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Overweight and obesity have become a world-wide problem. However,

effective intervention approaches are limited. Brown adipose tissue, which

helps maintain body temperature and contributes to thermogenesis, is

dependent on uncoupling protein1. Over the last decade, an in-creasing

number of studies have found that activating brown adipose tissue and

browning of white adipose tissue can protect against obesity and obesity-

related metabolic disease. Brown adipose tissue has gradually become an

appealing therapeutic target for the prevention and re-versal of obesity.

However, some important issues remain unresolved. It is not certain whether

increasing brown adipose tissue activity is the cause or effect of body weight

loss or what the risks might be for sympathetic nervous system-dependent

non-shivering thermogenesis. In this review, we comprehensively summarize

approaches to activating brown adipose tissue and/or browning white adipose

tissue, such as cold exposure, exercise, and small-molecule treatment. We

highlight the functional mechanisms of small-molecule treatment and brown

adipose tissue transplantation using batokine, sympathetic nervous system

and/or gut microbiome. Finally, we discuss the causality between body

weight loss induced by bariatric surgery, exercise, and brown adipose

tissue activity.

KEYWORDS

obesity, brown adipose tissue (BAT), thermogenesis, uncoupling protein1
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1 General overview of obesity
and BAT

The increasing overweight and obesity pandemic has received

significant attention worldwide. A total of 108 million children

and 604 million adults are currently considered obese all by the

year 2015 (1). The body mass index report of 31.5 million adults

worldwide from 1975 to 2016 shows that the prevalence of

overweight increased from 26.6% to 39%, and the prevalence of

obesity increased from 7% to 12.5% (2). Obesity is associated with

a shortened lifespan as well as with various types and degree of

risks, such as insulin resistance and type 2 diabetes mellitus

(T2DM), hyperlipidemia, stroke, and cardiovascular disease (3).

Keaver et al. reported that on current trends, the proportion of

overweight or obese people in Ireland could reach 85% by 2030.

Obesity-related diseases such as cardiovascular disease increased

by 97%, cancer by 61% and type 2 diabetes by 21% (4). The rapidly

increasing prevalence and disease burden of elevated BMI

highlights the need for a continued focus on ways to fight

obesity. Obesity develops from excessive food intake or

inadequate total energy expenditure, including basic energy

expenditure, activity-based energy expenditure, diet-induced

thermogenesis, and energy expenditure from thermoregulation.

For this reason, caloric restriction and increased exercise are the

most common ways that most people lose weight over a long

period of time. Although these are effective, dieting and exercise

must be maintained for a long time, and the risk remains that

body weight will return. Bariatric surgery and drugs have also

been used to treat obesity (5). However, bariatric surgery carries a

high risk of considerable morbidity and potential mortality (6). As

of 2020, the following were FDA-approved anti-obesity drugs:
Abbreviations: BMI, body mass index; T2DM, type 2 diabetes mellitus;

WAT, white adipose tissue; BAT, brown adipose tissue; 18F-FDG-PET/CT, 18

fluoro-deoxy-glucose positron emission tomography coupled with computed

tomography; UCP1, uncoupling protein1; NE, noradrenaline; SNS,

sympathetic nervous system; b3-AR, b3-adrenergic receptor; Gs, guanylate

binding protein; AC, adenylate cyclase; cAMP, cyclic adenosine

monophosphate; PKA, protein kinase A; HSL, hormone-sensitive

triglyceride lipase; TG, triglycerides; FFA, free fatty acids; p38MAPK, p38

mitogen activated protein kinase; PGC1-a, PPARg coactivator-1a; ATF-2,

activating transcription factor-2; PPAR, proliferator-activated receptor;

CREB, cAMP response element binding protein; CRE, cAMP response

element; NST, non-shivering thermogenesis; HSF1, heat shock

transcription factor 1; FNDC5, fibronectin type III domain-containing

protein 5; IL-6, interleukin 6; FGF21, fibroblast growth factor 21; CLK2,

CDC-like kinase 2; HFD, high fat diet; EODF, every-other-day fasting; IF,

intermittent fasting; PZP, pregnancy zone protein; CR, caloric restriction;

SIRT1, silent information regulator type 1; C3G, anthocyanin 3-O-glucoside;

Rut, rutin; HPF, hypericin; SAT, subcutaneous adipose tissue; NOD, non-

obese diabetes; PCOS, polycystic ovary syndrome; SN, sympathetic nervous.
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Orlistat, Lorcaserin, Phentermine/Topiramate, Naltrexone/

Bupropion, and Liraglutide (7). Over the last few decades,

several anti-obesity drugs have been withdrawn from the market

due to their side effects. Sibutramine, for example, increases the

risk for heart attack and stroke. The use of 2,4-dinitrophenol

increases the risk for neurological diseases and cataracts, and

when used in high doses, it will lead to irregular respiratory

uncoupling of all cells, resulting in high temperature and death (8,

9). Sibutramine have been withdrawn owing to hepatic injury,

Orlistat has some unacceptable side effects (10). Lorcaserin

increases the risk of breast cancer (11).

Obesity develops form excessive energy intake exceeds energy

expenditure over a long period. In addition to white adipose tissue

(WAT), which has the function of storing excess energy intake, the

body also has an energy-consuming adipose tissue, brown adipose

tissue (BAT), which heats the body and stores thermal energy.

Compared with white adipocytes, brown adipocytes havemore lipid

droplets but smaller size, and have more mitochondria (12). In the

early days of the study, brown fat was believed to be widely present

in many species during infancy, including humans. With the

development of technology and concept, in 2009, people

intuitively observed the existence of active brown fat in adults

through 18 fluoro-deoxy-glucose positron emission tomography

coupled with computed tomography (18F-FDG-PET/CT) (13). As

a necessary thermoregulator in early life, BAT are present in a large

number in infants and children. In adults, the number of BAT at the

scapula basically disappears, and there are a few active BAT at the

clavicle, pericarotid artery and pericardium (13–15). With the

increase of age, the probability of BAT detection in human body

decreases. Using PET/CT scans of subjects’ BAT, results showed

that BAT detection rates were three times higher in subjects under

50 than in subjects under 64 (16). In addition to age, the distribution

of BAT in the body of men and women is also different. PET/CT

scan results show that the detection rate and content of BAT in the

body of females are higher than that of males (16).

The thermogenesis of BAT depends on uncoupling protein1

(UCP1), a fatty acid anion transporter present in the

mitochondrial inner membrane. UCP1 uncouples the oxidative

respiratory chain of mitochondria that prevents ADP from

synthesizing ATP, resulting in the release of energy in the form

of thermal energy, which is directly governed by sympathetic

nerve fibers (Figure 1). In mature adipocytes, noradrenaline (NE)

released from sympathetic nervous system (SNS) binds to b3-
adrenergic receptor (b3-AR) to promote guanylate binding

protein (Gs) activates adenylate cyclase (AC). Activated AC can

convert intracellular ATP into cyclic adenosine monophosphate

(cAMP), increase intracellular cAMP concentration, and activate

cAMP dependent protein kinase A (PKA), which activates

hormone-sensitive triglyceride lipase (HSL) and accelerates the

hydrolysis of triglycerides (TG) to glycerol and free fatty acids

(FFA). At the same time, PKA can also activate p38 mitogen

activated protein kinase (p38MAPK), and then activate the

downstream substrate PPARg coactivator-1a (PGC1-a) and
frontiersin.org
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activating transcription factor-2 (ATF-2). On the one hand,

activated p38MAPK promote the phosphorylation of PGC1-a,
and activated PGC1-a binds to the UCP1 promoter through the

coactivator peroxisome proliferator-activated receptor (PPAR) to

jointly promote the transcription of UCP1. On the other hand,

activated p38MAPK phosphorylates ATF-2, and activated ATF-2

promotes the transcription of UCP1 through cAMP response

element binding protein (CREB). PKA can also directly

phosphorylate CREB. After activated CREB binds with cAMP

response element (CRE), it can directly induce the expression of

UCP1 (17, 18) (Figure 2). Males have a higher active BAT ratio

than females, and its activity gradually decreases with age. In

addition, the activity of brown fat is also significantly reduced with

the development of obesity (19–23). It is estimated that when BAT

is fully activated, only 50 g BAT can consume 20% of the body’s

basal metabolic energy (20). Studies found that under cold or b-
adrenergic agonist stimulation, brown-like adipocytes, known as

beige cells, appeared in the subcutaneous WAT of mice. Beige

adipocytes have multilocular fat droplets, high mitochondrial

content and expression of UCP1. Beige adipocytes also have a

thermogenic function, which can promote energy consumption.

Its role in anti-obesity has attracted more and more attention.

Trying to efficiently use brown or beige adipocytes in the human

body to burn energy to reduce body fat content has been become

one of the breakthrough points worth looking forward to in the

current anti-obesity field (24).
2 Anti-obesity function of BAT

Based on the powerful energy-expenditure function of

adaptive thermogenesis in the human body, BAT can be used

as a target to reverse obesity and obesity-related metabolic

diseases. The hope of identifying the anti-obesity function of
Frontiers in Endocrinology 03
BAT and establishing ways of activating it has aroused intense

enthusiasm among scientists (25, 26). In recent decades, a large

number of studies in different model organisms have highlighted

the importance of the anti-obesity function of BAT through

increasing energy expenditure (27–29). In addition to its

thermogenic functions, BAT can also regulate energy

metabolism of the whole body in model animals by secreting

batokine through the autocrine and paracrine methods (30, 31).

This review summarizes recent advances in methods of

activating BAT and WAT browning in the past decade, such

as cold exposure, exercise, diet, small-molecule treatment, and

BAT transplantation. To illustrate the potential efficiency of

these reagents in activating BAT or in WAT browning to

thermogenesis, related molecular mechanisms are also

elucidated. We also investigate the relationship between BAT

activity and weight loss and examine means of optimizing the

pathway of BAT activation, as well as reporting a few advances.
3 Cold-exposure: The most classic
way to activate BAT

For humans and rodents, BAT is a thermogenic tissue whose

main function is heat production via non-shivering

thermogenesis (NST) when activated by cold exposure (26–

28). In response to this exposure, NE released from the SNS

regulates brown adipocytes at multiple levels, and it binds to b3-
AR on brown and beige adipocytes. Subsequently, UCP1

becomes highly expressed and activated, thereby promoting

lipid b-oxidation and heat production (32). These steps

promote the proliferation and differentiation of brown

preadipocytes to increase the level of NST (33–35). It is worth

noting that increased sympathetic excitability can cause an
FIGURE 1

Obesity and BAT.Obesity occurs when the body’s energy intake is greater than its energy consumption. In adults, BAT is found in the back
scapula and clavicle area, around the heart and kidneys, and WAT is located around the viscera and groin. Compared with white adipocytes,
brown adipocytes contain a large number of mitochondria and high expression of UCP1. Brown adipocytes also has a small volume and a large
number of lipid droplets. In mitochondria of brown adipocytes, UCP1 mediates protons to pass through the inner membrane of mitochondria,
dissipating proton (H+) gradient and generating heat.
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accelerated heartbeat. Interestingly, other mechanisms also exist

that regulate this. Li (36) found that gut microbes play a key role

in BAT activation with cold exposure. A short-chain fatty acid

(butyrate) produced by gut microbes appears to be an important

component in the activation of BAT during cold exposure. In

addition, low ambient temperatures can also induce WAT

browning in a UCP1-dependent manner (37). The researchers

found that the products of 12-lipoxygenase in mouse serum

increased under cold stimulation, and 12-lipoxygenase in brown

adipocytes produced related lipoxygenase and promoted the

uptake and utilization of glucose by fat and muscle, while the

products of 12-lipoxygenase in obese individuals decreased

significantly (38). At present, studies of BAT activation have

focused mainly on exposing rodents to severe cold (typically 4–

10°C) (34, 39). Obviously, this kind of cold exposure is not

practical for use against human obesity. In fact, the temperatures

(21–22°C) found in standard animal facilities in these studies are

already much lower than rodent’s thermal neutral zone of 30°C,

which profoundly impacts their basal metabolic rate, and some

scientists predict that this temperature might already prompt

BAT to consume energy (37). Interestingly, this view has been

confirmed by some recent findings that show mild cold (20°C or

22°C) exposure also significantly increases the thermogenic

function of BAT (40, 41). These provides us with a new

strategy for anti-obesity possibilities of human BAT, namely,

that mild cold exposure can be used in place of severe cold

exposure. In addition, it is important to recognize that
Frontiers in Endocrinology 04
atherosclerosis patients can lose weight and increase their risk

for cardiovascular events by activating brown fat. The faster the

heartbeat, which is directly related to the sympathetic nerve, the

greater the cardiovascular mortality (42). Traditionally, beige fat

is considered to have browning potential in cold environment,

which can promote heat production and energy consumption be

in cold or cold weather (43). Recently, scholars have found that

in addition to cold exposure, beige fat can also sense local mild

thermal effects (local hyperthermia therapy, LHT) and activate

thermogenesis through heat shock transcription factor 1 (HSF1).

Rather than the traditional view of cold activation of beige fat,

LHT achieved using a hydrogel-based photothermal therapy

activated beige fat, it is worth noting that the weight loss caused

by local hyperthermia therapy will not be accompanied by the

change of NE in blood (44).
4 Exercise-induced browning
of WAT

In 1991, Stallknecht et al. first indicated that swimming

training increases the mitochondrial enzyme activity of WAT in

rats and gives a mitochondria-enriched fraction of WAT a

browner appearance (45). However, the specific mechanism of

the browning of WAT has not been identified. In 2012, Boström

et al. identified a new myokine, irisin, which is released into the

circulation during exercise and triggers the transformation of

white fat cells into brown-in-white cells in mice (46). However,

Norheim et al. found that, after 12 weeks of training in humans,

skeletal muscle mRNA for PGC1-a and fibronectin type III

domain-containing protein 5 (FNDC5) mRNA levels increased,

and surprisingly, circulating irisin was reduced. UCP1 mRNA

did not correlate with FNDC5 expression in subcutaneous

adipose tissue or skeletal muscle (47). Except for irisin, other

exercise-induced circulating factors such as Catecholamines

(48), Interleukin-6 (IL-6) (49), Meteorin-like protein (50),

fibroblast growth factor 21 (FGF21) (51) also have connection

with exercise-induced browning of WAT (52). The development

and maintenance of the brown phenotype in adipose tissue is

maintained by SNS and noradrenergic post-ganglionic neurons.

A massive activation of the SNS was observed during exercise, in

addition to swimming training, running training can counteract

obesity by an adrenergic-regulated brown recruitment of

adipocytes, and increases adipose progenitor cell population in

BAT to ameliorate high-fat diet-induced metabolic and vascular

dysfunction (53, 54). These findings, as well as others (46, 54,

55), have demonstrated that exercise training such as swimming,

voluntary wheel running and treadmill running leads to the

browning of rodents WAT in a variety of ways. After moderate

exercise, the sympathetic nerve activity increased and the

expression levels of b3-AR and UCP1 were up-regulated in

BAT of early overfed male wistar rats, then resulting in increased
FIGURE 2

UCP1 activation pathway.SNS, sympathetic nervous system; NE,
noradrenaline; b3-AR, b3- adrenergic receptor; Gs, guanylate
binding protein; AC, adenylate cyclase; cAMP, cyclic adenosine
monophosphate; PKA, protein kinase A; HSL, hormone-sensitive
triglyceride lipase; TG, triglycerides; FFA, free fatty acids;
p38MAPK, p38 mitogen activated protein kinase; CREB, cAMP
response element binding protein; CRE, cAMP response
element; PGC1-a, PPARg coactivator-1a; ATF-2, activating
transcription factor- 2; PPAR, proliferator-activated receptor;
UCP1, uncoupling protein1.
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thermogenic function of BAT and higher energy consumption

(56). However, exercise training consistently fails to induce

browning in humans even though exercise brings other

benefits to human’s health (47, 57, 58). Surprisingly, a recent

randomized and controlled study found that after combined

training, the thermogenic activity of BAT was significantly

increased in overweight or T2DM patients, and the expression

of genes related to thermogenic profile (TMEM26, EPSTI1) in

subcutaneous fat was significantly increased (59). However,

some experimental evidence in rats suggests otherwise.

Sedentary rats exposed to cold had higher amounts of total

protein and DNA in brown adipose tissue than those in the

exercise group. It may be that exercise leads to the heat

production of muscles, while reducing the heat production of

BAT (60). Although a large body of evidence shows that exercise

increases browning of WAT, whether it increases heat

production is still debatable.
5 Dietary patterns

Previous studies have shown that food intake can effectively

activate the thermogenesis of BAT in humans and rodents (61,

62). Researchers found that post-prandial glucose surge and

increased insulin affect the transcription of clock gene, BAT

activity exhibits glucose-dependent circadian rhythm (62), this

concept retains for quite a while. To our surprise, another group

of researchers has also recently identified that only insulin, not

glucose, can rapidly induce the expression of PERIOD, which is

a clock gene, and that insulin and IGF-1 are primary signals of

the cellular clock feeding time (63).

In addition, certain special dietary patterns can induce the

browning of WAT and BAT thermogenesis through different

mechanisms. CDC-like kinase 2 (CLK2) responds to high fat diet

(HFD) and is expressed in BAT, is upregulated upon refeeding,

and then enhances CREB-dependent UCP1 expression (64).

Moreover, every-other-day fasting (EODF) (one day feeding-

one day fasting) for 15 cycles can selectively upregulate

monocarboxylate transporter 1 expression in beige cells by

shaping the gut microbiota. EODF stimulates beige fat

development within WAT and dramatically ameliorates

obesity, insulin resistance, and hepatic steatosis (65).

Intermittent fasting (IF) (one day fasting-two days refeeding)

for 12 weeks can activate BAT through pregnancy zone protein

(PZP) secreted by the liver, so as to promote diet induced heat

generation, and finally have the effect of anti-obesity (66). In

addition, WAT depots are smaller and denser in 60% calorie-

restricted diet fed mice. caloric restriction (CR) leads to

browning of WAT, promotes the development of functional

beige fat, and enhances the type 2 immune response and silent

information regulator type 1 (SIRT1) expression (67). These

dietary patterns seem to be more appropriate for anti-obesity
Frontiers in Endocrinology 05
treatment than stimulation of the SNS, such as through the

action of the gut microbiota, and E. faecalis and its metabolite

MA can reduce adiposity through BAT activation and beige fat

formation (28). In summary, changing dietary patterns may be a

relatively safe and feasible method of browning WAT as an anti-

obesity measure. Considering the synergy between different

dietary restrictions, we speculate that the insulin rhythm

caused by the feeding behavior of mice is consistent with the

observation that the circadian rhythm of BAT can activate BAT.
6 Small molecules

Modern studies have highlighted the potential function that

some small molecules in fruits and vegetables have in browning

of WAT, activating BAT, and preventing and treating obesity

(Table 1). Long-term consumption of certain plant extracts, such

as capsaicin (68, 90) and its esters, ephedrine (75, 91), and green

tea (92) can directly activate brown fat, thereby increasing

energy consumption and achieving weight control (75). The

Ephedrine in ephedra sinica Stapf can increase the energy

metabolism of BAT (93), and the active ingredient in red

peppers, capsaicin may enhance the metabolism by directly or

indirectly activating the b-adrenergic pathway (94, 95).

Capsaicin has a strong initial oral effect, and its local

administration is irritating, which limits its clinical application.

Urolithin A is a major microbial metabolite derived from

polyphenolics of berries and pomegranate fruits (96), it has

also been shown to inhibit HFD-induced by activating the ability

of brown and beige fat to produce heat in mice, which is

dependent on the thyroid hormone pathway (97). Resveratrol,

a polyphenolic compound rich in a variety of plant species, has

been found to affect the expression of SIRT1, PGC1-a, and
AMPK to improve mitochondrial function and promote BAT

production (73, 98, 99). Recently, it has also been found that it

can also regulate bile acid metabolism through gut microbiota

remodeling, so as to activate BAT and promote WAT browning

(100). The mulberry grows widely, and its extracts anthocyanin

3-O-glucoside (C3G) and rutin (Rut) are widely used in daily life

(31, 87). C3G activates AKT, ERK, and p-38 signaling pathways

in subcutaneous fat and epididymal fat. At the same time, Rut

upregulates the ERK signaling pathway in subcutaneous fat and

the AKT signaling pathway in muscle to improve insulin

sensitivity (31, 87). Hypericin (HPF) extracted from

Hypericum perforatum can directly target dihydrolipoamide S-

acetyltransferase to regulate AMPK-PGC1-a signal pathway,

and finally upregulate the expression of UCP1, promote

adipose tissue heat production (88). Large-leaf yellow tea

extract can prevent the reduction of these genes that is

induced by HFD (UCP1, PGC1-a) in subcutaneous adipose

tissue (SAT) and BAT, promote the beige of SAT and activate

the thermogenic function of BAT (89). Ephedrine may cause
frontiersin.org

https://doi.org/10.3389/fendo.2022.1065263
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2022.1065263
side effects, such as increased heart rate and blood pressure, and

may increase the number of metabolites in the circulatory

system, but it does not activate brown fat in adults (101).

There have been few reports on effects of resveratrol on body

weight in human trials (102–104). Although the possibility that

rutin regulates BAT metabolic activity through stimulating the
Frontiers in Endocrinology 06
SNS cannot be excluded (105), cellular experiments have

indicated that rutin directly activates BAT oxidation in vitro.

Several dietary compounds have been shown to activate brown

fat activity at clinical levels (Table 2), and increasing evidence

has revealed that thermogenic regulators have therapeutic effects

against obesity through increasing BAT mass and/or activity,
TABLE 1 A dietary compound capable of activating BAT.

Dietary
component Source Effect Refs

Capsaicin Hot pepper Activating the TRPV1 channel, inducing browning of white adipose tissue (68)

Parviflora
extract

Kaempferia parviflora Promoting energy metabolism by activating of BAT and up-regulating of UCP1 protein (69)

Thymol
Aromatic plants
(Thyme species)

Promoting mitochondrial biogenesis and enhancing expression of a core set of brown fat-specific markers as
well as increasing protein levels of PPARg, p-AMPK, PGC1-a, and UCP1

(70)

Chrysin Flowers Mushroom White fat browning is increased by the AMPK-mediated pathway (71)

Curcumin Turmeric
Increasing gene expression levels (UCP1, PGC1-a, Cidea, Prdm16 and Elovl3) and plasma norepinephrine
concentrations

(72)

Resveratrol
Red cabbage Red wine
Berries

Increasing UCP1 and SIRT1 expression
(73,
74)

Tea catechins Cocoa Oolong Pu-erh Enhancing the mRNA expression of UCP-1 in rat BAT (75)

EPA, DHA Fish oil
Reducing the accumulation of fat, improving the metabolism of mice, and increasing the expression of UCP-
1

(76)

Berberine
Coptis chinensis
Hydrastis canadensis

Inducing the development of inguinal brown-like adipocytes, and increasing the expression of heat source
markers PGC1-a, Cidea, and UCP1

(77)

Pungency:
paradol

Ginger Increasing whole-body energy expenditure through the activation of BAT (78)

Quercetin
Broccoli Berries
Asparagus

Inducing the expression of BAT-specific genes and increasing the expression of carnitine palmitoyl
transferase 1a

(79)

Caffeine Coffee Activating BAT thermogenesis and increasing metabolism (80)

Carotenoid:
fucoxanthin

Edible seaweed
(Undaria pinnatifida)

Regulating cytokine secretion in WAT, improving insulin resistance, and decreasing blood glucose levels (81)

Allicin Garlic, Onion Enhancing expression of brown adipocyte-specific genes and lipid oxidation (82)

Ginsenoside Panax ginseng
Reducing lipid droplets, stimulating UCP1 staining, and increasing expression of thermogenic and
mitochondrial genes

(83)

Rubi Fructus
extract

Rubus coreanus Upregulating expression levels of thermogenic- and mitochondria-related genes (84)

Menthol Mint
Menthol activates the TRPM8 channel by mimicking cold exposure, upregulates UCP1 expression, and
activates BAT to treat and prevent diet-induced obesity

(85)

Green tea
extract

Green tea
Reducing the adipocyte size in the WAT and the lipid droplet size in the BAT, inducing the browning in
WAT

(86)

C3G Mulberry
Activating AKT, ERK and p-38 signaling pathways in subcutaneous fat and epididymal fat to improve insulin
sensitivity

(87)

Rutin Mulberry
Activating BAT by upregulating the ERK signaling pathway in subcutaneous fat and the AKT signaling
pathway in muscle

(31)

HPF
Hypericum
perforatum

Regulating AMPK- PGC1-a signal pathway, and upregulating the expression of UCP1 in WAT and BAT (88)

large-leaf yellow
tea extract

large-leaf yellow tea Increasing mitochondrial copy numbers, and the expression of thermogenic genes (UCP1, PGC1-a, etc.) (89)
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and some products have been involved in phase 1, 2, 3, and 4

clinical trials, such as b3-AR agonist and fluvastatin (112, 113).

Endogenous molecules, such as irisin and FGF21, might be

potential targets for certain molecules. However, the risks of

these molecules to the central nervous system and sympathetic

nerve activation should be considered (114).
7 BAT transplantation and batokine

With the rediscovery of BAT in adult humans, study on

increasing the thermogenic function of BAT has reached an

exciting boom. Many studies have focused on increasing the

amount of BAT. This can be accomplished by transplanting

extrinsic BAT, which is an effective way to reduce body weight

gain in mice and to enhance whole-body energy metabolism;

unexpectedly, however, transplanted BAT almost totally loses

thermogenic function but activates the thermogenesis of

endogenous BAT (27, 115). Indeed, Stanford et al. transplanted

adult BAT into the visceral cavity of diabetic mice and found that

IL-6 levels became elevated, which in turn induced an increase in

FGF21 expression and improved glucose tolerance (29).

BAT transplantation has been performed in diabetic mouse

models of dietary and obesity-related pathology. In most of these

studies, BAT transplantation has shown beneficial effects on the

metabolic health of recipient mice (transBATation) were fed a

HFD (Table 3), and it has great potential as an anti-obesity

strategy. BAT transplantation enhances systemic energy

metabolism in a mouse model of diet-induced obesity (27).

Many studies have shown that BAT transplantation can affect

the action of batokine. In one study, the transplantation of

embryonic BAT into a streptozotocin-induced mouse model of

type 1 diabetes reversed the symptoms of diabetes, reduced

inflammation, and elevated adiponectin levels. It is worth

emphasizing that these effects were independent of insulin,

and the level of IGF-1 was significantly elevated in BAT-
Frontiers in Endocrinology 07
transplanted mice (32). A few years later, similar results were

achieved using a non-obese diabetes (NOD) model, showing that

BAT transplantation combined the action of multiple adipokines

to establish a new equilibrium in the animal to control chronic

glycemia (118). In 2012, Harvard researchers transplanted adult

rat BAT into the visceral cavity of diabetic mice and found that

IL-6 levels became elevated in the mice, which in turn induced

an increase in FGF21 expression. When the BAT used for

transplantation was obtained from IL-6-knockout mice, the

improved metabolic profile was lost, but glucose homeostasis

improved. This result indicates that BAT-derived IL-6 is

required for the effects of BAT transplantation on glucose

homeostasis and insulin sensitivity (29).

These findings indicate the role of some potential protein

factors in BAT function. In ob/ob mice with BAT loss, the

expression of IL-6 and FGF21 in mice does not increase while

the level of adiponectin increases significantly (27). This may be

caused by different locations of transplantations in mice and

different receptors. BAT transplantation improves whole-body

energy metabolism and ameliorates polycystic ovary syndrome

(PCOS), and the transplantation of BAT into PCOS rats

significantly stabilizes menstrual irregularity and improves

systemic insulin sensitivity up to a normal level. It also

activates endogenous BAT and thereby increases the

circulating level of adiponectin, which plays a prominent role

in whole-body energy metabolism and ovarian physiology (115,

117). These results demonstrate that BAT transplantation may

reduce obesity and related diseases by activating endogenous

BAT. In addition, they show that transplanted mice confer

resistance to HFD-induced obesity via increases in whole-body

sympathetic activity (119). However, in view of the differences of

Batokine between human and mouse, it is necessary to discuss

BAT plasticity from the perspective of human physiology (14).

For example, in rodents, FGF21 is secreted from BAT in

response to thermogenic activation, while in human brown

adipocytes, FGF21 is nearly undetectable (121).
TABLE 2 Clinical trials of effects of dietary compounds on BAT.

Strategy Subjects Effects on BAT Refs

Capsinoids Healthy, Middle-Aged Adults Increased BAT density (106)

Capsinoids Healthy adults Increased EE, fat oxidation, and heat production in the cervical-
supraclavicular regions

(107)

Resveratrol First degree relatives of patients with T2DM Unaffected 18F-FDG glucose uptake in BAT (108)

Berberine Mildly overweight patients with non-alcoholic fatty
liver disease

Increased BAT mass and activity (109)

Ephedrine Lean humans Increased BAT activity (110)

Grains of paradise healthy men Increased BAT activity (111)

Kaempferia parviflora
extract

healthy men Increased BAT activity (69)
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8 Remaining questions

8.1 BAT activity and body weight loss:
Which is the cause, and which
is the effect?

As described above, there are various ways that BAT activity

or the browning of WAT can be improved (Table 4). These

approaches are often associated with body weight gain and loss

(124, 125). Body weight loss can lead to increased activity of

BAT. For example, in a recent study on bariatric surgery, which

is an effective way to lose weight in obese individuals, it increased

BAT activity, such that 1 year after surgery, the positive rate of

BAT activity increased to 50% (125). This study partially

demonstrated that, under the studied circumstances, BAT

activity enhancement may be the result of body weight loss.

However, some experimental evidence in rats suggests that

bariatric surgery reduces volume, oxidative metabolism, and

thermogenic gene expression in interscapular brown adipose

tissue in rats (126). Researchers have shown that exercise can

promote BAT recruitment, regulate the expression of UCP1, and

enhance the function of mitochondria in mice and rats;

meanwhile, increased BAT activity is accompanied by reduced

body weight gain (127, 128). In fact, without body weight loss,

long-term training has little effect on the browning of human

subcutaneous adipose tissue, and it does not enhance the levels

of UCP1 and PGC1-a (47). The same question concerning the

small molecules that activate BAT remains. For instance, in one

study, after treatment with a mixture of ephedrine and

methylxanthine, MSG-induced obese mice increased their
Frontiers in Endocrinology 08
energy consumption by 20%, weight loss by 25%, and fat loss

by 75% (129). When resveratrol reduced body weight and

promoted BAT function, the researchers also observed that

resveratrol could activate the expression of SIRT1, AMPK, and

PGC1-a (99).

These findings raise the question: Between BAT activity and

body weight loss, which is the cause and which is the effect?

Some possible answers present themselves. For instance, in

one study, 4 h of cold exposure significantly enhanced BAT

activity (130, 131). Hanssen et al. found that short-term (10-day)

cold acclimation improved insulin sensitivity in patients with

type 2 diabetes mellitus without body weight change. PET-CT

results demonstrated that 10 days of cold acclimation induced

thermogenesis of BAT in the scapula (132). Li et al. showed that,

with 6 days of EODF treatment, mice WAT was greatly browned

when the body weight showed no change (123).

At the same time, in vitro studies can be an adjunct method

in some cases. Ephedrine can stimulate BAT respiration through

adrenergic receptors in vitro (133), rutin directly activates BAT

oxidation in vitro (31). In addition, in vivo studies on the absence

of non-shivering (UCP1-dependent) thermogenesis should be

performed to ensure if BAT and/or browning WAT are essential

for the anti-obesity effects of these treatments. Kalinovich et al.

observed the effects of C12TPP on high-fat-diet-induced obese

mice. After C12TPP treatment, the body weights were

significantly reduced. When UCP1-KO mice were treated with

C12TPP, this effect disappeared, and the effects of C12TPP on

the body weight of obese mice did not depend on UCP1 (134).

All in all, many aspects of this exciting subject remain largely

unknown and clearly merit further investigation.
TABLE 3 The effects of experimental BAT transplantation.

Source Recipient Localization Effect Refs

Embryonic
mouse iBAT

Streptozotocin-induced
type 1 diabetes mice

Subcutaneous region
Glucose tolerance is normal, increased adiponectin and reduced
tissue inflammation

(116)

Adult mouse
iBAT

DHEA-induced PCOS
rat

The s.c. space of the dorsal region
adjacent to the endogenous BAT

Enhanced endogenous BAT activity and thereby increased the
circulating adiponectin level

(117)

Embryonic
mouse iBAT

Autoimmune-mediated
T1D model

Subcutaneous region
Increased IGF-1 levels and decreased inflammation and glucagon
levels

(118)

Adult mouse
iBAT

HFD-induced obese mice Visceral cavity
Improved glucose tolerance, increased insulin sensitivity and IL-6
levels

(29)

Adult mouse
iBAT

HFD-induced obese mice Adjacent to BAT
Improved whole-body energy metabolism, increased insulin
sensitivity, and reversed preexisting obesity.

(115)

Adult mouse
iBAT

ob/ob mice Dorsal subcutaneous region
Adiponectin levels and oxygen consumption increase, and total
body fat mass decreases.

(27)

Adult mouse
iBAT

HFD-induced obese mice Dorsal subcutaneous region
Enhanced systemic metabolic response and increased sympathetic
activity.

(119)

Adult mouse
iBAT

Hph-1 mice fed with
HFD

Visceral fat regions
Impaired BAT function, and metabolic disorders in the body are
improved, regulating systemic energy metabolism.

(120)
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8.2 SNS-dependent non-shivering
thermogenesis

Stimulation of sympathetic nerves can cause abdominal visceral

cardiovascular contraction and heartbeat enhancement and

acceleration. Many treatments to stimulate the thermogenesis of

fat can work through the SNS. Cold exposure stimulates

sympathetic nervous (SN) excitability to promote the browning

process (32, 135), and exercise can significantly activate the SN (53,

54). In addition, many small molecules can also enhance the

excitability of the SN (105). At the same time, considering that

SNS plays vital role in multiple physiological metabolic processes,

these methods of stimulating or enhancing sympathetic excitability

may have negative effects on the body. For example, cold

stimulation can increase the thermogenesis of BAT through the

gut microbiota (36), warm environments inhibit brown fat heat

production, which is controlled by the nervous system (136). But

cold stimulation also activates sympathetic nerves and increases

systolic blood pressure, leads to rapid heartbeat and cardiac strain,

which ultimately increases the risk of cardiovascular disease (137,
Frontiers in Endocrinology 09
138). Cold stimulation is not a good anti-obesity strategy for people

with cardiovascular disease. Many regulators target GPCRs, TRP, or

nuclear receptors, and some have undergone clinical trials in

different phases (112, 113). Transient receptor potential (TRP)

ion channels are transmembrane ion channels that allow cations

to pass through the cell membrane non selectively. They can

mediate calcium influx and high intracellular calcium level

activates the expression of PGC1a/UCP1 and increases BAT

thermogenesis (139, 140). TRP channels can be activated by a

variety of stimuli. The capsaicin receptor TRPV1 is expressed in

brown adipose tissue and its expression level is elevated during the

differentiation of pre-brown adipocytes (141).. TRPV2 was also

highly expressed in brown fat, and the expression of heat genes in

BAT decreased after TRPV2 knockout (142). Menthol acts as a

ligand for TRPM8, activating TRPM8 in brown and white fat and

improving glucose tolerance (143). The factors that promote the

browning of WAT can increase thermogenesis in different ways,

such as by increasing the expression of UCP1 (82) and stimulating

the melanocortin/corticotropin system (144). Calcium

supplementation can increase the gene expression of UCP1 and
TABLE 4 Different ways to improve the BAT activity or browning of WAT.

Strategy (Major) Target
(s)

Effects on
Glucose Metabo-

lism

Effects on Lipid Metab-
olism Effects on BAT Activity Effects on

weight Refs

Cold-exposure Gut Microbiota – – UCP1↑ ↓ (36)

Cold-exposure UCP1、adiponectin – Lipolysis↑ BAT activity↑ ↓ (37)

Cold-exposure SNS – Adiponectin↓ UCP1↑ ! (122)

Swimming
training

Irisin Insulin resistance↓ –
Browning of subcutaneous
adipose tissue

↓ (45)

Running
training

Adrenaline – –

UCP1/PGC1-a↑
The average size of lipid droplet
of the brown adipocytes↓

↓ (52)

Food intake – Insulin sensitivity↑
Lipid metabolism related genes
expression is increased

BAT thermogenesis↑ ! (61)

HFD Clk2、UCP1 – –
Tissue oxygen consumption and
protein levels of UCP1↑

↓ (64)

EODF Gut Microbiota Insulin resistance↓ – Beiging of WAT↑ ↓ (123)

IF PZP Insulin sensitivity↑ – UCP1↑ ↓ (66)

CR Type 2 immune ! –
The development of functional
beige fat↑ UCP1↑

↓ (67)

Capsinoids b-adrenergic – – – ↓ (68)

Resveratrol
SIRT1, PGC1-a,
AMPK

Insulin resistance↓ – Mitochondrial function↑ ↓ (98)

Rutin
AKT, ERK, p-38
signaling pathways

Insulin sensitivity↑ – BAT activity↑ ↓ (31)

BAT
transplantation

Endogenous BAT Insulin resistance↓ Adiponectin↑ Endogenous BAT activity↑ ↓
(27,
115)

↑:raise/improve ↓:down !:No change
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increase the protein expression of brown adipocytes marker genes,

such as PGC1a, PDH, and Cyto C in inguinal WAT (145) (140).

Plant extracts also have great potential, and rutin and mulberry can

enhance the thermogenesis of fat by increasing the number of

mitochondria (31). Resveratrol increases BAT thermogenesis by

increasing SIRT1 (73, 98, 99). These methods are more direct and

targeted. BAT transplantation is also a positive approach to anti-

obesity (27, 115). It promotes the secretion of certain factors to

activate endogenous BAT, and may not only reverse obesity and

type 2 diabetes but may also ameliorate PCOS (117). However,

clinical applications would require much more research.
9 Perspective

Over the last decade, increased BAT activity has garnered

great interest, as numerous studies have established an

association between BAT activity and metabolic health.

Activating BAT or promoting browning can improve glycolipid

metabolism and glucose homeostasis (27–29), and transplanting

BAT can also improve PCOS (117). Unfortunately, most of the

experimental studies are carried out on model animals. Based on

the current technology and ethics, it is not realistic to carry out

brown fat transplantation surgery on humans. We need to pay

more attention to methods that can increase the secretion of

brown fat in the body, which seems more practical. BAT activity

and body metabolism can be influenced in many ways and

through different pathways (Table 4). Yet, further study is

needed to understand what can effectively, accurately, and

safely increase the activity of BAT. The SN, as part of the

vegetative nerve, maintains the balance of the body, along with

the parasympathetic nerve. When the body is in a state of tension,

sympathetic activity plays a major role. The stimulation of

sympathetic nerves can cause abdominal visceral cardiovascular

contraction as well as heartbeat enhancement and acceleration.

Increased sympathetic excitability can cause heartbeat

acceleration, and the faster the heartbeat associated with the

sympathetic nerve, the higher the cardiovascular mortality (42,

144, 146, 147). Many methods of stimulating the thermogenesis

of fat can function through the SNS. In increasing BAT activity,

exercise and cold stimulation can significantly activate the SNS

(53, 148–150), but much additional research is needed to

understand what type of exercise is needed and of what

intensity, as well as long it would take to effectively increase

BAT activity. Thus, exercise and cold stimulation may not be a

good approach for people with cardiovascular disease. Each

method can improve BAT activity along a variety of pathways,

so it is necessary to evaluate what methods are most suitable for

different groups of people. By contrast, it appears to be more

versatile and safer to improve BAT activity through the

promotion of batokine secretion or through the action of gut

microbiota. In addition, studies have shown that these

approaches can lead to phenotypes that improve metabolism,
Frontiers in Endocrinology 10
anti-obesity, and increased BAT activity, but few studies have

demonstrated the causality between these phenotypes, and direct

evidence was required to clarify the targets of these methods.

Validation with UCP1-KO mice or direct targeting of brown fat

would increase the persuasiveness of this perspective. Some views

hold that the change of UCP1 mRNA level does not generate heat

(151), and it requires activation of b-adrenergic receptors to

become active (152). In addition, the feeding environment in

animal experiments is basically 22-26°C, which is not a

thermoneutrality, which makes the sympathetic nerve of

experimental animals may be in a chronic activation state for a

long time, thus affecting energy consumption. In view of this,

some scholars recently raised mice at 30°C(thermoneutrality)

when exploring the impact of time-restricted feeding on energy

consumption of mice. This temperature condition is defined as

the minimum energy consumption of mice when maintaining

body temperature (133). Considering that the amount of active

BAT in the human body gradually decreases with age (16), this

makes it fundamentally difficult to activate BAT in adults or older

people. A large number of studies have shown that the browning

of WAT can improve glucose and lipid metabolism and insulin

resistance in obese and type 2 diabetes patients (153, 154). The

role of browning of WAT is even more important for the

prevention and treatment of obesity in human (155). This

review highlights the targets of different activation methods

and other effects they bring. Regardless, in many methods of

activating BAT or promoting browning, we need to choose an

efficient, reliable, and safe approach.
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