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Low back pain (LBP) is a disabling condition with no available cure, severely

affecting patients’ quality of life. Intervertebral disc degeneration (IVDD) is the

leading cause of chronic low back pain (CLBP). IVDD is a common and

recurrent condition in spine surgery. Disc degeneration is closely associated

with intervertebral disc inflammation. The intervertebral disc is an avascular

tissue in the human body. Transitioning from hematopoietic bone marrow to

bone marrow fat may initiate an inflammatory response as we age, resulting in

bone marrow lesions in vertebrae. In addition, the development of LBP is

closely associated with spinal stability imbalance. An excellent functional state

of paraspinal muscles (PSMs) plays a vital role in maintaining spinal stability.

Studies have shown that the diminished function of PSMs is mainly associated

with increased fat content, but whether the fat content of PSMs is related to the

degree of disc degeneration is still under study. Given the vital role of PSMs

lesions in CLBP, it is crucial to elucidate the interaction between PSMs changes

and CLBP. Therefore, this article reviews the advances in the relationship and

the underlying mechanisms between IVDD and PSMs fatty infiltration in

patients with CLBP.

KEYWORDS

low back pain, intervertebral disc degeneration, paraspinal muscles, fatty infiltration,
Modic changes, inflammation
Introduction

Low back pain (LBP) is a disabling condition with no available cure, often caused by a

sedentary lifestyle and reduced exercise (1), severely affecting patients’ quality of life.

Chronic low back pain (CLBP) accounts for approximately 23% of LBP (2). Intervertebral

disc degeneration (IVDD) is the leading cause of CLBP (3). IVDD is a chronic,

multifactorial and irreversible process that severely compromises spinal stability and
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disc shock absorption (3). Early biochemical changes in IVDD

include loss of proteoglycans and water, while late

morphological changes include reduced disc height, nucleus

pulposus herniation, and annular tears (4). The paraspinal

muscles (PSMs) are fundamental determinants of the

structural stability and function of the lumbar spine (5). There

is a potential mechanism of action between defects in the

vertebral endplate and decreased muscle mass of the PSMs

during the development of disc degeneration. Previous studies

have shown that CLPB induced myoelectric activity and muscle

remodeling (e.g., muscle atrophy, fatty infiltration, and altered

fiber type) (6–10). At the L4/L5 level, fatty infiltration in PSMs is

more severe when damage to the adjacent spinal endplates (11).

Thus the formation of IVDD is not an isolated process but a

chain reaction that includes vertebral endplate changes and fatty

infiltration in the PSMs (12). Given the vital role of PSMs lesions

in CLBP, it is crucial to elucidate the interaction between PSMs

changes and CLBP. Therefore, this article reviews the advances

in the relationship and the underlying mechanisms between

IVDD and PSMs fatty infiltration in patients with CLBP.
Fatty infiltration in PSMs

The PSMs are the general term for the muscles surrounding

the spine, which include the psoas, multifidus, and erector

spinae. An excellent functional state of the PSMs is essential

for maintaining the spine structure. A decrease in the function of

PSMs can alter the original biomechanical relationships and

increase the load on the disc, thus causing IVDD. Conversely,

IVDD can also cause PSMs to compensate, leading to an

imbalance in loads of PSMs and producing atrophy. Studies

have shown that the atrophy of the PSMs is highly correlated

with the degree of IVDD. Muscle degeneration is characterized

by atrophy of muscle fibers, fiber bundles, and fat infiltration

(13, 14). Muscle atrophy and fat replacement are thought to be

the main features of PSMs remodeling in patients with CLBP,

and fat infiltration may exacerbate CLBP. It is, therefore, crucial

to elucidate the relationship between fatty infiltration of PSMs

and IVDD.

With the development of medical imaging modalities, the

metrics for assessing the atrophy of PSMs have gradually become

diverse. Earlier, the degree of atrophy of PSMs was mainly

determined by measuring the cross-sectional area (CSA) of

PSMs using computed tomography (CT) or real-time

ultrasound. In 1994, Goutallier et al. (15) proposed a semi-

quantitative assessment of fatty infiltration in PSMs based on CT

images, which opened new doors to exploring the mechanisms

of IVDD. Using CT images, researchers found that fatty

infiltration in PSMs was associated with small joint

degeneration, lumbar spondylolisthesis, and narrowing of the

vertebral space (16, 17). The degree of fatty infiltration in PSMs

is significantly increased in patients with higher degrees of small
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joint degeneration (16–19). With the advent of high-resolution

magnetic resonance imaging (MRI), MRI techniques have

become the primary technique for assessing the atrophy of

PSMs. Earlier magnetic resonance techniques used axial T2-

weighted scans more often. In recent years, MRI has been able to

distinguish well between muscle and adipose tissue by threshold

segmentation techniques to assess the degree of atrophy of PSMs

better. Eks ̧i et al. (20) proposed a new scoring system that

included fatty infiltration in PSMs, Modic changes (MCs), and

IVDD. Patients with more intense LBP had a more degenerative

spine (20). However, this scoring system did not detail the role

fat infiltration of PSMs played in LPB.

In 2015, Teichtahl et al. (21) used the iterative

decomposition of water and fat with echo asymmetry and least

square estimation-iron quantification (IDEAL-IQ) technique to

quantify the fat content of PSMs and to assess the correlation

between the fat content of PSMs and IVDD. They found that the

fat content of PSMs was associated with reduced disc height. In

addition, in 2016, the team found IVDD in all lumbar spine

segments was associated with high-fat content in PSMs (22). A

more recent study analyzed the correlation between fatty

infiltration in different PSMs and IVDD in more detail using

the Pfirmann classification (23) to assess the degree of IVDD.

The study showed a strong positive correlation between

Pfirmann classification and fat infiltration in the multifidus

muscle (Rho=0.57, p<0.001) and a moderate positive

correlation with fat infiltration in the erector spinae

(Rho=0.49, p<0.001) and psoas major (Rho=0.31, p<0.001) (24).
Multifidus

The multifidus is a general term for a group of PSMs that are

shorter in cross-section but run almost the entire length of the

spine and are, therefore, more susceptible to pathological

changes. The multifidus is lateral to the spinous process,

covering the corresponding vertebral plate, and is more closely

related to the vertebral plate and spinous process than the

erector spinae. Sun et al. (25) found that atrophy of the

multifidus was significantly and positively correlated with

IVDD at the L3/L4 disc level compared to the other PSMs.

The exact mechanism of muscle degeneration is unclear. Disuse

and denervation are two main mechanisms often mentioned

(26). Liu et al. (27) proposed two hypothetical models by

studying 264 subjects. One was that degeneration of the

multifidus caused lumbar instability, which exacerbated upper

lumbar disc degeneration. The other was that a herniated lumbar

disc compressed the nerve roots of the corresponding segment,

resulting in post-denervated multifidus atrophy. Hodges et al.

(28) and Goubert et al. (29) suggested the reduction in

multifidus activity due to pain as the leading cause of wasting

muscle atrophy. Studies have shown that fatty infiltration in

PSMs is strongly associated with high-intensity pain or disability
frontiersin.org

https://doi.org/10.3389/fendo.2022.1067373
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2022.1067373
and structural abnormalities of the lumbar spine (30). However,

a study of patients with high-intensity pain and disability, which

excluded the effect of physical activity level by adjusting for bias

in the results, demonstrated that fatty infiltration in multifidus

was an independent influence factor on the degree of disc

degeneration (22). The facts about the fatty infiltration in

multifidus during disc degeneration are clear. But the opposite

conclusion is shown in studies targeting the muscle’s CSA. Faur

et al. (26) reported that multifidus degeneration occurs mainly in

the cross-section of MRI scans. However, the more common

view is that muscle CSA does not correlate with IVDD (24, 31).

To improve the bias caused by muscle CSA in individual body

size, Urrutia et al. (32) calculated the relative CSA (RCSA) by

dividing the CSA of the L3 vertebrae by the muscle CSA and

showed a stronger correlation between fat signal fraction and

IVDD. In addition, muscle symmetry became a perspective that

was looked at. It has been suggested that a 10% or more

significant asymmetry in the multifidus’ CSA be used to

indicate potential spinal abnormalities (33). However, it was

found that more than 10% of men with no history of LBP also

had asymmetry of PSMs (34) and that asymmetry of muscle CSA

was not associated with lumbar disc herniation (24). The

Atrophy of PSMs is seen mainly in the inner side and deep

layers of cross-sectional scans on MRI of the lumbar spine (26).

Thus, measuring the CSA of PSMs and the ratio of functional

CSA to CSA to assess the degree of fatty infiltration in PSMs can

be biased by individual measurement differences. In addition, it

may also produce inconsistent results for different lumbar spine

segments. Some investigators have suggested that fatty

infiltration in PSMs correlates more strongly with pathological

changes in the intervertebral disc than muscle CSA (35).

Sarcopenia is defined as systemic muscle mass loss and a

decline in physical performance (36), of which back muscle

atrophy or fat infiltration may be a component (37). A study has

shown that systemic muscle mass loss substantially impacts back

muscle atrophy and fatty infiltration more than disc

degeneration (37). In other words, the effect of age and gender

on systemic muscle mass can further affect back muscle atrophy

and fat infiltration. Another study using CT techniques to

analyze trunk muscles showed that, in addition to the

multifidus, fatty infiltration in the gluteus maximus and

transversus abdominis muscles was also associated with IVDD

(17). Still, the exact mechanisms involved need to be

further explored.

Significant results have been obtained in cross-sectional

studies, and experimental animal studies under univariate

control are essential. By quantitative MRI, Huang et al. (38)

assessed fat infiltration in PSMs of patients with discogenic LBP

and rats in a novel discogenic LBP model. It was found that fatty

infiltration was present in the PSMs of both LBP patients and

rats and that there was a causal relationship between fatty

infiltration and IVDD (38). Another study showed that dogs

with higher IVDD grades had less fat infiltration in psoas and
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multifidus than those with lower mean IVDD degrees (39). From

this, the authors speculated that the presence or severity of

IVDD was not uniquely associated with fat infiltration in these

muscles. A study using a porcine model showed that disc and

nerve root injury might lead to a CSA reduction of the multifidus

and its fatty infiltration (28). However, there was no atrophy of

the multifidus following disc injury in sheep (40). This evidence

challenges whether IVDD affects the characteristics of PSMs, but

we are more skeptical that their relationship may not be purely

causal. Özcan-Ekşi et al. (30) found that fatty infiltration in

multifidus increased the probability of severe LBP fourfold.

Patients with severe lumbar disc herniation were likelier to

have increased fatty infiltration of the multifidus and erector

spinae muscles (12). Therefore, further investigation is needed to

determine whether lack of muscle strength and poor control due

to fatty infiltration in the multifidus is the cause of LPB or

vice versa.
Erector spinae

Although the role of the erector spinae in the spine’s

biomechanics is uncertain, its primary function is to be

responsible for the flexion movement of the spine and,

together with the multifidus, to maintain the stability of the

lumbar spine. A cross-sectional study with Japanese subjects

showed that fatty infiltration in PSMs correlated with age, and

fatty infiltration of the upper lumbar erector spinae was

significantly associated with LBP (41). In a separate study, the

proton density fat fraction (PDFF) of multifidus and erector

spinae at both L4/5 and L5/S1 levels was explored by MR

techniques and analyzed the correlation with IVDD. The

results showed a significant correlation between the PDFF of

the PSMs and the degree of IVDD (42). This correlation also

confirms that the two are mutually reinforcing processes, i.e.,

disc degeneration can also lead to further atrophy of the erector

spinae by destabilizing the spine. However, a study on erector

spinae in adolescents showed that the more intense the patient’s

LBP, the less fatty infiltration in erector spinae (43). The

investigators suggest that this may be an automatic

compensatory mechanism for the lumbar spine during the

development of LBP in adolescents and children (43).
Psoas major

The psoas major is an essential flexor muscle of the spine

and is the primary connection between the trunk and lower

limbs. It contributes to the extension and general stability of the

lumbar spine (44). Animal studies point to significant differences

in the psoas major in comparing different degrees of disc

degeneration (39). But it has also been shown that fatty

infiltration in erector spinae and multifidus was significantly
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associated with IVDD, whereas in psoas major was not

significantly associated with IVDD (12). A study explicitly

analyzing degenerative changes in the psoas major and lumbar

spine showed that degenerative changes in the lumbar spine,

including MCs, do not alter the activity of the psoas major (45).

The CSA of the psoas major at the L3/L4 and L4/L5 discs is even

greater in patients with LBP compared to the healthy population.

The result is inconsistent with the results of previous animal

experiments. In addition, Parkkola et al. (46) found that patients

with CLBP had smaller psoas major by comparison

with volunteers.

In contrast, Danneels et al. (47) showed no difference in CSA

of the psoas major between patients with CLBP and healthy

controls. Considering that the study by Danneels et al. chose

subjects who did not undergo surgery, the author speculates that

the difference in results may be related to increased activity of

the psoas major during treatment such as surgery. It has been

suggested that gender, age, and degree of disc degeneration are

independently associated with the PSMs’ fat signal fraction (FSF)

(32). However, only gender and age affect the FSF of the psoas

major, and the degree of disc degeneration does not alter the

degree of fat infiltration in the psoas major (32). A study

conducted to overcome gender bias concluded that the psoas

major becomes more active in female patients with pain to

stabilize the lumbar spine due to significant fat infiltration in the

multifidus as a compensatory mechanism (15). Although gender

is an essential factor influencing PSMs infiltration (42), this does

not affect the validity of the conclusions of the above study.
Vertebral endplate changes

MCs refer to MRI signal intensity changes in the spinal

endplate and subendplate bone. The characteristics of MCs were

systematically described by Modic in 1988, who concluded that

MCs are caused by disc degeneration and that their pathological

evolution is characterized by disc degeneration ! weakening or

loss of endplate protection ! edema of the adjacent cancellous

bone ! fatty infiltration of the vertebral body ! fibrosis and

calcification (48). They described three different Modic types (I,

II, and III). Since then, mixed Modic lesions (I/II and II/III) have

also been identified, which indirectly suggests that all Modic

lesions can progress from one type to another (48–50). Based on

the results of previous studies, types I and II are the most

common types of the lumbar spine, with the most common

distribution at the L4-L5 or L5-S1 levels (48, 51). Studies have

concluded that Modic type II changes are less associated with

LBP (51–54). The current studies confirm that Modic type II

changes are more common than type I changes (48, 49, 51, 55–

57) yet remain rare in individuals without degenerative lumbar

disc disease (51, 58, 59).

MCs have previously been reported to occur mainly in the

lower lumbar segments (L4-L5 and L5-S1) (60, 61). In a recent
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study, Eks ̧i et al. (43) found that MCs were predominantly seen

at the L1-L4 level rather than the L4-S1 level and were more

common in patients with severe IVDD than in those with mild

to moderate IVDD. When analyzing this association on a level-

by-level basis, the authors found that severe IVDD was

significantly associated with MCs at the L1-L2 and L3-L4 disc

levels (43). And multifidus’ fatty infiltration in the L3-L4 and L4-

L5 segments increased the risk of MCs in all lumbar parts by 8.3-

fold and 9.1-fold, respectively (43). An MRI study showed that

fatty infiltration in PSMs was associated with reduced disc height

and MCs (31). In addition, Patients with Modic type I or I/II

changes had more fatty degeneration in the lumbar PSMs (62).

However, there is still considerable debate as to whether MCs

precede lipoatrophy or occur after back pain.
Molecular mechanisms of fat
infiltration in PSMs

The lumbar discs and the PSMs are not only adjacent but also

interconnected at the molecular and metabolic levels. IVDD is

characterized by a progressive decrease in the proteoglycan and

water content of the nucleus pulposus and a loss of resistance to

compressive loads (63). The above mechanism is one of many, so

we have sorted out the possible underlying mechanisms.
Inflammation

Early views suggested that fatty infiltration compromised the

mass of the PSMs because the adipose tissue was non-

contractible (64, 65). There are currently many hypotheses for

the mechanism of the relationship between fatty infiltration of

the PSMs and spinal disorders, such as loss of nerve (28), chronic

disuse (66), and inflammation (67). Inflammation, in particular,

has been extensively studied. An experiment modeled in rats

demonstrated that fatty infiltration in PSMs was closely

associated with inflammation (38). Inflammation contributes

to the development of pain (68) and may contribute to MCs (69).

Increased reactive oxygen species (ROS) production has been

reported to be associated with the differentiation of

preadipocytes to adipocytes and the accumulation of adipose

tissue (70). Thus, effectively mitigating cellular oxidative stress in

an inflammatory environment would also block ROS-induced

adipogenesis (71). In a study by James et al. (72), muscle and fat

specimens were collected intraoperatively from patients with

herniated discs, and gene expression was detected using a

quantitative polymerase chain reaction, dividing the patients

into a high-fat infiltration group and a low-fat infiltration group.

The results showed high tumor necrosis factor (TNF) expression

in the multifidus of subjects in the high-fat infiltration group.

Another study addressing the mechanism showed that the

expression levels of interleukin (IL)-1b, IL-6, IL-8, nitric oxide
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synthase-2 (NOS-2), and transforming growth factor (TGF)-b
did not differ in severe IVDD compared to mild IVDD (24). The

expression of TNF in lumbar disc tissue was significantly higher

in the severe degeneration group than in the mild degeneration

group (24). During the inflammatory process, TNF possesses

intense pro-inflammatory activity and is closely associated with

various pathological processes in IVDD (73). Some researchers

have speculated that TNF may not only be a product of adipose

tissue but also regulate adipogenesis (72).

Fibroblasts and preadipocytes are found in the connective

tissue surrounding muscle fibers and can differentiate in

response to inflammation. Adipocytes also increase following

sympathetic degeneration, which is likely to occur following

nerve injury. On the other hand, the dramatic increase in

deoxyribonucleic acid synthesis following injury leads to the

secretion of pro-inflammatory cytokines, stimulating fibroblasts,

preadipocytes, and muscle precursor cells, ultimately leading to

adipocyte proliferation.

Histological analysis shows that patients with LBP primarily

display degeneration of the multifidus muscle, which occurs in

relation to elevated inflammation, fiber size, and the ratio of fat to

connective tissue (74). In addition, it was found that degenerating

muscles were predominantly composed of type I fibers with less

vascularity (74). Although there was no concurrent sign of atrophy

at the individual fiber level, inflammatory cell density and vascular

density changed in different muscle groups. In particular,

inflammatory cells were significantly increased in normal skeletal

muscle cells in the subgroup with 10%-50% fat infiltration, which

suggests that regeneration and degeneration were out of balance in

that condition (74).
Obesity

Obesity is a pro-inflammatory state that releases cytokines

such as TNF-a and IL-6. It is commonly believed that obesity is

closely associated with MCs. Albert et al. suggest that it is not

obesity but rather its resulting overweight that plays a vital role

in the development of MCs (50). Two possible mechanisms

explain this effect: 1) When the disc is stressed, matrix synthesis

and proteoglycan content are reduced. The load-bearing

capacity then gradually decreases. 2) IVDD or disc herniation

can increase the shear forces on the vertebral endplates due to

loss of the nucleus pulposus. The increased axial and torsional

stresses may result in microfractures of the vertebral endplate.

LBP has been reported to be significantly associated with body

mass index (BMI) (75). However, it has also been suggested that

BMI is not associated with fatty infiltration in PSMs (24). A study of

fatty infiltration in PSMs showed no difference in pain scores

between obese and non-obese patients (76). Still, obese patients

had more severe disc degeneration in the lower lumbar spine,

possibly due to the increased load on the vertebral body caused by

obesity (76). Subcutaneous fat tissue thickness (SFTT) is a new
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radiological index for assessing body fat percentage (77). Recent

studies have shown that SFTT at L1-L2 level was superior to BMI in

predicting severe IVDD and MCs (77, 78). A zoological study

showed that a high-calorie diet did not cause disc degeneration in

the vertebrae of mice (79). However, advanced glycation end

products (AGEs) can lead to IVDD (80, 81). The receptor for

advanced glycation end-products (RAGE) deletion inhibits systemic

pro-inflammatory cytokine activity. D’Erminio et al. (79) used the

RAGE knockout (RAGE-KO)model to control inflammation. They

found that the effect of RAGE-KO in improving IVDD was limited

and gender-related, suggesting that obesity and other sources of

inflammation leading to a biomechanical overload of the lumbar

spine may also have an impact (79). Another study showed that

diabetes, rather than obesity, reduced the glycosaminoglycan and

water content of the discs, and IVDD was associated with increased

vertebral endplate thickness, reduced endplate porosity, and

increased levels of AGEs (81). Due to their reduced

glycosaminoglycan and water content and higher AGEs levels, the

discs from diabetic rats became stiffer and had less alteration during

compression (81). These findings suggest that endplate sclerosis,

increased oxidative stress, and AGE/RAGE-mediated interactions

may explain the high incidence of IVDD in patients with type 2

diabetes (81). Cell culture studies have shown increased palmitic

acid-induced apoptosis in nucleus pulposus cells and activation of

caspases 3, 7, 9, and poly (ADP-ribose) polymerase (PARP) mainly

through the mitogen-activated protein kinases (MAPK) pathway,

particularly the extracellular-signal-regulated kinases (ERK)

pathway (82). Most obese patients have abnormally high blood

lipid levels, and hypertriglyceridemia can induce IVDD

independent of age and BMI (82). The results do not exclude the

possibility of additional direct mechanical influences in the process

of disc degeneration in humans (82).
Conversion of hematopoietic bone
marrow to fatty bone marrow

The intervertebral disc is an avascular tissue in the human

body. Its nutritional supply depends on the transport of

capillaries from the adjacent vertebrae. The study of Krug

et al. showed that the conversion of hematopoietic bone

marrow to fatty bone marrow impairs the supply of adequate

nutrients to the disc cells and thus may accelerate disc

degeneration (83). The MRI quantitative analysis confirmed

that in the early stages of IVDD, IVDD and bone marrow fat

interacted to some extent, with the severity of lumbar disc

degeneration increasing with the adjacent vertebral fatty

conversion (84). The relationship was particularly evident in

the L4/5 lumbar segment (84). Focal fat conversion in normal

hematopoietic red bone marrow may impede the transport of

nutrients from the bone marrow to the end plate (85). IVDD is

usually accompanied by osteoporosis, suggesting that the

development of osteoporosis and IVDD may be a concomitant
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process (86, 87). Adipocytes and osteoblasts are derived from

bone marrow mesenchymal stem cells (BMSCs). In BMSCs,

there is a balance between osteogenesis and lipogenesis. If this

balance is disturbed, it leads to a physiological disturbance, i.e.,

an increase in adipocytes in the bone marrow and decreased

bone formation (79). Focal fatty degeneration of the bone

marrow near the disc endplates can lead to disc degeneration

by impeding the transport and metabolic exchange of nutrients

essential to the disc. In addition, adipocyte growth and

inflammatory edema compress the blood vessels in the

confined bone cavity, further reducing blood flow (49, 88).
Adipokines

Adipose tissue releases pro-inflammatory cytokines that have a

potential role in various tissue pathologies. Cytokines such as leptin,

adiponectin, and TNF produced by adipocytes have been shown to

be associated with obesity and osteoarthritis (89).

Leptin regulates adipose tissue metabolism and inflammation

(90) and can lead to adipocyte hypertrophy (91). Leptin and TNF

are components of a positive feedback loop that promotes adipocyte

hypertrophy (90). This cascade response could explain the rapid

deterioration of adipose infiltration over time. Segar et al. (92) found

that leptin acting alone or in concert with TNF-a, IL-1b, or IL-6 in
the nucleus pulposus significantly increased nitric oxide (NO)

production and promoted inflammatory cytokines and matrix

metalloproteinases (MMP). These processes further initiate the

degradation of disc cells and the inflammatory cascade response,

thereby accelerating the degenerative process (92). Meanwhile, a

study by Han et al. (93) confirmed that leptin expression was

associated with the calcification of the cartilage endplates.

Adiponectin, mainly produced by lipids, is downregulated in

patients with disc degeneration (94). Adiponectin may play an anti-

inflammatory role in maintaining the homeostasis of the

degenerating disc environment by down-regulating TNF-a
production by degenerating nucleus pulposus cells (94). And

adiponectin can reduce TNF-a and IL-6 significantly upregulated

by IL-1b stimulation in nucleus pulposus cells and annulus fibrosus

cells (95). James et al. (72) found increased expression of lipocalin

and NOS-2 in epidural fat. And high leptin and low arginase 1

expressions were found in the intramuscular and subcutaneous

adipose tissues (72). They speculated that disc disease is associated

with a dysregulation of the local inflammatory condition (72).

Resistin is commonly involved in intra-articular angiogenesis

and the inflammatory milieu (96, 97). Resistin expression is

upregulated in degenerating disc tissue. In nucleus pulposus cells,

it binds to Toll-like receptor 4 via the p38-MAPK and NF-KB

signaling pathways, leading to inflammation (98), further leading to

metabolic disturbances in nucleus pulposus cells, and accelerated

disc degeneration processes (99).

Visfatin is secreted by visceral adipocytes and is involved in

immunity, stress, and inflammation processes. In degenerated
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disc tissue, visfatin expression levels were progressively

upregulated as degeneration progressed (100). In the nucleus

pulposus cells, increased visfatin expression was associated with

an upregulation of degradation-related proteins (100). In

contrast, the knockdown of visfatin expression or the use of

inhibitors showed a decrease in cellular autophagy and a

downregulation of autophagy-related protein expression (100).

Similarly, a study modeled in rats to simulate severe IVDD and

performed pathway analysis indicated that inhibition of visfatin

protected the nucleus pulposus from degeneration and that

focusing on epidural lipids and visfatin would be a potential

therapeutic target to control the inflammation associated with

IVDD (101).
Conclusion

IVDD is the leading cause of CLBP. IVDD is a chronic,

multifactorial, irreversible process that severely compromises

spinal stability and disc shock absorption. The PSMs are

fundamental determinants of the structural stability and function

of the lumbar spine. Studies have confirmed that fatty infiltration in

PSMs plays a crucial role in IVDD. Inflammation, obesity,

conversion of hematopoietic bone marrow to fatty bone marrow,

and adipokines may be potential mechanisms for fat infiltration in

PSMs. However, the quantitative methods and determination

criteria for fat infiltration in PSMs and the vertebral plate need to

be further studied. The biochemical and molecular mechanisms of

fat infiltration in IVDD remain to be further investigated. The

communication between the two at the molecular level still needs to

be confirmed, especially concerning the potential signaling

pathways in adipocytokines in IVDD.
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