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Identification of a basement
membrane-related gene
signature for predicting
prognosis and estimating the
tumor immune
microenvironment in
breast cancer

Jiehui Cai2†, Xinkang Zhang2†, Wanchun Xie2†, Zhiyang Li2†,
Wei Liu1 and An Liu1*

1Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology,
Yueyang, Hunan, China, 2Department of General Surgery, The Second Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, China
Introduction: Breast cancer (BC) is the most common malignancy in the world

and has a high cancer-related mortality rate. Basement membranes (BMs)

guide cell polarity, differentiation, migration and survival, and their functions are

closely related to tumor diseases. However, few studies have focused on the

association of basement membrane-related genes (BMRGs) with BC. This study

aimed to explore the prognostic features of BMRGs in BC and provide new

directions for the prevention and treatment of BC.

Methods: We collected transcriptomic and clinical data of BC patients from

TCGA and GEO datasets and constructed a predictive signature for BMRGs by

using univariate, least absolute shrinkage and selection operator (LASSO) and

multivariate Cox regression analysis. The reliability of the model was further

evaluated and validated by Kaplan-Meier survival curves and receiver operating

characteristic curves (ROC). Column line plots and corresponding calibration

curves were constructed. Possible biological pathways were investigated by

enrichment analysis. Afterward, we assessed the mutation status by tumor

mutational burden (TMB) analysis and compared different subtypes using

cluster analysis. Finally, we examined drug treatment sensitivity and

immunological correlation to lay the groundwork for more in-depth studies

in this area.

Results: The prognostic risk model consisted of 7 genes (FBLN5, ITGB2,

LAMC3, MMP1, EVA1B, SDC1, UNC5A). After validation, we found that the

model was highly reliable and could accurately predict the prognosis of BC

patients. Cluster analysis showed that patients with cluster 1 had more sensitive

drugs and had better chances of better clinical outcomes. In addition, TMB,
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immune checkpoint, immune status, and semi-inhibitory concentrations were

significantly different between high and low-risk groups, with lower-risk

patients having the better anti-cancer ability.

Discussion: The basement membrane-related gene signature that we

established can be applied as an independent prognostic factor for BC and

can provide a reference for individualized treatment of BC patients.
KEYWORDS

breast cancer, basement membrane, prognosis, tumor immune microenvironment,
candidate drugs
Introduction

Breast cancer (BC), whose number of global new cases is

estimated to be 2,261,419 in 2020, is the most common

malignant tumor in the world (1). Although BC has made

significant progress in risk factors, early diagnosis, and

treatment strategy, especially improvements in chemotherapy,

targeted therapy, and immunotherapy, its prognosis is still

unsatisfactory. Molecular typing, pathological staging, tissue

type, treatment, and so on affect the prognosis of BC. In

addition, patients with the same molecular type and clinical

characteristics have different prognoses, which may be caused by

different responses to chemotherapy or immunotherapy (2). It

indicates that there may be potential biomarkers to change the

tumor microenvironment, thereby affecting the treatment and

prognosis of the tumor.

Basement membrane (BM), a sheet-like structure, is a cell-

adherent extracellular matrix that is widely distributed in

metazoan tissues, lies beneath epithelial cells, and surrounds

most tissues. As core structural components of BMs, collagen

type IV, laminins, nidogens, and heparan sulfate proteoglycans

direct cell polarity, differentiation, migration, and survival (3).

For example, it is laminins that are chemotactic for certain

tumor cells (4), which contribute to promoting tumor cell

growth. The ability of the BMs to control the growth of blood

vessels and tumors, maintain the integrity of the skin and

neuromuscular structures, and promote adipogenesis and

fibrosis has been proven and has gradually become the center

of the biological field (3). Based on the diversification and

function of BM, variation in its genes is not only considered to

underlie human disease (5) but also BM proteins are considered

as targets of autoantibodies in immune disorders (6). It is well

known to us that all those mutations in laminin cause skin

disease due to the disruption of hemidesmosomes. Alport’s

syndrome is caused by mutations in type IV collagen. In terms

of tumors, dysregulation of BM is the key to tumorigenesis, and
02
the over-proliferation of some tumor cells such as breast cancer,

colon cancer, and prostate cancer is closely related to the

overexpression of laminin (7). BM is bound up with tumor

and non-tumor diseases, as defects in BM protein expression

and turnover play key pathogenic roles in cancers, diabetes, and

fibrosis (8, 9). Therefore, there is a doubt whether BM is related

to the occurrence and development of BC or not. Given the lack

of previous studies and reports on BM and BC, to fully

understand the impact of BM-related genes on BC, the aspects

of gene expression, survival prognosis, gene enrichment analysis,

molecular typing, tumor immune microenvironment, and drug

sensitivity analysis were explored in the study, which can

provide a theoretical basis for further research on the

molecular mechanism between BM and BC, and provide a

new direction for the prevention and treatment of BC as also.
Materials and methods

Data and genes acquisition

We obtained RNA transcriptomic and clinical data required

in this study from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) database and Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/) database. The TCGA

dataset contains 1222 human breast tissue samples, including

1109 BRCA (breast invasive carcinoma) and 113 normal

samples. The patients in the TCGA database served as the

training set for the prognostic model in this study, from which

we extracted basic information, survival data and pathological

staging of the patients. The GEO data were selected from the

GSE20685 dataset, which contained 327 breast cancer samples

with survival information. We obtained a total of 224 basement

membrane related genes (BMRGs) for identification through

extensive literature reading. The gene transfer format (GTF) was

obtained from Ensembl (http://asia.ensembl.org), which was
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used to distinguish lncRNAs from genes about the samples in the

TCGA database.
Construction of the prognostic signature

We used R software (version: 4.1.2) to analyze the data that

had been downloaded and organized. The “Limma” package was

used to compare BMRG expression in tumor and normal

patients in the TCGA and GEO datasets and to filter for

differentially expressed genes (10). The filtering criteria were

set to |log2 fold change (FC) | > 0.5 and false discovery rate

(FDR)< 0.05. The results were visualized using the “pheatmap”

package to create the volcano map and heat map. We then

combined selected BMRGs with clinical data and used univariate

Cox regression analysis with the “survival” package to screen for

genes that were significantly associated with prognosis (p< 0.05).

The training set (TCGA dataset) and validation set (GEO

dataset) together constitute the prognostic cohort, and the

prognostic genes co-expressed by TCGA and GEO are

screened out. Next, using LASSO regression analysis with the

“glmnet” package to further exclude overfitting BMRGs (11), we

screened 11 BMRGs strongly associated with BC patients’

prognosis. Lastly, we used multivariate Cox risk regression to

analyze the 11 BMRGs and identified 7 BMRGs. Based on it, we

constructed the prognostic model. The following equation

assessed the risk score of BC patients.

Risk score =o7
k=1Coef (k)� E(k)

Coef(k) represents the regression coefficient of BMRGs, and

E(k) represents the expression level of BMRGs. We used the

median risk score as the cut-off for patients in the high-risk and

low-risk groups.
Internal validation of BMRG
prognostic signature

After establishing the prognostic model, it is necessary to

validate the resulting model for the purpose of demonstrating its

reliability in predicting prognosis. We compared the overall survival

(OS) between the two groups based on the Kaplan-Meier log-rank

test to see if there was a significant difference. The “pheatmap”

package was used to plot risk curves, survival status maps, and risk

heat maps for the TCGA and GEO datasets to visualize the effect of

BMRGs on the prognosis of BC patients for better observation and

comparison. In addition, we performed an independent prognostic

analysis using univariate and multivariate COX regression analysis

to determine whether the established model was independent of

other clinicopathological characteristics as an independent

prognosis factor. In this process, we excluded 51 patients with

overall survival of fewer than 30 days and 183 patients with missing
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staging data, including 24 patients without stage, 150 patients

without M stage, and 9 patients without N stage. The receiver

operating characteristic (ROC) curve was used to reflect the

relationship between sensitivity (TPR, true positive rate) and

specificity (FPR, false positive rate) at different thresholds, and the

area under the curve is called the AUC (Area Under Curve) (12).

The larger the area, the higher the accurate value of the prediction.

We plotted the ROC curves and calculated the AUC values using

the “survminer” and “timeROC” packages.
Nomograms and calibration curves
construction

The Nomogram is based on multivariate COX regression

analysis, integrating multiple predictors to express the

interrelationship between variables in the prognostic model,

and is widely used in oncology (13). We used the “regplot”,

“survival”, and “rms” packages to integrate clinicopathological

characteristics and risk scores, including age, gender, stage and

TMN stage. Nomograms for 1 year, 3 years, and 5 years were

created for the TCGA and GEO datasets, respectively. The

calibration curves were constructed based on the Hosmer-

Lemeshow test, and the accuracy of the nomogram in guiding

prognosis was determined by comparing the fitting degree

between the actual observations and the predicted results.
Functional enrichment analysis

We screened differentially expressed genes in different risk

groups with |log2 fold change (FC) > 0.5| and with false

discovery rate (FDR)< 0.05. The Gene ontology (GO) (14)

enrichment of basement membrane-related prognostic genes

was analyzed to explore the biological processes (BP), cellular

components (CC) and molecular functions (MF). In addition,

we used GSEA (Gene Set Enrichment Analysis) (15) to identify

the biological pathways of BMRG, using p< 0.05 and FDR< 0.05

as the analysis criteria. All biological pathways were obtained

from the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Study of TMB and correlation of
prognostic signature

TMB (16) is the total number of mutations per megabase in

the tumor tissue. We used a Perl script to obtain each sample’s

TMB and mutation frequency in the tumor mutation data

coming from TCGA. And all samples in the dataset were

divided into high TMB and low TMB groups and combined

with the patient’s survival data for analysis. The TMB survival

curve was plotted. We plotted waterfall plots for visual analysis

of gene mutations in the high and low-risk groups. TMB
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variance and correlation analyses were further conducted for the

high and low-risk groups. Moreover, we performed a combined

analysis of high and low TMB and high and low-risk groups to

further investigate the effect on patient survival.
Exploration of tumor immune
microenvironment, immune cell
infiltration and immune-related functions

It was the Wilcoxon rank sum test that was used for

analyzing the differences in StromalScore, ImmuneScore, and

ESTIMATEScore between high and low-risk groups. We

analyzed the immune microenvironment of the tumor from

these three aspects. Simultaneously, we calculated the proportion

of immune cell infiltration using various algorithms, including

XCELL (17), TIMER (18), QUANTISEQ (19), MCPCOUNTER

(20), EPIC (21), CIBERSORT-ABS, and CIBERSORT (22). We

visualized it in the form of a bubble plot. Ultimately, we scored

the different infiltrating immune cell subpopulations in the

samples to assess the changes in immune function in high and

low-risk groups and plotted the multi-box plot to visualize

the results.
Cluster analysis of BMRGs

Based on the screened prognostic model of the 7 BCRGs, we

performed cluster analysis using BC samples from the TCGA

cohort. In the light of “ConensusClusterPlus” R package, we

divided tumor samples into different subgroups. The clustering

excluded groups with small sample sizes while strengthening

intra-group correlations and reducing inter-group correlations.

In the meantime, the cumulative distribution function curve was

steadily increasing. Next, we plotted survival curves using the

“survival” and “survminer” packages to analyze the survival

differences of the clustered samples. We also generated Sankey

plots using the “dplyr”, “ggplot2”, and “ggalluvial” packages to

analyze the relationship between clustering and risk relationship.

We used t-distributed Stochastic Neighborhood Embedding

(tSNE) to analyze different clusters (23) and high- and low-

risk groups to visualize the grouping of clusters. The progression

of tumor disease is closely related to the immune

microenvironment, so we again analyzed the differences in

StromalScore, ImmuneScore and ESTIMATEScore between

clusters. Using various algorithms, including TIMER (18),

CIBERSORT (22), CIBERSORT-ABS, QUANTISEQ (19),

MCPCOUNTER (20), XCELL (17), and EPIC (21), we

analyzed the immune infiltration in different clusters and used

the “pheatmap” package to generate a heatmap. Eventually, it

was the pRRophetic (24) algorithm that was utilized to analyze

the maximum inhibitory concentration (IC50) of the drug
Frontiers in Endocrinology 04
response data for BC patients under different clustering

conditions on Genomics of Drug Sensitivity in Cancer

(GDSC) (https://www.cancerrxgene.org/). p< 0.001 was

considered significant.
Prediction of potential drug sensitivity
and clinical immune efficacy by BMRGs

BC’s research cannot be separated from the development of

new drugs. Based on the IC50 of GDSC, we assessed the drug

sensitivity of drugs in the dataset using the “pRRophetic” package

(24), and the “ggplot2”, “ggpubr”, “limma” and “reshape2”

packages were used to analyze statistical differences in the

expression levels of common ICI-related immunosuppressive

molecules. We assessed differences in drug sensitivity between

high and low-risk groups using the Wilcoxon test and plotted box

plots, with p< 0.001 considered significant.
Results

Screening and identification of basement
membrane-related genes

We extracted 1039 samples based on the TCGA database,

after excluding cases with missing or less than 30 days of survival

time. By differential analysis of the expression of 224 BMRGs, we

identified 113 BMRGs that were differentially expressed in normal

and tumor tissues (Supplementary Table 1) (|log2 FC|>0.5 and

FDR<0.05). The heat map clearly shows the expression of these

113 BMRGs in normal and tumor tissues (Figure 1A). According

to the volcano plot, 46 of the BMRGs were upregulated and 67

were downregulated in tumor tissues (Figure 1B).
Establishment and validation of the
prognostic signature for BMRGs

First, we preliminarily extracted 11 BMRGs that were highly

correlated with BC prognosis using univariate Cox regression

analysis. Figure 1C is a forest plot showing the difference in

expression (p value) and hazard ratio (HR) of 11 BMRGs

between cancer and normal tissues. We next penalized the 11

BMRGs by LASSO regression analysis (Table 1), whose curve is

shown in Figure 1D. At last, we set up the final prognostic model

by multivariate Cox regression analysis. The 7 best BMRGs

(FBLN5, ITGB2, LAMC3, MMP1, EVA1B, SDC1, UNC5A)

were included in the model analysis (Table 2) and their

expression differences (p value) and hazard ratio (HR) are

presented in Figure 1E. We calculated the risk score of each

patient based on the regression coefficient and expression level of
frontiersin.org
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each gene, and divided the patients into high-risk and low-risk

groups using the median risk score as the cut-off value. The

survival curves in Figures 2A, B show that the difference in

overall survival (OS) between the two groups was significant in

the training and validation sets. The survival rate of the high-risk

group in BC patients was significantly lower than that of the low-

risk group, which initially confirms the predictive ability of our

constructed model in terms of the prognosis of BC patients.

Figures 2C, D demonstrated the distribution of risk score

rankings of BC patients determined based on the seven
Frontiers in Endocrinology 05
BMRGs prognostic markers. The scatter plots of the training

and validation sets in Figures 2E, F showed that the mortality

rate of BC patients was positively correlated with the risk score.

Survival time was negatively correlated with risk score. We

plotted the heat map of Figures 2G, H to compare the

expression levels of genes between high-risk and low-risk

groups for the training and validation sets, from which it is

known that in two different sets, the expression tendency of

genes SDC1, ITGB2, MMP1, LAMC3 and UNC5A were

basically the same, while the expression tendency of EVA1B
B

C D

E

A

FIGURE 1

Extraction of differentially expressed BMRGs. (A) Heatmap of 113 differentially expressed BMRGs. (B) Volcano plot of 113 BMRGs expressed in BC
tissues. Red dots represent up-regulated genes in tumor tissue while green dots represent down-regulated genes. (C) Forest plot of prognostic
BMRGs extracted by univariate Cox regression analysis. (D) LASSO regression analysis curve. (E) Forest plot of prognostic BMRGs extracted by
multivariate Cox regression analysis. BMRGs, basement membrane-related genes.
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and FBLN5 were different, as EVA1B was highly expressed in the

low-risk group and lowly expressed in the high-risk group for

the training set but it was highly expressed in both high-risk and

low-risk groups for the validation set. And meanwhile, FBLN5

was almost lowly expressed in two groups for the training set and
Frontiers in Endocrinology 06
almost highly expressed in two groups for the validation set.

Considering that the actual clinical conditions of patients are

often complex, the prognosis is also influenced by many factors.

We performed univariate and multivariate Cox regression

analyses on the two datasets based on risk scores and clinical

parameters. We drew forest plots (Figures 3A-D), respectively,

to further confirm whether prognostic features could be used as

independent prognostic indicators for BC patients. The

univariate Cox regression analysis on the basis of the TCGA
TABLE 2 The 7 basement membrane-associated genes obtained by
multivariate Cox regression analysis and their regression coefficients.

id coef

FBLN5 -0.029541632710079

ITGB2 -0.0235801263095758

LAMC3 0.249435180710723

MMP1 0.00387076833795619

EVA1B -0.0146037458342459

SDC1 0.00213593388985154

UNC5A 0.0472256273299147
B

C D

E F

G H

A

FIGURE 2

Prognosis and risk score analysis of the 7 BMRGs. (A, B) Survival analysis based on the Kaplan-Meier method for OS of BC patients in high- and
low-risk groups and plotting survival curves. (C, D) Risk score distribution of BC patients. (E, F) Scatter plot of BC patients’ survival status. (G, H)
Risk heat map of 7 BMRGs expressions in the training set (G) and validation set (H). (A, C, E) Training set (TCGA cohort); (B, D, F) Validation set
(GEO cohort); BC, breast cancer; OS, overall survival.
TABLE 1 The 11 basement membrane-associated genes obtained by
LASSO regression analysis and their regression coefficients.

id coef

CTSA 0.00779549049557869

FBLN5 -0.0162876081849546

FREM1 -0.160643851315573

ITGB2 -0.0107094447384872

LAMC3 0.204370545417446

MMP1 0.00324834178810158

EVA1B -0.012127407265769

ITGAX -0.0524544206014349

PAPLN -0.0186576461581964

SDC1 0.00176256881594049

UNC5A 0.0409586439458294
LASSO, least absolute shrinkage and selection operator.
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dataset showed that all factors, including age, tumor stage, T, N,

and M stages, and model, except gender, could be used as

independent prognostic indicators for BC patients (Figure 3A,

p<0.001). And multivariate COX regression analysis showed that

age and model were independent prognostic factors for BC

patients (Figure 3B, p<0.001). Univariate COX regression

based on the GEO dataset showed that T, M, and N stages

could be independent prognostic indicators for BC patients

(Figure 3C, p<0.001). Multivariate COX showed that N stage

and model could be used as independent prognostic factors for

BC patients (Figure 3D, p<0.005). Finally, we judged the

reliability of the prognostic model by plotting the ROC curve

and calculating the area under the curve (AUC). The AUC value

of the risk score was 0.649, which had better predictive
Frontiers in Endocrinology 07
performance than the gender, M stage and N stage

(Figure 3E). Our AUC values for predicting 1-year, 3-year, and

5-year survival were 0.649, 0.666 and 0.658, respectively

(Figure 3F), which indicated that the prognostic model could

effectively predict patient prognosis.
Analysis of nomograms and
biological pathways

The nomogram was used to quantitatively predict the 1-, 3-,

and 5-year OS of BC patients, which fully integrated risk scores

and clinicopathological characteristics. Figures 4A, B exhibited

the results about training set, we randomly selected one BC
B

C D

E F

A

FIGURE 3

Validation of BMRGs prognosis and association with clinical parameters. (A, B) Univariate (A) and multivariate (B) Cox regression analyses of risk
scores and clinical parameters in the training set (TCGA cohort). (C, D) Univariate (C) and multivariate (D) independent Cox regression analyses
of risk scores and clinical parameters in the validation set (GEO cohort). (E) ROC curves and AUC for risk scores and clinicopathological
characteristics. (F) ROC curves and AUC for 1-year, 3-year, and 5-year survival rates.
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patient for scoring (Figure 4A). The calibration curves showed

good agreement between the predictions of the column line

graphs for 1-, 3-, and 5-year OS and the actual observed values

(Figure 4B). The same results appear in the validation set
Frontiers in Endocrinology 08
(Figures 4C, D). To explore the biological process of BMRGs,

we performed The Gene Ontology (GO) enrichment analysis

and GSEA analysis. GO analysis showed that BMRGs were

significantly associated with leukocyte mediated immunity,
B

C D

E F

G

A

FIGURE 4

Construction of column line graphs and enrichment analysis of BMRGs. (A–D) Combined risk score and clinical parameters to predict the
column line graphs of 1, 3, and 5-year OS of BC patients in the training set (A) and validation set (C); calibration curves of 1, 3, and 5-year OS in
the training set (B) and validation set (D). (E–F) GO functional enrichment analysis. (G) GSEA multi-pathway enrichment analysis.
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humoral immune response, and B cell activation (Figures 4E, F).

GSEA enrichment analysis in Figure 4G showed that terpenoid

backbone biosynthesis, citrate cycle TCA cycle, protein export,

and mismatch repair were mainly enriched in the high-risk

group. Hematopoietic cell lineage was more enriched in the low-

risk group. Meanwhile, signaling pathways were more active in

the low-risk group, such as JAK-STAT signaling pathway and

CHEMOKINE signaling pathway.
Frontiers in Endocrinology 09
Tumor mutational burden

Based on the data from the TCGA dataset, we obtained theb

mutations in BC patients using the R package “maftools”, which

included a total of 926 BC samples. The mutation rate in the

high-risk group was 83.08% (Figure 5A), and the mutation rate

in the low-risk group was 85.84% (Figure 5B). From the waterfall

plot, the mutated genes in the high-risk and low-risk groups
B

C D

E F

A

FIGURE 5

Tumor mutational burden (TMB) for prognostic features. (A, B) Waterfall plots of TMB in BC patients in the high-risk group (A) and low-risk
group (B). (C) Comparison of TMB between the high-risk and low-risk groups. (D) Correlation curves between TMB and risk scores. (E) Stratified
survival curves of TMB in BC patients. (F) Survival curves for BC patients in terms of L-TMB + low risk, L-TMB + high risk, H-TMB + low risk, and
H-TMB + high risk. H, high; L, low.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1065530
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cai et al. 10.3389/fendo.2022.1065530
were mainly PIK3CA, TP53, TTN, CDH1, GATA3, MUC16,

MAP3K1, MUC4, KMT2C, and PTEN. These genes had

different mutation rates in the low- and high-risk groups. The

mutation rates of PIK3CA, CDH1, MAP3K1 and PTEN in the

low-risk group were higher than those in the high-risk group.

TMB was significantly higher in the high-risk group than in the

low-risk group (Figure 5C, p = 2.2e-12). The correlation curve

from Figure 5D showed a significant positive correlation

between TMB and risk score (R = 0.26, p = 3.2e-16). The

TMB survival curve in Figure 5E illustrates that patients with

low TMB have a better prognosis (p = 0.00098). Among all

groups in Figure 5F, BC patients with low risk + low TMB had

the best prognosis when OS was less than 10 years.
Tumor immune signature analysis

As can be clearly seen from the boxplots of Figures 6A-C for

tumor microenvironment scores, the StromalScore (p = 1.3e-15),

ImmuneScore (p< 2.22e-16) and ESTIMATEScore (p< 2.22e-16)

were significantly lower in the high-risk group than in the low-

risk group. We tested the proportion of immune infiltration

using a combination of algorithms. According to Figure 6D, the

negative correlation coefficients were much larger than the

positive correlation ones, suggesting that immunosuppressed

patients tend to have higher classification indices. Common

lymphoid progenitor, T cell CD4+ Th1, T cell CD4+ Th2 and T

cell regulatory (Tregs) in XCELL, uncharacterized cell in

QUANTISEQ, uncharacterized cell in EPIC, NK cell resting,

Myeloid dendritic cell activated and Neutrophil in CIBERSORT-

ABS, NK cell resting, Macrophage M0, Macrophage M2,

Myeloid dendritic cell activated, Mast cell resting and
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Neutrophil in CIBERSORT were negatively correlated with the

classifier index, while the other cells calculated using different

algorithms cells were positively correlated with the classifier

index. We determined the immunosuppression status and

survival disadvantage of high-risk patients in our previous

analysis. In addition, we performed single sample gene set

enrichment analysis (ssGSEA) enrichment scores and on this

basis further evaluated the relationship between risk scores and

different immune cell subpopulations and functions. For the

results, we found that ssGSEA scores of immune-related cells

were significantly higher in almost all patients in the low-risk

group (Figure 6E). Similarly in Figure 6F, APC co inhibition,

APC co-stimulation, CCR, check point, cytolytic activity, HLA,

inflammation promoting, parainflammation, T cell co

inhibition, T cell co-stimulation, and Type Il IFN Response

were all higher than in the high-risk group. The elevations of

these items reflect the higher immune activity in the low-

risk group.
Consensus clustering of BMRGs
identified two BC patient clusters

We performed a consistent clustering analysis of the

expression levels of seven BMRGs so as to investigate the

relationship between these genes and breast cancer

development. By shifting the clustering values from k = 2 to 9

respectively, we found that k = 2 had the strongest intra-cluster

relationship. All breast cancer samples could be divided into 2

clusters on the basis of 7 genes (Figure 7A). The OS of patients in

both clusters was measured by KM survival analysis and was

calculated to be significantly different (Figure 7B, p<0.001). As
B C D

E F

A

FIGURE 6

Study of BC immune status. (A–C) Box plots of StromalScore (A), ImmuneScore (B), and ESTIMATEScore (C) for high- and low-risk groups of BC
patients. (D) Multiple algorithms to analyze immune infiltrating cells in BC. (E, F) Immune infiltrating cells (E) and immune-related function (F)
scores for high- and low-risk groups.
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seen in Figure 7C, the high-risk patients in cluster 1 accounted

for the vast majority, and the number of low-risk patients in

cluster 2 was predominant. Figures 7D, E show by t-SNE analysis

that there are different dimensions between both different

clusters and high and low-risk groups. Because of the tumor

microenvironment’s important role in assessing prognosis, we

also analyzed it. As can be seen, there was a significant difference

between cluster 1 and cluster 2 (p = 7.4e-0.6) in StromalScore

(Figure 7F). The same results occur in ImmuneScore (Figure 7G,

p = 0.018) and in ESTIMATEScore (Figure 7H, p = 0.00046).

Cluster 2 had significantly lower StromalScore, ImmuneScore

and ESTIMATEScore than cluster 1. The immune response heat

map was used to visualize the immune cell infiltration between

the two clusters, indicating that cluster 2 had the most immune

cell infiltration (Figure 8A). Given the importance of

immunotherapy in tumor treatment, we went on to investigate

the differences in immune checkpoint molecule expression

between the different clusters. According to Figure 8B, the

expression of 2 immune checkpoint molecules was

significantly different between clusters. Both TIGIT and

CLTLA4 had significantly higher expression in cluster 1 than

those in cluster 2.
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Screening of sensitive drugs is the foundation for the clinical

treatment of tumors. Drug sensitivity was assessed using IC50,

and Figures 9A-P showed the 16 drugs with the most significant

differences in sensitivity. We can see that BC patients in Cluster

1 were sensitive to A.770041 (Lck inhibitor), AZD.0530

(Saracatinib), CGP.60474 (CDK inhibitor), NVP.TAE684

(ALK inhibitor), Parthenolide, WH.4. 023 (Src inhibitor),

WZ.1.84, GNF.2 (Bcr-Abl inhibitor), Dasatinib, CGP.082996

(CDK4 inhibitor), GSK269962A (ROCK inhibitor), JW.7.52.1

(mTOR inhibitor), AZD7762 (Chk1 inhibitor), and Paclitaxel.

The patients in cluster 2 were more sensitive to ATRA (All-

Trans Retinoic Acid) and GW.441756 (TrkA inhibitor). We can

clearly conclude that BC patients in cluster 1 have more sensitive

clinical agents to develop than those in cluster 2.
Clinical drug sensitivity analysis and
immunotherapy efficacy evaluation of
prognostic characteristics of BMRGs

The promising research related to drug treatment of BC is a

hot topic of current research and has received widespread
B C

D E

F G H

A

FIGURE 7

Survival, tSNE, and tumor microenvironment analysis for different clusters. (A) The best consensus matrix at k = 2. (B) Survival curves of BC
patients in the two clusters. (C) Sankey diagram showing the distribution of risk scores between different clusters. (D) tSNE analysis of the two
different clusters. (E) tSNE analysis of the high- and low-risk groups. (F–H) Box plots of StromalScore (F), ImmuneScore (G), and ESTIMATEScore
(H) in different clusters. tSNE, t-Distributed Stochastic Neighbor Embedding.
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attention. We analyzed the relationship between risk scores and

drug resistance by calculating the IC50 of drugs against BC. The

20 most significantly different drugs are listed in Figure 10. We

noted that PF.4708671 (S6 Kinase inhibitor) had a higher IC50

in high-risk patients, while all the rest of the other drugs had a

higher IC50 in low-risk patients (Figures 10A-T). Considering

the broad clinical application of ICI, we further investigated the

expression of genes at immune checkpoints between the 5 high

and low-risk groups. Figure 10U shows that the gene expression

levels of immune checkpoints were lower in all high-risk groups
Frontiers in Endocrinology 12
than in the low-risk group, and the resul ts were

significant (p<0.001).
Discussion

BC is one of the most common malignancies in the world

and the leading cause of most cancer-related deaths (25). Despite

significant advances in early diagnosis and treatment strategies

in recent decades, the prognosis of BC remains poor. BM is an
B

A

FIGURE 8

Infiltration and expression of immune cells, immune checkpoints in different clusters. (A) Analysis of infiltrating cells in two different clusters by
using multiple algorithms. (B) Differential expression analysis of 2 immune checkpoint genes in different clusters. *p < 0.05; **p < 0.01.
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extracellular matrix that adheres to the underside of epithelial

cells. Its core structural components, type IV collagen, laminin,

nidogens, and heparan sulfate proteoglycans, are essential in

directing cell polarity, differentiation, migration, and survival

(3). It has been shown that disruption of BM structure and loss

of components are associated with tumor invasion and

metastasis and are considered as potential indicators of cancer

progression with good predictive power in terms of diagnosis

and prognosis. This study is the first to elaborate a BC model of

Basement membrane related genes (BMRGs) in terms of survival

prognosis, gene enrichment analysis, molecular typing, tumor

immune microenvironment, and drug sensitivity analysis. In this

study, we constructed a reliable prognostic signature to provide a

new direction for further study of individualized treatment

strategies and prognosis prediction for BC patients.

This study screened the 7 best BMRGs (FBLN5, ITGB2,

LAMC3, MMP1, EVA1B, SDC1, UNC5A) to construct a

predictive model. Previous studies have shown that basement

membrane-associated genomes are associated with other BC-

related pathophysiology. ITGB2-AS1 has a facilitative effect on
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BC cell migration and invasion through the upregulation of

ITGB2 (26). SDC1 is a heparan sulfate proteoglycan (27). SDC1

overexpression in BC was found to promote cancer cell growth

and proliferation and was associated with the methylation status

of the SDC1 promoter (28). SDC1 may also promote BC cell

migration across the blood-brain barrier BBB by regulating the

cytokines of the blood-brain barrier (BBB) (29). Y-box binding

protein-1 (YB-1) increases BC cells’ invasive and metastatic

ability through the upregulation of MMP1 (29). UNC5A was

reported to be lowly expressed in BC and is associated with a

poor prognosis of BC (30). Silencing of UNC5A during BC

progression may be related to mutation and DNA methylation

(31). In addition, in BC cells and tumor tissues, FBLN5

expression downregulates the activation of the NF-kB
signaling pathway to promote BC cell proliferation and

migration (32). Studies have shown that EVA1B expression is

upregulated in colon cancer and glioma (33, 34). However, few

EVA1B-related studies have been found in BC. LAMC3 gene

encodes the laminin g-3 chain (35). Low expression of LAMC3

may be associated with poor prognosis and malignant
B C D
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A

FIGURE 9

Comparison of potential therapeutic drug sensitivity between two different clusters. (A) A.770041. (B) AZD.0530. (C) CGP.60474. (D)
NVP.TAE684. (E) Parthenolide. (F) WH.4.023. (G) WZ.1.84. (H) GNF.2. (I) Dasatinib. (J) CGP.082996. (K) ATRA. (L) GSK269962A. (M) GW.441756.
(N) JW.7.52.1. (O) AZD. (P) Paclitaxel. The top 16 with the lowest p value were showed.
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progression in OC of ovarian cancer (36). Although the

mechanisms of EVA1B and LAMC3 are currently little studied

in BC, their role in other tumors can be identified, suggesting

that more relevant studies should be done in BC. Taken together,

these BMRGs in associated with BC development and
Frontiers in Endocrinology 14
progression. Therefore, a prognostic model constructed based

on the seven BMRGs mentioned above seems reliable.

We assessed the prognostic value of BMRGs by training and

validating survival curves, risk score plots, survival status plots,

and heat maps. The scatter plots of the training and validation
B C D

E F G H

I J K L

M N O P
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FIGURE 10

Analyses of potential drug sensitivity and immune checkpoint gene expression between high- and low-risk groups. (A–T) The boxplots for drug
sensitivity analysis of (A) AP.24534. (B) AS601245. (C) AZ628. (D) AZD.2281. (E) AZD6244. (F) CI.1040. (G) Cytarabine. (H) GDC.0449. (I)
Gemcitabine. (J) JNK.9L. (K) Lenalidomide. (L) Nilitinib. (M) PD.173074. (N) PD.0332991. (O) PF.4708671. (P) Pyrimethamine. (Q) Roscovitine. (R)
SB590885. (S) Temsirolimus. (T) SB.216763. (U) Immune checkpoint genes differential expression analysis. ***p < 0.001.
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sets showed that the survival status of BC patients was related to

the risk score, and the mortality of patients increased with the

risk score. Combining the seven prognostic BMRGs, we plotted

heat maps to compare the expression levels of genes in the

training and validation sets in the high-risk and low-risk groups,

and it could be seen that the expression trends of LAMC3,

MMP1, SDC1, UNC5A and ITGB2 were consistent. In contrast,

the expression trends of EVA1B and FBLN5 were inconsistent.

We speculated that there might be two reasons for the different

gene expression trends. The training and validation sets were

from two databases (TCGA and GEO). On the one hand, the

sample sizes screened by the two databases are different, and the

different sample sizes might impact the percentage of their gene

expressions. On the other hand, the two databases were from

diverse populations. The TCGA data were from Europe and the

US, while the GEO data were from Taiwan. The number,

ethnicity, tissues taken, and age group might influence the

percentage of gene expression. Our findings have clinical and

pathological implications. Univariate and multivariate analyses

showed that risk score could be an independent prognostic

factor for BC patients (p<0.001). The AUC values of 0.649 for

prognostic features and 0.649, 0.666, and 0.658 for 1-year, 3-

year, and 5-year predicted survival, respectively, showed not

only better predictive performance compared with other

clinicopathological features (sex, stage, T-stage, N-stage, and

M-stage), but also reflected the reliability and accuracy of

prognostic features.

Through GO enrichment analysis, we noted that leukocyte-

mediated immunity, humoral immune response, and B cell

activation play critical roles in the biological pathways

associated with BMRGs. Through GSEA enrichment analysis,

we found that high-risk patients have abundant biosynthetic and

metabolic pathways, such as terpenoid backbone biosynthesis,

citrate cycle, and protein export. Undoubtedly, tumor

development is dependent on high levels of biosynthesis and

metabolism. In contrast, the hematopoietic cell lineage pathway

is more active in low-risk patients. The establishment of

hematopoietic and immune capacity inhibits the pro-

carcinogenic effect. erk1/1-mediated CD44 expression

increases stromal production and migration, leading to

stromal expansion (37). cd44 and its new ligand, serum

glycine, a hematopoietic cell lineage-specific proteoglycan, may

be jointly involved in lymphocyte adhesion and activation (38).

It can be speculated that BC in the low-risk group is more likely

to suppress tumor progression by establishing immunity,

especially the mediation of leukocyte, B cell and the

involvement of hematopoietic cell lineage pathways, which

deserve further exploration as it could provide new strategies

for immunotherapy studies.

TMB indicates the number of mutations per megabase (Mut/

Mb) in DNA sequenced in cancers (39). Studies have shown that

TMB is considered a reliable predictive biomarker for the

efficacy of cancer patients after taking ICI therapy (40–42). In
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the TCGA cohort, we found a significant correlation between

TMB and risk score. High-risk patients had a higher TMB and

poorer OS. Low-risk patients had a lower TMB and better OS.

The highest mutation rate of the TP53 gene in high-risk patients

is consistent with previous reports that mutations in the TP53

gene were frequently detected in high-risk BC patients (43, 44).

TP53 gene is an important oncogene, and its conversion is

associated with moderate to high risk, poor outcome, and poor

prognosis in BC (45, 46). And the highest mutation rate of the

PIK3CA gene was found in low-risk patients.

Immunotherapy has emerged as the most promising

approach for the treatment of cancer, and the effectiveness of

immunotherapy is closely related to immune infiltration (47). We

performed ssGSEA enrichment scoring in the TCGA and GEO

cohorts and found that the infiltration of immune cells was

significantly higher in patients in the low-risk group than in the

high-risk group. It was shown that the interaction of BC cells with

BM affects tumor progression by influencing immune cells in the

tumor microenvironment (48). In addition, immune functions

such as APC co-stimulation, T cell co-stimulation, and Type Il

IFN Response activity were significantly higher in the low-risk

group than in the high-risk group. APC antigen presentation

activates T cells, which secrete type II interferon (IFN) - g. Studies
have shown that T cells play an essential role in anti-tumor in vivo

(49). In summary, our risk model based on BMRGs is closely

related to the tumor immune microenvironment.

Next, we divided BC patients into 2 clusters to explore the

relationship between tumor subtypes. Cluster 2 had a high

proportion of low-risk patients with the highest immune

scores and the most immune cell infiltration, indicating that

cluster 2 was the most immunologically active. The study

showed that the immune cells with the highest degree of

infiltration in cluster 2 were CD8+ T cells. According to St

Paul M et al., CD8+ T cells produce IFN-g to exert their

cytotoxic effects to kill cancer cells (50). It can be speculated

that BC patients in cluster 2 may have better clinical

immunotherapy outcomes. Furthermore, we found that the

immune checkpoint molecules TIGIT and CLTLA4 were

highly expressed in cluster 1 and that high-risk patients

accounted for many in cluster 1. Recently, significant progress

has been made in immunotherapy targeting immune checkpoint

molecules (51). The above results suggest that BC patients in the

high-risk group may benefit from immunotherapy related to the

two immune checkpoint molecules.

Investigating the relationship between high and low risk and the

sensitivity of molecularly targeted drugs and chemotherapeutic

agents is essential. We found that BC patients in the high-risk

group were most sensitive to all-trans retinoic acid (ATRA) and

TrkA inhibitor. one of the principles of the antitumor activity of

ATRA is that it is a promising agent for the prevention/treatment of

BC by reducing the number of mitochondria leading to an

inadequate respiratory/energy balance in BC cells (52). The

combination of ATRA with protein kinase Ca/b1 inhibitors has
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been shown to inhibit breast tumor progression in hormone-non-

dependent BC models. However, the antitumor effects in solid

tumors still need further investigation (53). In vitro experiments

have shown that TrkA overexpression enhances BC cell growth and

invasion by activating Erk1/2 and PI3K-AKT-mediated signaling

pathways (54). Functional experiments have demonstrated that

TrkA inhibitor reduces cell viability by decreasing phosphorylated

TrkA and downstream AKT, providing therapy for HER2-positive

BC (55). For those drugs that have not yet been applied in the clinic,

our study provides some theoretical basis for their development.

The above results suggest that, on the one hand, risk assessment of

tumors may be a potential predictor to guide targeted therapies and

immunotherapy in BC patients; on the other hand, BM may be of

high research value in the development of BC at intermediate and

late stages.

Oncology therapy is an essential area of interest. Through

IC50 screening analysis of potential drugs, we found that high-

risk patients may be sensitive to PF.4708671, the first reported

selective inhibitor of S6K1 (56). Choi HN showed that the highly

specific inhibitor PF-4708671 enhances glucose deprivation-

induced apoptosis by downregulating anti-apoptotic proteins

in BC cells (57). PF-4708671 inhibits S6K1, the most

downstream kinase in the mTOR pathway, to inhibit BC cell

migration in a triple-negative BC metastasis model and thus may

provide an effective adjuvant treatment against BC metastasis

(58). However, patients at high risk of BC are not susceptible to

AP.24534 (Ponatinib), AS601245 (JNK inhibitor), AZ628 (Raf

inhibitor), AZD.2281 (Olaparib), AZD6244 (Selumetinib),

CI.1040 (Mek inhibitor), Cytarabine, GDC.0449 (Vismodegib),

Gemcitabine, JNK.9L, Lenalidomide, Nilotinib, PD.173074

(FGFR inhibitor), PD.0332991 (Palbociclib), PF.4708671 (S6

Kinase inhibitor), Pyrimethamine, Roscovitine (CDK

inhibitor), SB590885 (B-Raf inhibitor) and Temsirolimus may

have resistance. Studies have shown that the combination of

multiple drugs with different molecular mechanisms can

significantly improve the resistance problems caused by single

mechanism alterations, thus ensuring the efficacy of the drugs

(59–61). In addition, ICIs are one of the successful

immunotherapy strategies for triple-negative breast cancer

(TNBC) (62, 63). A growing body of data suggests that

monoclonal antibodies against PD-1/PD-L1, a type of ICI, can

induce durable clinical responses in some patients with

metastatic TNBC and may also have meaningful clinical

activity in patients with rare ER+ HER-2- BC (64). On the one

hand, we believe that the prognostic characteristics of BMRGs

can be used as a new indicator to assess ICI. On the other hand,

we identified a series of potential, worthwhile drugs for BC

patients. At the same time, the actual effects of these drugs need

to be further demonstrated in more clinical trials.

Beyond all doubt, our study has the following limitations.

First, although we have validated our prognostic risk scores in
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the TCGA and GEO datasets, validation of differentially

trending expressed genes in an expanded sample size may

further increase the confidence of the risk scores. Second, we

confirmed that the prognostic features of BMRGs have good

predictive value, but in vivo and in vitro experiments are still

needed to reveal the role of BMRGs in the onset and progression

of BC. Third, we still need more clinical data and prospective

studies to validate the clinical value of the BMRGs

prognostic signature.
Conclusion

We constructed and validated a model for the prognostic

characteristics of BMRGs, which includes FBLN5, ITGB2,

LAMC3, MMP1, EVA1B, SDC1, UNC5A. The signature can

be used as an independent prognostic factor for BC and can

provide a new direction for individualized treatment of

BC patients.
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