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Type 2 diabetes (T2D) rates in children and adolescents are rising globally. T2D

is a complex and aggressive disease in children with several comorbidities, high

treatment failure rates, and insulin needs within a few years from diagnosis.

While myriads of pharmacotherapies are licensed to treat adults with T2D,

treatments accessible to children and adolescents have been limited until

recently. Metformin is an old drug with multiple beneficial metabolic health

effects beyond glycemic control. This review discusses Metformin’s origins, its

mechanisms of action, and evidence for its use in the pediatric population to

treat and prevent T2D. We also explore the evidence for its use as an obesity

therapy, which is the primary driver of T2D, and T2D-driven comorbidities.

While emerging therapies create new horizons for managing pediatric T2D,

Metformin remains an inexpensive and safe part of the treatment plans of many

T2D children globally for its beneficial metabolic effects.

KEYWORDS
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Introduction

Pediatric type 2 diabetes (T2D) has become a global public health concern driven by

childhood obesity (1–4). Multiple biosocial drivers contribute to the intertwining of both

diseases (1, 5). Over the past three decades, T2D has increased steadily in children (6),

with a 7.1% annual increase in incidence rates (3) and a 95% increase in prevalence in the

USA over almost two decades (7). Recent global data suggest incidence rates of up to 31-

94 per 100,000 per year and prevalence of up to 160-5,300 per 100,000 in high-risk

populations, such as Indigenous and African youth (8). While initially described as a
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disease of Indigenous children, current data reveal a surge in

T2D across different ethnic groups (9, 10). There are currently

no population-based screening programs for T2D in children;

the disease remains uncommon in children, with most cases of

new-onset diabetes being type 1 diabetes. This pattern is coupled

with the 30% reproducibility of one of the primary screening

tests in children–the oral glucose tolerance test (11). The use of

glycated hemoglobin A1c (HbA1c) has been purposed for

monitoring glycemic control in these children rather than

establishing the diagnosis alone (12, 13). The more

reproducible test, fasting glucose, is not very practical in

children for obvious reasons and does miss those who become

hyperglycemic after a carbohydrate challenge.

As up to 50% of children with T2D are asymptomatic at

presentation and are mostly diagnosed when screened because

they have obesity, the current prevalence and incidence rates for

T2D likely underestimate the true scale of the disease in children

(9, 14).

T2D presents as an aggressive disease with multiple

comorbidities, and patients have a progressive failure of b-cell
function and progress to insulin dependence within 3-5 years

post-diagnosis. This rapid deterioration of b-cell function is

more rapid in children when compared to adults with T2D

(15–19).

Several conditions are associated with T2D including

obesity, dyslipidemia, hypertension, obstructive sleep apnea,

polycystic ovary syndrome, and non-alcoholic fatty liver

disease (20–24). Microvascular complications manifest as

nephropathy, neuropathy, and retinopathy and present much

earlier than those in children with type 1 diabetes (25).

T2D impacts the children’s longevity and quality of life, and

the premature mortality seen in this population is a significant

concern (26).

While initial approaches to treatment involved using lifestyle

to manage diabetes, it has become clear that this approach needs

supplementation with pharmacotherapy to establish and

maintain glycemic control (27). So far, pharmacotherapies

used to treat T2D include metformin, insulin, sodium-glucose

cotransporter-2 (SGLT-2) inhibitors, and glucagon-like

peptide-1 (GLP-1) receptor agonists (28–31). This review

focuses on the use of Metformin in the management of

T2D patients.
Metformin: an ancient drug

Metformin is the most widely prescribed pharmacotherapeutic

agent to treat T2D globally (32–35). Metformin is a biguanide

derived from a guanidine, galegine, from the French lilac or goat’s

rue (Galega officinalis), which was used for centuries to treat

diabetes (36). Metformin hydrochloride (HCl) is hydrophilic and

has a molecular weight of 165.63 kDa (37). The molecular formula

of Metformin HCl, the compound used in clinical preparations, is
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C4H11N5 •HCl (37). Metformin is hydrophilic and has a molecular

weight of 129.16 kDa (38). The molecular formula of Metformin is

C4H11N5 (38). For the remainder of the paper, the use ofMetformin

assumes the use of Metformin HCl.

Advances in chemistry and new drug manufacturing

methods pioneered almost a century ago led to the synthesis

of Metformin in 1922 as dimethylbiguanide (39). However, it

did not come into broad use to treat diabetes initially. One of

the most critical biomedical discoveries of the 20th century–

insulin in 1921, overshadowed the use of other medications to

treat diabetes (40). In 1957, Metformin was studied by Dr.

Jean Sterne, who investigated its antihyperglycemic properties

and called it Glucophage (glucose eater), a name that still

resonates today as a brand name for metformin (41). Although

the higher potency of other biguanides, such as phenformin,

led to their prioritization in clinical trials (42), the

development of lactic acidosis led to early discontinuation of

the trials and the interest in Metformin was reignited (43, 44).

While less potent than other guanidines, Metformin did

possess a better safety profile (45). Furthermore, the U.K.

Prospective Diabetes Study further supported the use of

Metformin in T2D, with improved glycemic outcomes and

decreased morbidity and mortality (46). These discoveries

elevated Metformin to become the first-line therapy for

adults with T2D (46, 47).

Metformin HCl was licensed in the United Kingdom in 1958

and in 1972 in Canada (48). The U.S. Food and Drug

Administration (FDA) only approved the use of Metformin

for T2D treatment in adults in December of 1994 and in

children ≥10 years old with T2D in December of 2000 (49).

Extended-release metformin formulations were subsequently

approved (50), and the first extended-release liquid

formulation followed more recently (51, 52). The availability

of liquid formulations offers an alternative to Metformin tablets

that may be large or hard to swallow for pediatric patients,

leading to decreased adherence. Additionally, when evaluating

the taste of liquid Metformin formulations, they were preferred

compared to crushed Metformin tablets (53). Therefore, liquid

Metformin may improve adherence to treatment in the pediatric

population. However, the liquid form may not be readily

available in all parts of the world.
Pharmacokinetics and
pharmacodynamics

Metformin is taken orally. The typical doses to treat diabetes

for immediate-release preparations are 500-2,000 mg/day. The

leading site of metformin absorption is the small intestine in the

duodenum and jejunum via the action of plasma membrane

monoamine transporter (PMAT) in intestinal cells, with a minor

contribution of the colon (54, 55).
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Taken orally, Metformin has a bioavailability of up to 60%,

and it is absorbed within 6 hours (56). After absorption,

Metformin does not bind to plasma proteins and is distributed

to the liver (57–59). The non-absorbed Metformin accumulates

at the distal small intestine, and it is then eliminated in the

feces (60).

Metformin has a mean elimination plasma half-life of

around 5 hours. Its onset of action is at around 1.5 hours,

and the total duration of action is 16-20 hours (61). The

therapeutic concentration of Metformin has been debated,

and there are limitations in the literature about the levels and

their methods of measurement at clinically relevant doses.

However, a widely accepted circulating level at therapeutic

doses (20 mg/kg/day) is 10-40 mmol/L (62, 63). Metformin is

excreted unchanged via renal tubular excretion as the major

route for elimination (64).

The extended-release formulation is based on the

combination of Metformin with polymer delivery systems that

allow the tablet to absorb water and expand to 150% of its original

size within 15 minutes of ingestion, anchoring it in the stomach

(65, 66). The pill slowly releases Metformin into the small

intestine over 8-9 hours. When the Metformin is released, the

tablet’s excipients disintegrate and are excreted in the feces at

around 15 hours post-ingestion. The main advantage of extended-

release Metformin is the potential for improved adherence to

treatment in children and reduced gastrointestinal side effects.

This metformin formulation is administered once daily, and the

typical dose of these preparations is 1000-2000 mg/day, with a
Frontiers in Endocrinology 03
half-life of 6.5 hours and actions on plasma glucose for 24 hours

(65, 67) (68).
Mechanisms of action

Metformin exerts its glucose-lowering effect through various

mechanisms in different organs (Figure 1).

The liver is one of the important target organs of metformin

actions. Metformin reduces hepatic glucose output by inhibiting

gluconeogenesis (69, 70). While Metformin inhibits complex 1

of the respiratory chain in the mitochondria leading to an

increase in adenosine monophosphate (AMP) and activation

of AMP-activated protein kinase (AMPK), which in turn

inhibits hepatic gluconeogenesis, the concentration of

Metformin needed to achieve such effects in humans is supra-

therapeutic (71, 72).

Additionally, Metformin inhibits hepatic gluconeogenesis by

AMPK-independent mechanisms (73). These mechanisms

include inhibiting gene transcription (73) and activity of

enzymes in the gluconeogenic pathway (74), in addition to

decreasing substrates available for gluconeogenesis such as

lactate and glycerol (75, 76). Metformin also inhibits hepatic

lipogenesis and increases fatty acid oxidation (77, 78).

Metformin’s additional actions include increasing glucose

uptake and fatty acid oxidation in skeletal muscle and adipose

tissue (78–82). It also reduces adipogenesis and activates brown

adipose tissue leading to enhanced thermogenesis (83).
FIGURE 1

The mechanisms of action of metformin. In the liver, metformin downregulates gluconeogenesis by inhibiting gene transcription,
gluconeogenic enzyme activity and substrates, and the mitochondrial respiratory chain. It also inhibits lipogenesis and upregulates fatty acid
oxidation. In the adipose tissue, it increases glucose uptake and fatty acid oxidation and brown adipose tissue while downregulating
adipogenesis. In skeletal muscle, metformin stimulates glucose uptake and fatty acid oxidation. Metformin inhibits the nuclear factor KB (NFKB)
pathway in immune cells and the differentiation of monocytes to macrophages. It also lowers inflammatory cytokine production and the
neutrophil to lymphocyte chain. In the gastrointestinal tract, it modulates the gut microbiome, decreases glucose absorption from the intestin, It
also increases glucose transport from the blood to the gut lumen, glucose utilization by intestinal cells, and glucagon peptide-1 (GLP-1)
secretion. Figure created with BioRender.com.
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More recently, the effect of Metformin on the gut has been

recognized (84). Metformin decreases the absorption of glucose

from the intestine. It increases glucose transport from the blood

into the lumen of the intestine (85–87), in addition to increasing

glucose utilization by intestinal cells (88). Metformin also

promotes the secretion of Glucagon-Like Peptide-1 (GLP-1)

from the upper intestine, augmenting glucose-dependent

insulin secretion (89, 90). Furthermore, Metformin influences

the gut microbiome by promoting the growth of beneficial

species that degrade mucin and generate short-chain fatty

acids (91, 92). Animal studies have shown that mice given a

metformin-modulated gut microbiome have improved glucose

tolerance (92).

Metformin downregulates inflammation by inhibiting the

NFϰB pathway and decreasing the secretion of inflammatory

cytokines (93, 94). It also affects the proportion of white blood

cells by reducing the ratio of neutrophils to lymphocytes (93)

and inhib i t s the d i ff e rent ia t ion of monocytes to

macrophages (95).
Treating type 2 diabetes
with metformin

Lifestyle interventions encompassing healthy eating and

physical activity recommendations need to be provided to

children with T2D in a culturally and developmentally

appropriate manner (96). While the exact endpoints of lifestyle

interventions may not be easily achievable and are not solely

focused on glycemic control, a suggested target is at least a 7%

weight loss, presumed to improve metabolic markers such as

HbA1c and C-peptide levels (97), and may help reduce the risk

of microvascular complications (98). However, the aggressive

nature of T2D and the high treatment failure rates have put a

particular urgency on efforts to identify adjunct therapies to

lifestyle interventions that may improve outcomes.

Currently, Metformin is the first pharmacotherapeutic

choice for children with T2D with metabolic stability,

including being asymptomatic and with an HbA1c <8.5% and

blood glucose levels <250 mg/dL (<13.9 mmol/L) (96) (Tables 1,

2). In the presence of symptomatic hyperglycemia with polyuria,

polydipsia, and weight loss, with biochemical deterioration and

HbA1c >8.5% and blood glucose >250 mg/dL (≥14.0 mmol/L)

and no acidosis, both Metformin and basal insulin are initiated

(96). In general, Metformin treatment reduces HbA1c by 1-2%

(99, 102).

A minority of patients with T2D present in diabetic

ketoacidosis (DKA) at diagnosis (103). In these patients,

conventional DKA management with insulin is initiated to

reverse the acidosis; then Metformin is started in addition to

subcutaneous insulin therapy for a few weeks and then a

decision is made as to whether insulin can be weaned or

stopped with continued Metformin treatment (96).
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Because of its gastrointestinal side effects, Metformin should

be started at a low dose with gradual titration, depending on

tolerance. The typical metformin regimen involves a starting

dose of 250-500 mg/day, with the weekly escalation of the dose

up to a maximum of 1,000 mg twice daily or 850 mg three times

per day (96, 104, 105). Extended-release formulations can be

prescribed to reduce gastrointestinal side effects, or Metformin

can be taken with meals.

Even though Metformin has been approved for use in

pediatric T2D for decades, prospective studies in this

population are limited, and trials of new medications have

used them as add-ons to Metformin with or without insulin.

A randomized controlled trial of 16 weeks compared

Metformin to a placebo in youth aged 10-16 with T2D.

Metformin lowered HbA1c and fasting plasma glucose when

compared to placebo (99).

Another study from Japan included youth with T2D and

found that Metformin decreased HbA1c by 0.81% at 24 weeks

and 0.46% at 52 weeks (101). While gastrointestinal side effects

were widespread in almost all patients, no serious adverse events

necessitated Metformin’s discontinuation over the 52-week

study period (101).

Compared to glimepiride, a sulfonylurea, Metformin

achieved similar reductions in HbA1c in those aged 8-17 years

with T2D. While the incidence of hypoglycemia was similar in

both groups, Metformin led to less weight gain compared to

glimepiride (100).

Significant insights into the role of Metformin in pediatric

T2D management were gleaned from the seminal TODAY study,

a randomized controlled clinical trial that included 699 children

with T2D. The trial compared Metformin with or without lifestyle

interventions and Metformin plus rosiglitazone. The primary

outcome was the need to use insulin due to failure in achieving

glycemic control, defined as an HbA1c <8% for at least six

months (106).

At a median of two months of metformin therapy during the

run-in period, Metformin led to 91% of participants achieving

an HbA1c <8%, with 78% achieving an HbA1c level less than 7%

and 46% having an HbA1c level less than 6% (107). The benefits

of Metformin waned over time, with only 49.3% for Metformin

alone and 53.4% for the Metformin plus lifestyle intervention

achieving durable glycemic control after four years (27).

Importantly, an HbA1c of <6.3% at randomization was

associated with durable glycemic control (108). In participants

with deteriorating glycemic control, a decline in b-cell function
rather than reduced insulin sensitivity was noted (18, 109). Data

from the Pediatric Diabetes Consortium T2D Registry

confirmed this association of lower HbA1c at diagnosis with

maintained glycemic control ≥2 years post-diagnosis (110).

Importantly, in youth with recent-onset T2D or impaired

glucose tolerance, neither insulin glargine followed by

metformin nor metformin alone preserved b-cell function

(111). However, discontinuation of therapy resulted in
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TABLE 1 Metformin Use in Children with type 2 diabetes.

Author,
year

Study
Design

Population Intervention Study
Duration

Outcomes Results

Jones et al,
2002 (99)

Randomized
controlled-
trial, double
blinded

-Youth aged
8-16 years
with T2D
-FPG: 7-13.3
mmol/L
-HbA1c >
7.0%
-Stimulated
C-peptide >
0.5 mmol/L
- BMI >5oth%
for age
n=82

Metformin 1,000 mg BID vs
placebo

eeks Glycemic control:
- Fasting plasma glucose
- HbA1c

-Fasting plasma glucose decreased
by a mean change of 2.4 (+/- 0.5)
mmol/L in the Metformin group
compared with a 1.2 (+/- 0.5)
mmol/L increase in the placebo
group.
-Baseline HbA1c improved from
8.2% (+/- 1.3) to 7.5% (+/-0.2) in
the Metformin group.
-Baseline HbA1c improved from
8.9% (+/- 1.4) to 8.6% (+/- 0.2) in
the placebo group.

Gottschalk
et al, 2007
(100)

Randomized
single-blind
comparative
study

-Children and
adolescents
aged 8-17
years with
T2D
-HbA1c 7.2%
to 11.9%
n= 263

-Metformin 500-1,000 mg
BID
-Glimepiride 1-8 mg once
daily

26 weeks Change in HbA1c from
baseline to 12 weeks and
24 weeks

Mean change in HbA1c
- At 12 weeks:
– 0.69% with glimepiride vs – 0.76%
with Metformin (p=0.75)
-At 24 weeks:
–0.70% with Glimepiride vs – 0.85%
with Metformin (p= 0.54)
Similar events of hypoglycemia inn
both groups
Significant weight increase in the
Glimepiride group but not in the
Metformin group

TODAY
Study,
2012 (27)

Randomized
controlled
trial, 3 arms

- Youth aged
10-17 years
- T2D less
than 2 years
- BMI > 85th
% for age and
sex
- Fasting c-
peptide > 6.0
ng/mL
- Negative
diabetes
autoantibodies
n=699

- Metformin plus
rosiglitazone
- Metformin with lifestyle
interventions
- Metformin alone

Minimum 2
years
Mean 3.8
years

Time to treatment
failure:
- Elevated HbA1c > 8%
for 6 months
- Metabolic
decompensation as
inability to wean of
insulin

Failure rates:
Metformin plus rosiglitazone: 38.6%
Metformin plus lifestyle
interventions: 46.6%
Metformin alone: 51.7%

Marcus
et al, 2017
(97)

Sub analysis
of the
TODAY
study group

- Youth from
the initial
TODAY study
group
n= 595

- Metformin plus
rosiglitazone
- Metformin with lifestyle
interventions
- Metformin alone

24 months Change in % overweight:
BMI minus BMI at 50th
% for sex and age,
divided by BMI at 50th%
then multiplied by 100
Change in BMI

-Metformin alone and Metformin
plus lifestyle had a favorable effect
on % overweight at 12 and 24
months compared to Metformin and
Rosiglitazone.
- Around 30% of participants in the
Metformin alone and the Metformin
and lifestyle interventions groups
achieved 7% or more weight loss.
-There was no significant difference
between Metformin and Metformin
plus lifestyle interventions for %
overweight and for BMI at 12 and
24 months.

Matsuura
et al, 2019
(101)

Open-label,
non-
randomized
trial

-Children and
adolescents
from 6-17
years of age
with T2D
- HbA1c

-Metformin-naïve patients
(treated by diet-exercise,
sulfonylurea, or a-
glucosidase inhibitor) before
switching to Metformin
-Already-on Metformin
group (<750 mg/day for 12

52 weeks: 24
weeks of
treatment
and 28-week
extension
period

-Change in HbA1c from
baseline to 24-weeks and
to 52-weeks

Mean change in A1c:
-At 24 weeks: – 0.81% (+/- 1.29);
95% CI (– 1.24 to – 0.37)
-At 52 weeks: – 0.46% (+/- 1.13);
95% CI (– 0.83 to – 0.08)

(Continued)
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worsening glycemic control, reflected by HbA1c, fasting and 2-

hour post prandial glucose, as well as a decline in b-cell function
after a 9-month washout period (112).

Future research efforts must concentrate on understanding

Metformin’s glycemic effects and potential benefits in

preventing or decreasing diabetes-related complications and

cardiovascular events.
Metformin therapy of type 2
diabetes-related comorbidities

Obesity

Obesity is a significant risk factor for T2D in children, and

the prevalence of overweight and obesity is close to 75% in youth

with T2D (113). Metformin has been shown to reduce weight,

BMI, and waist circumference (114–126). The weight loss
Frontiers in Endocrinology 06
associated with Metformin is usually modest and results from

its action on the gastrointestinal tract leading to decreased

appetite. Additionally, Metformin has a positive effect on

markers of insulin resistance, such as fasting plasma glucose,

fasting insulin levels, and homeostasis model assessment-

estimated insulin resistance (HOMA-IR) (114, 116–118, 121,

122, 125). Interestingly, Metformin may improve weight, BMI,

waist circumference, total adiposity, and abdominal adiposity in

prepubertal children born small for gestational age (127).

Metformin reduces BMI by around 1.4 kg/m2 (125, 126, 128–

131), and most clinical trials were relatively short, following

participants for 6-12 months (114–116, 119–122). Most weight

loss occurs in the first six months of treatment, tends to slow

down, and is not necessarily sustained after treatment cessation

(128–132). In an 18-month multicenter randomized controlled

trial that included 42 participants (66% females) with a median

age of 13, BMI improved in the metformin group at 6 and 9

months. Yet, it returned to baseline at the end of the 18- month

study period (133). Additionally, an open-label 18- month
TABLE 1 Continued

Author,
year

Study
Design

Population Intervention Study
Duration

Outcomes Results

7.1%-12.0%
n=37

weeks)
-Both groups were started/
continued on Metformin,
dose titrated upwards to
maximum of 2,000 mg/day
based on glycemic control
TABLE 2 Summary of Metformin Indications.

Metformin in type 2 diabetes
•Metformin is considered first line treatment as monotherapy or in combination with insulin.
•Metformin provides sustained glycemic control in around 50% of pediatric individuals with T2D.
•No current evidence to suggest that Metformin preserves b-cell function with new onset T2D.

Metformin for treatment of obesity
•Metformin improves anthropometric indices such as BMI, weight, and waist circumference.
•These effects are not sustained and typically fade after 1-2 years.
•Metformin may promote weight loss in a subset of obese youth with T2D.

Metformin for treatment of PCOS
•Metformin has a beneficial effect on weight, BMI, and insulin resistance in adolescent girls with PCOS.
•Metformin reduces free testosterone levels and improve hirsutism and menstrual irregularity in adolescent girls with PCOS.
•The use of Metformin in patients with co-existing T2D and PCOS provides the added benefit of ameliorating clinical and biochemical features of PCOS and

improving glycemic control.

Metformin for treatment of NAFLD
•Metformin does not affect liver enzymes in youth with NAFLD.
•Metformin may improve histologic and radiographic findings associated with NAFLD.
•As NAFLD may co-exist with T2D, the stability of liver enzymes with Metformin is reassuring.

Metformin for the prevention of T2D
•Most studies assessing the role of Metformin in preventing T2D in youth have focused on indices of insulin resistance rather than progression to overt T2D.
•Evidence regarding the effect of Metformin on insulin sensitivity and glycemic control in obese youth with markers of insulin resistance is inconsistent.
•Long-term studies focusing on prevention of progression to T2D are required.
Abbreviations: T2D, type 2 diabetes; BMI, body mass index; PCOS, polycystic ovary syndrome; NAFLD, non-alcoholic fatty liver disease.
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extension of the study confirmed the lack of a sustainable effect of

Metformin on BMI in adolescents with longer-term follow up

(134). Interestingly, while the effect of Metformin on weight and

BMI may not be sustained, youth with obesity treated with

Metformin had less weight and BMI gain when compared to

those who did not receive Metformin (135, 136).

While most studies demonstrate improvement in weight or

BMI on treatment (114–122), trials of longer duration that may

need to be combined with co-interventions are needed to

address its long-term effects on body mass and metabolic health.

In the TODAY study, BMI at two years of treatment increased

by 1.6 and 1.4 kg/m2 in the metformin and metformin plus lifestyle

intervention groups, respectively (97). However, a subgroup of

patients, representing about one-third in each of the metformin

and the metformin plus lifestyle intervention groups, achieved a

weight loss of ≥7% at 12 months and 24 months. This weight loss

was associated with improved cardiometabolic health markers such

as HbA1c, systolic blood pressure and lipid profile (97). These

results suggest that a subgroup of youth with T2Dmay benefit from

treatment with weight reduction and improved glycemic control

and cardiometabolic markers. Defining this subgroup in detail is

critical to personalize care and improve outcomes in pediatric

T2D (Table 2).
Polycystic ovary syndrome

Polycystic ovary syndrome (PCOS) is characterized by

menstrual irregularities with anovulation or oligo-ovulation

with clinical and biochemical hyperandrogenism (137–141).

The prevalence of PCOS in girls with T2D is close to 20%

(21), compared with up to 11% in the general pediatric

population (142). Hyperinsulinism and insulin resistance are

essential drivers in the pathophysiology of PCOS (143–145), and

this may be related to elevated insulin levels promoting

luteinizing hormone secretion from the pituitary gland, with

the combined effect of insulin and luteinizing hormone

stimulation of the ovarian theca cells to produce androgens

(146–148). Although obesity is a significant risk factor for PCOS,

a proportion of adolescent girls with PCOS have a normal BMI

and evidence of insulin resistance (145, 149, 150).

Metformin has been considered as a treatment option for

PCOS. Small randomized controlled studies demonstrated that

Metformin promoted a decrease in weight and BMI (151–153)

and improved insulin sensitivity (152, 153). Metformin also had

favorable effects on clinical and biochemical hyperandrogenism,

with decreased free testosterone levels (151, 152, 154, 155) and

improved hirsutism (153, 155) and menstrual irregularity (152,

154). Compared to combined oral contraceptive pills (OCPs),

one of the main strategies employed for treating PCOS,

Metformin is superior to OCPs in reducing BMI and

improving insulin sensitivity (156). On the other hand, OCPs

resulted in a more significant improvement in menstrual
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irregularity (156). Metformin and OCPs had an equivalent

positive effect on reducing testosterone levels and improving

hirsutism (156).

Given the high prevalence of PCOS in girls with T2D, using

Metformin in this population may have the added benefit of

improving the clinical and biochemical features of PCOS in

addition to reducing weight, improving insulin sensitivity, and

achieving glycemic targets (Table 2).
Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease is a spectrum of hepatic

disorders that range from steatosis to steatohepatitis and can

ultimately progress to cirrhosis. The steatosis is caused by

abnormal hepatic lipid metabolism, with insulin resistance and

hyperinsulinemia playing a central role (157–160). Fat mass

expansion and insulin resistance in obesity lead to the

mobilization of free fatty acids from the adipose tissue, which

eventually enter the liver, exceeding its oxidation capacity (157–

161). Additionally, hyperinsulinemia promotes hepatic lipogenesis

(157–160). This combination of increased fatty acid influx,

decreased fatty acid oxidation, and increased hepatic triglyceride

synthesis leads to hepatic steatosis (157–160). About 50% of youth

with T2D have NAFLD, and the degree of dysglycemia correlates

with the severity of NAFLD (162, 163).

The current mainstay of therapy for NAFLD is lifestyle

intervention, which has been shown to improve both

radiologic and biochemical evidence of steatosis (164). Adding

Metformin to lifestyle change, compared to placebo or vitamin E

supplementation, did not significantly improve liver enzymes

(165–167). However, while Metformin does not impact liver

enzyme levels, including alanine transaminase (ALT) and

aspartate transaminase (AST), it may help lessen histologic

findings such as lobular inflammation and hepatocellular

ballooning (165, 167), as well as reduce fatty deposits in the

liver on ultrasound (166, 168) (Table 2). Although current

evidence does not support the use of Metformin as a

treatment for NAFLD, the stable liver enzymes profile with its

use is reassuring (165–167).
Off-label use of metformin
in children younger than
10 years of age and pre-adolescents

There is limited evidence that suggests that Metformin is safe

and effective in improving weight or BMI as well as other

metabolic markers of obesity in children younger than 10

years of age.

A randomized trial evaluating the use of Metformin to treat

obesity in prepubertal children recruited 80 participants, who
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were randomized to either Metformin or placebo (169). At 6-

months, the Metformin arm had a lower BMI z-score, as well as

an improved quantitative insulin sensitivity check index

(QUICKI) and a higher leptin-to-adiponectin ratio compared

to the placebo arm, with no serious adverse events or cases of

lactic acidosis (169). Similar results were reported by another

study that included 18 prepubertal children, with improvement

in weight and BMI SDS as well as the fat mass after 24 months of

therapy (170). However, due to the small sample size, the study

was underpowered to detect a statistically significant difference

(170). In obese pre-adolescents with hyperinsulinemia,

metformin reduced BMI, BMI SDS, weight, HOMA-IR, fasting

insulin, and fasting glucose (122). Yet, there was no significant

change in first-phase insulin secretion or insulin sensitivity by

clamp studies (122).

Metformin may also have a positive effect on the body

composition and metabolic profile of children with a history

of being small for gestational age (SGA), given their risk of

obesity and insulin resistance (127). A small pilot study that

recruited 23 children 6-9 years of age with a history of SGA and

catch-up growth with increased visceral fat were randomized to

Metformin (n=6) and placebo (n=17) (127). After 24 months,

the Metformin arm participants had lower weight and BMI SDS

as well as lower total and abdominal fat compared to the control

arm (127). Additionally, HOMA-IR improved in the Metformin

group (127). There is a need for adequately powered randomized

clinical trials to address the role of metformin in managing

obesity in this age group.
Side effects and contraindications

Metformin has a favorable safety profile. The most common

metformin-related side effects are gastrointestinal including

diarrhea, abdominal pain, bloating, nausea, and loss of

appetite. These side effects occurred in around 50% of

participants in the TODAY study (27). Gastrointestinal side

effects are typically temporary and tend to improve with time

(27, 129, 131). These symptoms can be mitigated by gradual dose

escalation, ingestion of Metformin alongside meals, or the

administration of extended-release preparations.

Metformin has been linked with vitamin B12 deficiency,

most likely due to its effect on the gastrointestinal tract (171–

173). The most plausible mechanism is the alteration in the

calcium-dependent binding of the intrinsic factor and vitamin

B12 complex with the receptors in the terminal ileum (174, 175).

However, small short-term studies that included pediatric

patients on Metformin for various indications did not

demonstrate an association between metformin and vitamin

B12 deficiency (176, 177).

Serious adverse events related to Metformin, namely

hypoglycemia and lactic acidosis, are rare. Metformin’s risk of

hypoglycemia is very low, when used as monotherapy and when
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patients consume carbohydrates regularly (105). Hypoglycemia

in metformin therapy typically occurs when insulin or other

hypoglycemic medications are also used.

Lactic acidosis is a concerning side effect associated with

Metformin in adults and occurs in the presence of

hypoperfusion or hypoxemia (178). The risk of lactic acidosis

with Metformin is negligible in children and adolescents on

Metformin in obesity (129, 131). In the TODAY study, there was

only one case of lactic acidosis that was deemed unrelated to

metformin use (27). Additionally, there were no clinically

significant cases of lactic acidosis reported in two other trials

that included youth with T2D on metformin (99, 101).

Therefore, Metformin does not seem to cause lactic acidosis in

pediatric T2D patients. However, it can certainly occur with a

concurrent illness or dehydration that may drive lactic acid

build-up.

Contraindications to Metformin include significant cardiac

impairment resulting in hypoperfusion and hypoxia (179).

Additionally, significant liver impairment is another

contraindication (37).

Metformin can be used safely in youth with elevated liver

enzymes in the context of NAFLD, provided liver function is

preserved (165–167). Until recently, Metformin was also

contraindicated for renal impairment. However, the FDA

has updated its labelling to indicate that Metformin can be

used safely in mild and some cases of moderate renal

impairment (180). Metformin is contraindicated when eGFR

is less than 30 ml/min/1.73 m2 and is not recommended when

eGFR is between 30 and 45 ml/min/1.73 m2 (37, 180).

Metformin should be stopped in cases of acute illness if

there is a risk of dehydration, poor fluid intake, and

hypoxemia, such as sepsis (179). Additionally, Metformin

should be withheld before surgery and restarted once oral

intake has resumed (37, 179). Metformin should also be

discontinued before administration of radiographic contrast

and for 48 hours afterwards until renal function is re-

evaluated (37, 179).
Metformin treatment to prevent T2D

Since T2D is a severe and aggressive metabolic disorder in

children, prevention efforts have targeted the upstream events in

its development, including pre-diabetes (181) (Table 2).

The current worldwide pooled prevalence of pre-diabetes

is 8.84% (182). Up to 8% of children and adolescents with pre-

diabetes progress to T2D, with increased body mass index

(BMI)-based measures being essential predictors of

progression (183–185). While adult studies have shown that

Metformin can help prevent the progression to T2D (186–

188), most pediatric studies have focused on markers of

insulin sensitivity rather than T2D development as

an outcome.
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The effect of Metformin on markers of glycemic control or

insulin resistance, including fasting plasma glucose, HbA1c,

fasting insulin, and HOMA-IR, has been variable. Trials that

treated youth with obesity and clinical or biochemical signs of

insulin resistance with Metformin provided mixed results. Some

studies demonstrated a reduction in fasting plasma glucose and

insulin levels with an improvement in insulin sensitivity; yet,

there were no differences in insulin levels or HOMA-IR in other

studies (115, 116, 189–191). In a small, randomized controlled

trial that included children and youth with impaired glucose

tolerance regardless of weight, Metformin treatment for three

months reduced HbA1c and HOMA-IR (192). However,

Metformin may not have a clear beneficial effect on b-cell
preservation during puberty in children and adolescents with

obesity and normoglycemia. A randomized controlled study that

followed 44 normoglycemic children and adolescents with

obesity from early puberty to puberty completion demonstrated

that, although Metformin improved anthropometric parameters

such as BMI z-score, waist circumference and percent body fat, it

did not have a beneficial effect on insulin sensitivity or b-cell
function compared to placebo (193).

The Metformin in Obese Children and Adolescents

(MOCA) trial included children and adolescents with obesity

and impaired glucose tolerance or hyperinsulinemia that were

randomized to Metformin versus placebo. There was minimal

improvement in fasting glucose levels at three months, and that

trend was not persistent at six months (119). Similarly, in

another randomized controlled trial that included children and

adolescents with obesity and insulin resistance based on

HOMA-IR, there was no significant difference in HbA1c or

HOMA-IR when comparing Metformin to placebo over 18

months of therapy (133). Moreover, an open label 18-month

extension of this study found that there was a progressive

increase in both BMI and HOMA-IR in participants who

continued Metformin (134).

In summary, while Metformin helps reduce the progression

to T2D in adults and may positively influence markers of

glycemic control and insulin sensitivity in children and

adolescents, current evidence on the role of Metformin in

preventing progression from pre-diabetes to T2D in youth is

lacking. Adequately powered trials with long-term follow-up

focusing on T2D prevention as a primary outcome in youth

are required.
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Conclusion

Metformin is considered first-line therapy in newly

diagnosed pediatric patients with T2D, with or without

insulin. It is generally considered a well-tolerated and safe

medication. Even though Metformin has been approved for

use in children for almost three decades, long-term prospective

studies in this population are lacking. They are needed to better

understand Metformin’s role in reducing T2D complications

and preventing progression from pre-diabetes to diabetes. In

addition to improving glycemic control and insulin sensitivity,

Metformin may support BMI reduction which is important in

improving insulin sensitivity.
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