04347226, NCT00029042, NCT00880672, NCT04586231).
frontiersin.org

https://www.clinicaltrials.gov
https://doi.org/10.3389/fendo.2022.1073261
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tan et al. 10.3389/fendo.2022.1073261
endometriosis and OMA (175). Drakopoulos et al. conducted a

retrospective cohort study to compare long GnRH agonist with

GnRH antagonist ART protocols for women with endometriosis

(176). In patients with stage I-II endometriosis, the b-hCG
positive, clinical pregnancy, and live birth rates were higher in

the GnRH agonist group, but the difference was not statistically

significant (P=0.07). No differences in pregnancy outcomes was

observed between the two ovarian stimulation protocols in stage

III/IV endometriosis group. Overall, there is no sufficient

evidence to recommend the best ovarian stimulation protocol

for OMA patients. More relevant clinical studies are required.
5.4 Fertility preservation

Fertility preservation (FP) has addressed massive attention

since the development of reproductive technologies. FP is

legislatively available in most European countries for patients

with oncological, and benign diseases, as well as in transgender

men (177). Cryopreservation of oocyte, embryo, and ovarian

tissue can be applied together with potential medical and

surgical interventions to preserve fertility. Oocyte and embryo

cryopreservation requires ovarian stimulation while ovarian

tissue cryopreservation (OTC) does not. Up to now, oocyte

and embryo cryopreservation are preferable for women with

age-related fertility loss, due to the advanced development of

oocyte and embryo vitrification. Oocyte cryopreservation is

usually for single women and embryo preservation is widely

applied as a part of ART for married couples as the joint legal

ownership with the male partner is necessary. OTC is an

essential choice for patients who either have no sufficient time

for ovarian stimulation or have adjacent tissue resected in a prior

surgery. A combination of different approaches should be

considered according to the individual’s situation (178).

As discussed above, both OMA itself and its surgical removal

lead to reduced ovarian reserve with impaired yield and quality

of oocytes. The preservation of fertility in patients diagnosed

with OMA is especially important (179). However, there are

limited data describing the effect of FP before surgical

interventions in women with OMA so far (180). The first case

of oocyte preservation in women with endometriosis was

reported in 2009, which proposed the indication of FP in

young women with severe endometriosis (181). Another

publication reported the success of primordial follicle survival

after ovarian tissue cryopreservation and transplantation in

patients with severe endometriosis (182). However, these two

studies had limitations to be presented as case reports. One

observational study showed that FP for patients with a surgical

history of OMA was related to poorer responsiveness of ovarian

stimulation compared with OMA per se. The authors

highlighted the importance of FP counseling before surgical
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resection in young women with severe endometriosis, however,

there was no results of the FP results in healthy controls (183).

The effect of OMA on controlled ovarian stimulation and the

cumulative effect of stimulation on oocyte yield had been

demonstrated in a research group in South Korea (184).

Simultaneously, their study verified the efficacy of pre-

operative FP in patients with OMA to prolong their fertility

age (184).

There are several options for improving fecundities in

patients with OMA, but FP should be with great potential for

those with severe and repeated OMA. As OMA is still a novel

topic in fertility preservation. It is conflicted about the timing,

necessaries, approaches, and the patient’s willingness for the

application of FP in those patients. The scenario is

multifaceted, and both patients and physicians may be

overwhelmed by the proper decision (185). Therefore, Marie-

Madeleine Dolmans proposed an algorithm for fertility

preservation in patients with endometriosis based on the

strict indications, in which low level of AMH, age beyond 30

years, bilateral OMA, a high recurrence rate after surgery,

OMA growing fast, and OMA at a young age should be taken

into account (186).
6 Conclusion and perspectives

OMA is a prevalent disease in infertile women with a

decreased ovarian reserve and impaired ovarian function.

Surgery, the most common treatment of OMA, is disputable on

the potential to destruct surrounding ovarian tissues. The

interaction between OMA and ovarian aging can be found in

numerous clinical cases, but there is no review to clarify the

relevance and underlying mechanisms. Here we comprehensively

summarised the clinical relevance and possible pathogenesis and

mechanisms in commence of OMA and ovarian aging for the first

time. Thereinto, fibrosis, inflammation, dysregulated

angiogenesis, and oxidative stress may lead to the imbalance of

DNA damage/repair and hyperactivation of primordial follicles,

further resulting in a decreased ovarian reserve, which is not only

an important characteristic of ovaries with OMA but also

characterise the beginning of ovarian aging. The surgical

removal of OMA also implies a detrimental effect on the

surrounding ovaries, resecting the healthy ovarian cortex,

hyperactivating primordial follicles, and thereby diminishing the

ovarian function. Therapeutic targets on etiology pathways and

molecules, i.e. PI3K/PTEN/Akt/FOXO3, TGF-b, IL-1b, IL-6, and
TNF-a, are with the possibility to delay ovarian aging and restore

fertility. Besides, modifications of surgical interventions like

hemostasis methods are demonstrated to improve fertility loss

to some extent but cannot absolutely avoid the detrimental effect

of surgery. Fertility preservation is a recent-developed
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reproductive technology with great potential in maintaining

fecundity in women with OMA. Due to the complexity and

sophistication of this technique, more details, especially the

different approaches to cryopreservation, the timing of tissue

collection, ethical issues, and availability are needed to be

discussed thoroughly before implying the application to patients.

Increased attention has been raised to seek an understanding of

the pathophysiology and mechanisms of OMA leading to ovarian

aging, which assists to propose new treatments and target therapy.

However, many of these are still incompletely understood. We

aimed to raise awareness of the missing pieces of puzzles and

advocate more related studies. While the limited access to human

samples, large-scale experiments on animals which share similar

anatomy to human beings are also important. Novel animal models

of OMA have been proposed recently, but they failed to manifest

OMA exclusively. On account of the disparities of different subtypes

of endometriosis, a proper animal model specific to OMA is the top

priority, so to launch more related research for better management

of OMA and its associated ovarian aging.
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