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Objective: For the patients who are suffering from type 2 diabetes, blood glucose

level could be affected by multiple factors. An accurate estimation of the trajectory

of blood glucose is crucial in clinical decision making. Frequent glucose

measurement serves as a good source of data to train machine learning models

for prediction purposes. This study aimed at using machine learning methods to

predict blood glucose for type 2 diabetic patients. We investigated various

parameters influencing blood glucose, as well as determined the most effective

machine learning algorithm in predicting blood glucose.

Patients and methods: 273 patients were recruited in this research. Several parameters

such as age, diet, family history, BMI, alcohol intake, smoking status et al were analyzed.

Patientswhohad glycosylated hemoglobin less than 6.5% after 52weekswere considered

as having achieved glycemic control and the rest as not achieving it. Fivemachine learning

methods (KNN algorithm, logistic regression algorithm, random forest algorithm, support

vector machine, and XGBoost algorithm) were compared to evaluate their performances

in prediction accuracy. R 3.6.3 and Python 3.12 were used in data analysis.

Results: The statistical variables for which p< 0.05 was obtained were BMI, pulse,

Na, Cl, AKP. Compared with the other four algorithms, XGBoost algorithm has the

highest accuracy (Accuracy=99.54% in training set and 78.18% in testing set) and

AUC values (1.0 in training set and 0.68 in testing set), thus it is recommended to be

used for prediction in clinical practice.

Conclusion: When it comes to future blood glucose level prediction using

machine learning methods, XGBoost algorithm scores the highest in

effectiveness. This algorithm could be applied to assist clinical decision making,

as well as guide the lifestyle of diabetic patients, in pursuit of minimizing risks of

hyperglycemic or hypoglycemic events.
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1 Introduction

Diabetes counts as one of the leading chronic diseases that have

significant impacts on people worldwide. According to a report issued

by the International Diabetes Federation (IDF), in 2021, diabetic

patients have reached 536.6 million and the prevalence is estimated to

exceed 783.2 million by 2045 in the age group of 20 to 79 years old (1).

More than 90% of all patients suffer from type 2 diabetes. In China, it

is projected that 145 million people are diabetic (2),while in the US,

the number is 34.2 million (3).

Certain tests such as fasting plasma glucose, 2h-PG, and the level

of HbA1c are considered as appropriate diagnostic criteria (4). The

American Diabetes Association suggests the use of validated tools to

identify and screen affected adults to assess the risk factors leading to

the onset of diabetes mellitus (5).Main pathological defects in patients

suffering from type 2 diabetes include insulin resistance, as well as

impaired insulin secretion due to malfunctioning of pancreatic b cells.

In addition, five other pathophysiological conditions contribute to

glucose intolerance in diabetic patients. These include: lipo-toxicity,

higher glucagon production by a-cells, enhanced hepatic sensitivity to
glucagon, increased glucose reabsorption through glucose

transporter-2 by the kidneys, and CNS resistance to the suppressive

effects of insulin leading to appetite dysregulation and abnormal

weight gain. All of these factors lead to the maintenance of high

glucose levels in the blood. Other factors aggravating type 2 diabetes

include glucotoxicity, inflammation, and oxidative stress.

Inflammation has been reported to alter the concentration of

certain cytokines and chemokines, alter the number and activation

status of leukocytes and facilitate tissue fibrosis and leukocyte

apoptosis, and thus is crucial in the pathophysiology of type 2

diabetes (6–9).

Symptoms of diabetes include dehydration, blurry vision, sudden

weight loss, polyuria, polydipsia, and polyphagia. Diabetic patients

are more susceptible to heart, brain, and vascular diseases. Diseases of

the cardiovascular system contribute to the majority of mortalities in

diabetic patients (10). Therefore, paying due attention to blood

glucose levels in patients suffering from diabetes is critical. Regular

monitoring as well as assessment are important both to maintain

appropriate blood glucose levels in these patients and to avoid

unnecessary short and long-term complications. The normal blood

glucose levels vary depending on various aspects including physical

activity, and 70-180 mg/dl is considered a safe range to avoid any

sudden or gradual complications (11). Regulation and maintenance of

optimum glucose levels in the blood are crucial for the quality of life.

The better the regulation, the less the chances will be of chronic

complications of diabetes. It is important to prevent both hypo and

hyper-glycemic conditions for effective diabetes management. The

blood glucose concentration is affected by multiple factors, and it is

ideal to use the historic values as predictive inputs (3, 12).

Proper diabetes management requires consideration of various

factors including tailored food intake, medication, insulin levels, and

physical activity, in the hope to achieve precision control for each

patient. Presently, oral drugs and insulin injections are commonly

used to treat diabetes (13). Early management of risk factors and

proper intervention are crucial (12). This study was conducted with

the aim of supporting patients with medical or lifestyle decisions
Frontiers in Endocrinology 02
(for example, meal planning, proper insulin dosages, or consuming

certain nutrients) by predicting their blood glucose levels using

machine learning algorithms.

Machine learning methods have played supportive parts in

building appropriate models by learning and assessing patterns

through data. Such models help discover underlying correlations

and future projections from the data. Typically, the features are

engineered with prior knowledge, as well as statistical analysis

(mean, standard deviation, PCA et al). The algorithms ’

performances such as logistic regression and k-nearest neighbors

depend on the given data (14).

In the present research, we first conducted a training experiment

over a set of data from the patient cohort, then performed the

evaluation experiment in a test dataset. Five different algorithms

were compared.
2 Patients and methods

2.1 Object of study

This is a retrospective study. Baseline survey and follow-up

information of multicenter type 2 diabetes patients were collected.

The survey period of the database was from October 2016 to

December 2017. Elderly patients with type 2 diabetes aged 60 years

and above were randomly selected from 150 provincial hospitals in 21

provinces across China. A total of 2652 cases were included, 1396

were males and 1256 were females. The age range was 65-77 years,

with a median age of 69 years. Out of those patients in the database,

only 273 patients had complete data of blood glucose levels and other

parameters at 16-week and 52- week follow-up. 273 patients were

enrolled. Medical Ethics Committee of the Chinese PLA General

Hospital gave approval to this research (No. S2015-038-01). Outcome

categorical variable was applied to establish prediction models using

algorithms of random forest, support vector machine, logistic

regression, KNN, and XGBoost. The ROC curve, accuracy,

precision, recall, F1 and other indicators were utilized to compare

the prediction effect.
2.2 Composition of candidate indicators

In accordance with the Chinese guideline for type 2 diabetes (15),

patients with glycated hemoglobin less than 6.5% after 52 weeks were

considered to have achieved glycemic control, and the rest were

considered to have not succeeded. Based on the survey data, follow-up

data, and previous studies, age, gender, experimental grouping, family

history, education level, dietary assessment, complications

(retinopathy, kidney disease, peripheral neuropathy, peripheral

atherosclerosis, intermittent claudication), hypertension, drinking

status, smoking status, BMI, pulse rate, and key biochemical

indicators(HDL, Hb, K, Na, Cl, CO2, Ca, P, AKP, GPT, GOT, rGT)

were considered as candidate indicators. We built machine learning

models on the statistically significant variables obtained from

univariate analysis as predictor variables.
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2.3 Data pre-processing

Missing values of candidate variables were filled using median for

continuous variables and mode for categorical variables. Stratified

sampling was performed based on glycemic control effects. The

allocation of the training set vs the testing set was 80%: 20%.
2.4 Statistical methods

R 3.6.3 software was used to perform statistical analysis.

Comparisons between groups of continuous variables were

calculated through t-test or ANOVA, and continuous variables that

were not normally distributed were analyzed using rank sum test.

Machine learning was performed using Python 3.12 software. p< 0.05

was considered statistically significant.
2.5 Forecasting models

2.5.1 Logistic regression prediction model
In machine learning, the method of logistic regression is

frequently used. It is a supervised classification model with

considerable simplicity and the performance of this algorithm is

superb. Patients with substandard glycemic control were used as the

case group and those with standard glycemic control were used as the

control group (16). The equation of logistic regression is:

y = e (b0 + b1*x)=(1 + e (b0 + b1*x))
2.5.2 Random forest model
Random forest model is an integrated learning method, which

introduces randomly attributed selection based on decision trees. It is

a classification algorithm that uses multiple weak classifiers combined

into one strong classifier. It is extensively utilized in the research of

classifying and predicting because of its simplicity, easy

implementation, low computational overhead, high adaptability to

data, and ability to handle large datasets (17).

2.5.3 Support vector machine models
A support vector machine is a class of generalized classifier. It is a

robust linear supervised learning and it performs binary classification.

In this algorithm, instead of using probability models, hyperplanes

aimed for classification and regression are built. The decision

boundary is a maximum-margin hyperplane (18).

2.5.4 KNN model
The k-nearest neighbor method is based on regression model. The

k-nearest neighbor assumes that given a training dataset in which the

class of instances has been determined, classification is done by

predicting new instances based on the class of their k nearest

neighbor training instances, for example, by majority voting (19).

2.5.5 XGboost algorithm
XGBoost is a competent algorithm of gradient boosting decision

tree. It incorporates improvements based on the original GBDT
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algorithm, making the model much more effective. The

fundamental element of this algorithm is the application of

integration. Multiple weak learners merge into one strong learner

through mathematical methods. The final result is accomplished

through integration of the results of multiple trees, so as to achieve

the improvement of the whole model effect (20).
3 Results

3.1 Analysis of baseline information

In total, 273 cases were studied in the statistical analysis. Table 1

illustrated the basic distribution of each parameter among patients.

119 patients were female, 154 patients were male.

50.9% of the patients were equal to or over 75 years old. 59.7% of

all patients were overweight. 17.6% of the patients achieved glycemic

control, 82.4% didn’t.
3.2 Analysis of blood glucose control
compliance and non-compliance

Patients were considered to have glycosylated hemoglobin less

than 6.5% after 52 weeks as having achieved glycemic control and the

rest as not achieving it. The statistical variables for which p< 0.05 was

obtained include BMI, pulse, Na, Cl, and AKP (Table 2).
3.3 Machine learning approach

3.3.1 Results for the training set of machine
learning models

Results of the training set were shown in Table 3:
1) KNN (accuracy=0.8486, precision=0.9972, recall=0.6073,

F1=0.6811, AUC_PR=0.6197, AUC_ROC=0.8702)

2) Logistic Regression (accuracy=0.6376, precision=0.5693,

r e c a l l = 0 . 6 1 4 5 , F 1 = 0 . 5 9 1 0 , AUC_PR= 0 . 3 8 6 4 ,

AUC_ROC=0.7025)

3) Random Forest (accuracy=0.8119, precision=0.7027,

r e c a l l = 0 . 7 7 1 9 , F 1 = 0 . 7 3 5 7 , AUC_PR= 0 . 6 6 2 1 ,

AUC_ROC=0.8854)

4) Support Vector Machine (accuracy=0.6789, precision=0.5829,

r e c a l l = 0 . 6 2 9 1 , F 1 = 0 . 6 0 5 1 , AUC_PR= 0 . 4 5 1 3 ,

AUC_ROC=0.7480)

5) XGBoost (accuracy=0.9954, precision=0.9972, recall=0.9868,

F1=0.9920, AUC_PR=0.9993, AUC_ROC=0.9999)
XGBoost has the highest accuracy and AUC values.
3.3.2 Results for the machine learning model
testing set

Results of the testing set were listed in Table 4:
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1) KNN (accuracy=0.7818, precision=0.5850, recall=0.5556,

F1=0.5699, AUC_PR=0.2594, AUC_ROC=0.4867)

2) Logistic Regression (accuracy=0.6727, precision=0.5713,

r e c a l l = 0 . 6 0 5 6 , F 1 = 0 . 5 8 7 9 , AUC_PR= 0 . 2 9 4 7 ,

AUC_ROC=0.6311)

3) Random Forest (accuracy=0.6909, precision=0.5583,

r e c a l l = 0 . 5 7 7 8 , F 1 = 0 . 5 6 7 9 , AUC_PR= 0 . 3 2 0 8 ,

AUC_ROC=0.6311)

4) Support Vector Machine (accuracy=0.6545, precision=0.5621,

r e c a l l = 0 . 5 9 4 4 , F 1 = 0 . 5 7 7 8 , AUC_PR= 0 . 2 7 6 6 ,

AUC_ROC=0.6644)

5) XGBoost (accuracy=0.7818, precision=0.5850, recall=0.5556,

F1=0.5699, AUC_PR=0.2924, AUC_ROC=0.6800)
XGBoost had the highest accuracy and AUC values.
TABLE 1 Baseline characteristics data.

Variables Cases (n = 273)

HbA1c(%), n (%)

no 225 (82.4)

yes 48 (17.6)

gender, n (%)

female 119 (43.6)

male 154 (56.4)

age, n (%)

<75 134 (49.1)

>=75 139 (50.9)

Experiment_Type, n (%)

Experimental_group_1 67 (24.5)

Experimental_group_2 40 (14.7)

Experimental_group_3 32 (11.7)

baseline 83 (30.4)

regular_group 51 (18.7)

educational_level, n (%)

Junior_and_below 134 (49.1)

high_and_college 139 (50.9)

BMI, n (%)

<25 110 (40.3)

>=25 163 (59.7)

pulse, n (%)

<75 125 (45.8)

>=75 148 (54.2)

smoke, n (%)

no 235 (86.1)

yes 38 (13.9)

drink, n (%)

no 198 (72.5)

yes 75 (27.5)

family_history, n (%)

no 185 (67.8)

yes 88 (32.2)

diet_assessment, n (%)

good 66 (24.2)

ordinary 207 (75.8)

Retinopathy, n (%)

no 226 (82.8)

yes 47 (17.2)

(Continued)
TABLE 1 Continued

Variables Cases (n = 273)

Kidney_disease, n (%)

no 219 (80.2)

yes 54 (19.8)

peripheral_neuropathy, n (%)

no 176 (64.5)

yes 97 (35.5)

peripheral_atherosclerosis, n (%)

no 171 (62.6)

yes 102 (37.4)

Intermittent_claudication, n (%)

no 262 (96.0)

yes 11 (4.0)

hypertension, n (%)

no 92 (33.7)

yes 181 (66.3)

HDL_C(mmol/L), mean (SD) 1.3 (0.4)

Hb(g/L), mean (SD) 132.5 (14.9)

K(mmol/L), mean (SD) 4.1 (0.4)

Na(mmol/L), mean (SD) 137.9 (15.5)

Cl(mmol/L), mean (SD) 102.8 (9.9)

CO2CP(mmol/L), mean (SD) 25.1 (2.8)

Ca(mmol/L), mean (SD) 2.3 (0.1)

P(mmol/L), mean (SD) 1.1 (0.2)

AKP(U/L), mean (SD) 76.0 (23.0)

GPT(U/L), mean (SD) 25.2 (15.4)

GOT(U/L), mean (SD) 22.6 (10.7)

rGT(U/L), mean (SD) 30.1 (25.3)
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TABLE 2 Comparison of baseline characteristics based on HbA1c (%).

Variable no yes P-Value Test

n 225 48

HbA1c(%), n (%)

no 225 (100.0) <0.001 Chi-squared

yes 48 (100.0)

gender, n (%)

female 96 (42.7) 23 (47.9) 0.613 Chi-squared

male 129 (57.3) 25 (52.1)

age, n (%)

<75 111 (49.3) 23 (47.9) 0.985 Chi-squared

>=75 114 (50.7) 25 (52.1)

Experiment_Type, n (%)

Experimental_group_1 57 (25.3) 10 (20.8) 0.948 Chi-squared

Experimental_group_2 32 (14.2) 8 (16.7)

Experimental_group_3 27 (12.0) 5 (10.4)

baseline 68 (30.2) 15 (31.2)

regular_group 41 (18.2) 10 (20.8)

educational_level, n (%)

Junior_and_below 115 (51.1) 19 (39.6) 0.197 Chi-squared

high_and_college 110 (48.9) 29 (60.4)

BMI, n (%)

<25 82 (36.4) 28 (58.3) 0.008 Chi-squared

>=25 143 (63.6) 20 (41.7)

pulse, n (%)

<75 93 (41.3) 32 (66.7) 0.002 Chi-squared

>=75 132 (58.7) 16 (33.3)

smoke, n (%)

no 191 (84.9) 44 (91.7) 0.316 Chi-squared

yes 34 (15.1) 4 (8.3)

drink, n (%)

no 162 (72.0) 36 (75.0) 0.807 Chi-squared

yes 63 (28.0) 12 (25.0)

family_history, n (%)

no 149 (66.2) 36 (75.0) 0.312 Chi-squared

yes 76 (33.8) 12 (25.0)

diet_assessment, n (%)

good 51 (22.7) 15 (31.2) 0.282 Chi-squared

ordinary 174 (77.3) 33 (68.8)

Retinopathy, n (%)

no 185 (82.2) 41 (85.4) 0.748 Chi-squared

(Continued)
F
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TABLE 2 Continued

Variable no yes P-Value Test

n 225 48

yes 40 (17.8) 7 (14.6)

Kidney_disease, n (%)

no 180 (80.0) 39 (81.2) 1.000 Chi-squared

yes 45 (20.0) 9 (18.8)

peripheral_neuropathy, n (%)

no 141 (62.7) 35 (72.9) 0.238 Chi-squared

yes 84 (37.3) 13 (27.1)

peripheral_atherosclerosis, n (%)

no 141 (62.7) 30 (62.5) 1.000 Chi-squared

yes 84 (37.3) 18 (37.5)

Intermittent_claudication, n (%)

no 215 (95.6) 47 (97.9) 0.695 Fisher's exact

yes 10 (4.4) 1 (2.1)

hypertension, n (%)

no 77 (34.2) 15 (31.2) 0.820 Chi-squared

yes 148 (65.8) 33 (68.8)

HDL_C(mmol/L), median [Q1,Q3] 1.2 [1.0,1.4] 1.2 [1.1,1.5] 0.200 Kruskal-Wallis

Hb(g/L), median [Q1,Q3] 132.0 [125.0,139.4] 132.8 [124.9,139.2] 0.958 Kruskal-Wallis

K(mmol/L), median [Q1,Q3] 4.1 [3.8,4.3] 4.2 [3.9,4.3] 0.353 Kruskal-Wallis

Na(mmol/L), median [Q1,Q3] 139.5 [137.9,141.8] 141.0 [139.0,142.0] 0.009 Kruskal-Wallis
F
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TABLE 3 Results of the training sets using five machine learning algorithms.

model accuracy precision recall f1 auc_pr auc_roc

Logistic regression 0.6376 0.5693 0.6145 0.5910 0.3864 0.7025

Random forest 0.8119 0.7027 0.7719 0.7357 0.6621 0.8854

Support vector machine 0.6789 0.5829 0.6291 0.6051 0.4513 0.7480

KNN 0.8486 0.7754 0.6073 0.6811 0.6197 0.8702

XGBoost 0.9954 0.9972 0.9868 0.9920 0.9993 0.9999
fro
TABLE 4 Results of the testing sets using five machine learning algorithms.

model accuracy precision recall f1 auc_pr auc_roc

Logistic regression 0.6727 0.5713 0.6056 0.5879 0.2947 0.6311

Random forest 0.6909 0.5583 0.5778 0.5679 0.3208 0.6311

Support vector machine 0.6545 0.5621 0.5944 0.5778 0.2766 0.6644

KNN 0.7818 0.5850 0.5556 0.5699 0.2594 0.4867

XGBoost 0.7818 0.5850 0.5556 0.5699 0.2924 0.6800
ntiersin.org
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3.3.3 Confusion matrix for different machine
learning models

1) KNN

TN=176 , FP=4 , FN=29 , TP=9. Accuracy= 84 .86%,

Misclassification rate=15.14% (Figure 1A)

2) Logistic regression

TN=117, FP=63, FN=16, TP=22. Accuracy= 63.76%,

Misclassification rate=36.24% (Figure 2A)

3) Random Forest Model

TN=150, FP=30 , FN=11, TP=27, Accuracy=81.19%

Misclassification rate=18.81% (Figure 3A)

4) Support vector machines

TN=127, FP=53, FN=17, TP=21, Accuracy= 67.89 %,

Misclassification rate= 32.11% (Figure 4A)

5) XGBoost

TN=180 , FP=0 , FN=1 , TP=37 . Accuracy=99 . 54% ,

Misclassification rate=0.46% (Figure 5A)

3.3.4 ROC curves for different machine learning
models
Fron
1) KNN: AUC=0.87 (Figure 1B)

2) Logistic Regression: AUC=0.70 (Figure 2B)

3) Random Forest: AUC=0.89 (Figure 3B)

4) Support Vector Machine: AUC=0.75 (Figure 4B)

5) XGBoost: AUC=1.00 (Figure 5B)
XGBoost had the highest AUC value, indicating that XGBoost’s is

a good choice for clinical application.
4 Discussions

In the occasion of long term non-controlled type 2 diabetes,

various micro and macrovascular complications could occur.

Microvascular complications arise due to hyperglycemic conditions

facilitated by the activation of several pathological mechanisms such

as enhanced polyol pathway flux, increased concentration of end

products from advanced glycation, expression from AGE receptors,
tiers in Endocrinology 07
hexosamine flux, activation of proteins kinases, and an increased

generation of reactive oxygen and nitrogen. Some of the major

microvascular complications include neuropathy, retinopathy, and

nephropathy (21, 22). The pathways contributing towards

microvascular complicat ions al ign with macrovascular

complications as well. Diabetes is an important risk factor in

patients suffering from cardiovascular diseases. Diabetic patients

have high mortality rates and tend to be hospitalized for longer

periods (23). The socio-economic losses and medical expenses

resulting from the treatment of acute or chronic complications for

such patients are enormous. It is, therefore, necessary to closely

monitor the blood glucose of type 2 diabetes patients. Standard

approaches for effective blood glucose management include finger

prick testing throughout the day at regular intervals, self-monitoring

and recording of blood glucose values, and effective use of glucose

monitoring devices. Recent developments in technology have allowed

patients to use glucose monitoring sensors, assess glucose levels in

subcutaneous space, providing insights into their blood glucose levels.

To lessen the workload of healthcare specialists, who are very few as

compared to the number of patients, and eliminate the bias factor for

decision-making, machine learning and artificial intelligence can be

used to facilitate medical practitioners. Deep insights into glucose

fluctuations can assist patients to take necessary actions prior to hyper

or hypoglycemic events and minimize the occurrence of adverse

glycemic conditions.

In our research, parameters for which p< 0.05 was obtained

include BMI, pulse, Na, Cl, and AKP. Overweight and obesity are

rapidly growing public health problems in recent years, leading to

many metabolic risks including type 2 diabetes (24). People with

BMI>30 kg/m2 are classified as obese, and BMI ranging from 25 to

29.9 kg/m2 as overweight. There are 1.9 billion obese adults

worldwide (25). Higher BMI is a risk factor of insulin resistance.

Increased free fatty acids cause peripheral insulin resistance, as well as

hampers the secretion of insulin by beta cells of the pancreas,

resulting in elevated blood glucose levels (26, 27). In the research

conducted by Holman et al, results showed that lower BMI at

diagnosis might be related with rate of higher remission. Compared

with the younger generation, older people achieved higher remission

incidence due to their lower baseline BMI in average (28).Losing

weight is encouraged in order to achieve better blood glucose control
A B

FIGURE 1

Confusion matrix and ROC curve of KNN algorithm.
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(12). Although in many clinical guidelines, low NaCl intake for type 2

diabetes patients is widely recommended, most patients tend to not

act accordingly (29). Zhao et al. found that high NaCl intake could

activate PPARd in adipose tissues. Renal SGLT2 could be inhibited by

the overexpression of adiponectin, thus the reabsorption of glucose is

hindered, resulting in glycosuria (30). Alkaline phosphatase is found

in multiple organs and it participates in various physiological

processes. Wan et al’s research found that in patients who suffer
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from T2D, AKP levels and HbA1c levels were positively correlated,

increased AKP levels could aggravate insulin resistance, and high

serum AKP level could exasperate hyperglycemia (31). Although

empirically, pulse seems to be not directly related to the level of

blood glucose, type 2 diabetes could cause disturbances in the

autonomic system. Inamdar’s research found that in comparison

with normal people, the pulse rate of diabetic patients was higher.

Pulse served as an independent risk factor for blood glucose
A B

FIGURE 2

Confusion matrix and ROC curve of Logistic Regression algorithm.
A B

FIGURE 3

Confusion matrix and ROC curve of Random Forest algorithm.
A B

FIGURE 4

Confusion matrix and ROC curve of Support Vector Machine algorithm.
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disturbances, since it could be an barometer of the function of the

autonomic nervous system (32). There is positive correlation between

activated sympathetic nervous system and insulin resistance, which

could affect patients’ blood glucose levels (33).

It is feasible to predict blood glucose levels via machine learning

methods. The process is based on performance prediction indexes

and the efficiency of this procedure is assessed using clinically derived

datasets. The algorithms are helpful in case of limited data availability

as the results of the models demonstrate the accuracy of predicting

ability of the training and testing datasets. The physiological process

of blood glucose regulation is complicated with various parameters

and mechanisms. Herein, we predicted patients’ blood glucose levels

using five machine learning algorithms (random forest regression, k-

nearest neighbors, and logistic regression, support vector machine

and XGBoost). To measure classification performance, we used

different metrics in this study, such as accuracy, recall, precision,

F1-score, and ROC curve. The binary confusion matrix was applied.

“True Positive” represents patients with uncontrolled blood glucose

were actually classified as such, “True Negative” represents patients

with controlled blood glucose were labelled accordingly. “False

Positive” signifies that patients who controlled their blood glucose

were classified as uncontrolled, correspondingly “False Negative”

implies that patients with uncontrolled blood glucose were regarded

as the opposite. Evaluation indicators were calculated based on these.

Accuracy depicts the performance in general. F1 score was calculated

based on the value of precision and recall. In classifiers, “True Positive

Rate” and “False Positive Rate” were represented in ROC curves. A

high value of AUC delineates a high performance of the model (34).

We assessed the outputs of the five machine learning models and

compared them for the precise evaluation and prediction of blood

glucose levels through clinical and numerical performance

measures, and the results found that XGBoost is the ideal choice

to assist better decision-making in the treatment of diabetic patients.

Algorithms employed for predictive modelling tend to learn

patterns from the provided data while ignoring irrelevant

information from the data set at the same time. It has been

observed that complicated and flexible machine learning strategies

perform very well on training data but show poor results when

applied to new data sets as a result of over-fitting. Applications using

machine learning algorithms should avoid overfitting by techniques
Frontiers in Endocrinology 09
including feature selection and systemic cross-validation. Successful

application will help users generate customized patient models for

effective diabetes management (35).

The application of this research will allow diabetic patients to

estimate their blood glucose levels with minimal intervention. There

is limitation of this research: the sample size was relatively small,

hence the parameters identified were limited. The result of the testing

dataset was not as good as the training dataset, which could also be

attributed to the small sample size. In the subsequent studies, we plan

to recruit more patients for evaluation of the machine learning

models in order to achieve performance improvement. There’s

population bias in this study, since the participants were all over

the age of 60 and the results might encounter extrapolation issues.

We’d like to cover more age groups in the future.
5 Conclusion

We conducted blood glucose prediction using five machine

learning algorithms (KNN, Logistic regression, Random Forest,

Support Vector Machine, and XGBoost). Our research found that

the XGboost algorithm performs better than other models with the

most accuracy in prediction. Clinicians could use this algorithm to

classify those with high risk of glycemic control failure, pay more

attention to these patients and guide their lifestyle and adjust

medications. XGBoost has the potential to assist in the effective

management of diabetic patients in the future practice.
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