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Overweight/obesity-related
transcriptomic signature as a
correlate of clinical outcome,
immune microenvironment, and
treatment response in
hepatocellular carcinoma

Ning-Ning Feng1†, Xi-Yue Du2†, Yue-Shan Zhang1,
Zhi-Kai Jiao1, Xiao-Hui Wu1 and Bao-Ming Yang1*

1Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang,
Hebei, China, 2Department of Radiotherapy, Hengshui People’s Hospital, Hengshui, Hebei, China
Backgrounds: The pandemic of overweight and obesity (quantified by body

mass index (BMI) ≥ 25) has rapidly raised the patient number of non-alcoholic

fatty hepatocellular carcinoma (HCC), and several clinical trials have shown that

BMI is associated with the prognosis of HCC. However, whether overweight/

obesity is an independent prognostic factor is arguable, and the role of

overweight/obesity-related metabolisms in the progression of HCC is

scarcely known.

Materials and methods: In the present study, clinical information, mRNA

expression profile, and genomic data were downloaded from The Cancer

Genome Atlas (TCGA) as a training cohort (TCGA-HCC) for the identification

of overweight/obesity-related transcriptome. Machine learning and the Cox

regression analysis were conducted for the construction of the overweight/

obesity-associated gene (OAG) signature. The Kaplan–Meier curve, receiver

operating characteristic (ROC) curve, and the Cox regression analysis were

performed to assess the prognostic value of the OAG signature, which was

further validated in two independent retrospective cohorts from the

International Cancer Genome Consortium (ICGC) and Gene Expression

Omnibus (GEO). Subsequently, functional enrichment, genomic profiling, and

tumor microenvironment (TME) evaluation were utilized to characterize

biological activities associated with the OAG signature. GSE109211 and

GSE104580 were retrieved to evaluate the underlying response of sorafenib

and transcatheter arterial chemoembolization (TACE) treatment, respectively.

The Genomics of Drug Sensitivity in Cancer (GDSC) database was employed for

the evaluation of chemotherapeutic response.

Results: Overweight/obesity-associated transcriptome was mainly involved in

metabolic processes and noticeably and markedly correlated with prognosis

and TME of HCC. Afterward, a novel established OAG signature (including 17
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genes, namely, GAGE2D, PDE6A, GABRR1, DCAF8L1, DPYSL4, SLC6A3, MMP3,

RIBC2, KCNH2, HTRA3, PDX1, ATHL1, PRTG, SHC4, C21orf29, SMIM32, and

C1orf133) divided patients into high and low OAG score groups with distinct

prognosis (median overall survival (OS): 24.87 vs. 83.51 months, p < 0.0001),

and the values of area under ROC curve (AUC) in predicting 1-, 2-, 3-, and 4-

year OS were 0.81, 0.80, 0.83, and 0.85, respectively. Moreover, the OAG score

was independent of clinical features and also exhibited a good ability for

prognosis prediction in the ICGC-LIHC-JP cohort and GSE54236 dataset.

Expectedly, the OAG score was also highly correlated with metabolic

processes, especially oxidative-related signaling pathways. Furthermore,

abundant enrichment of chemokines, receptors, MHC molecules, and other

immunomodulators as well as PD-L1/PD-1 expression among patients with

high OAG scores indicated that they might have better responses to

immunotherapy. However, probably exclusion of T cells from infiltrating

tumors resulting in lower infiltration of effective T cells would restrict

immunotherapeutic effects. In addition, the OAG score was significantly

associated with the response of sorafenib and TACE treatment.

Conclusions: Overall, this study comprehensively disclosed the relationship

between BMI-guided transcriptome and HCC. Moreover, the OAG signature

had the potential clinical applications in the future to promote clinical

management and precision medicine of HCC.
KEYWORDS

hepatocellular carcinoma, overweight, machine learning, signature, genomic
alteration, immune microenvironment, sorafenib, TACE
1 Introduction

Hepatocellular carcinoma (HCC), accounting for 75%–80%

of primary liver cancer, is the seventh most common cancer and

occupies nearly 8.0% of all cancer-related deaths, with more than

0.9 million new cases and 0.8 million deaths worldwide (1).

Currently, surgical resection and liver transplantation remain

the most effective therapy for HCC patients, but most patients

with advanced diseases are not suitable for surgeries (2). Despite

receiving surgical treatments, 5-year overall survival (OS) rate of

HCC is still poor, and relapse and metastasis rates are quite high

(3). With the rapid development of sequencing technologies,

comprehensive analysis of molecular characterizations offers

novel insights into HCC carcinogenesis and reveals exogenous/

endogenous factors potentially influencing HCC progression (4).

More importantly, molecular subtyping could divide patients

into different HCC subclasses with distinct prognoses, molecular

features, and treatment responses altogether, which would help

promote the clinical management of HCC patients and select

suitable treatment regimens.

So far, HCC has been documented as a cancer type

presenting a highly close relationship between tumors and
02
environmental agents. In addition to genetic predisposition,

etiological risk factors of chronic hepatitis B/C virus (HBV/

HCV) infection, alcohol, tobacco smoking, obesity,

contaminants/toxins, and diabetes are frequently reported to

induce tumorigenesis of HCC (5). Generally, HBV/HCV-

induced HCC originates from chronic liver damage, and

HBV/HCV-encoded proteins could alter host transcriptome,

progressively stimulating HCC cell proliferation, angiogenesis,

invasion, metastasis, and reprogramming cell metabolism (6).

Noticeably, alcohol consumption or abuse can greatly increase

the risk for HCC, irrespective of whether concomitant HBV/

HCV infection or not (7). Moreover, alcohol-related HCC

patients have a worse prognosis when compared with those

with non-alcoholic HCC (8). Molecular characterizations

of alcohol-related HCC subtype have been intensely looked

into, and some alcohol-related molecular features may serve as

potential diagnostic/prognostic biomarkers or molecular targets,

especially alcohol-associated metabolites (9) and alcohol

metabolism-associated genes/enzymes (10) highly correlated

with HCC morbidity and/or mortality. Undoubtedly, cigarette

smoking is associated with a high risk of HCC; as acknowledged,

smoke/nicotine exposure can aggravate HCC inflammation,
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suppress the anti-tumor effect of T cells, and stimulate cancer

stem cell epithelial-to-mesenchymal transition, and smoke and

other risk factors positively interact in the development and

progression of HCC (11). A population-based study further

displays that the OS time of HCC patients varies as a

consequence of distinct etiological risk factors because these

etiological risk factors could determine a unique molecular

profile (12). Due to the epidemic of overweight/obesity over

past decades, excess body weight has emerged as a closely

relevant risk factor for HCC, and body mass index (BMI) is

found to be positively correlated with the mortality rate of liver

cancer in both men and women (13). In addition to

hyperlipidemia/hypertension, metabolic syndrome, and

diabetes, overweight/obesity or higher BMI becomes one of the

major risk factors for non-alcoholic fatty liver disease (NAFLD),

which is highly correlated with the development of HCC,

particularly within those having NAFLD-related cirrhosis and

fibrosis (14). Moreover, approximately 20%–30% of NAFLD-

related HCC cases develop into HCC in the absence of cirrhosis

and fibrosis, and NAFLD is a leading cause of HCC in the

absence of cirrhosis and fibrosis (15). Overall, increasing pieces

of evidence have disclosed the relationship between overweight/

obesity (or high BMI) and tumor progression; however,

comprehensive molecular characterizations related to

overweight/obesity (or high BMI) in HCC remain to be

fully elucidated.

The present study is the first time to reveal that overweight/

obesity-related transcriptomic features could distinguish HCC

patients with distinct prognoses, biological metabolism, and the

immune microenvironment. Based on this overweight/obesity-

related transcriptome, a novel overweight/obesity-associated

gene (OAG) signature together with a scoring system was

subsequently constructed. From a new perspective, the

underlying signaling pathways, genomic alterations, and tumor

microenvironment were deeply investigated in HCC.

Intriguingly, the OAG score was also found to be closely

correlated with sorafenib and transcatheter arterial

chemoembolization (TACE) treatment responses; furthermore,

the OAG score was also of guiding significance to evaluate

chemotherapy response.
2 Materials and methods

2.1 Data collection and preprocessing

In the present study, clinical information, mRNA expression

data, and genomic data of 360 HCC patient samples (cases

without complete information were excluded) were retrieved

from The Cancer Genome Atlas (TCGA) via the cBioPortal

(https://www.cbioportal.org/), regarded as the training cohort.
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As mentioned earlier, alcohol consumption might aggravate the

development and progression of HCC; thus, patients with a risk

history of alcohol consumption were excluded. The remaining

199 patient samples were collected to explore the relationship

between overweight/obesity and the OS of HCC patients and

identify the differentially expressed genes (DEGs) between

patients presenting with overweight/obesity or not. In

addition, a total of 232 HCC patient samples from the

International Cancer Genome Consortium (ICGC; https://dcc.

icgc.org/projects/LIRI-JP, namely, ICGC-LIHC-JP) and 72

patient samples selected from the GSE54236 dataset in the

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.

gov/geo/), respectively, were downloaded as two independent

validation cohorts.
2.2 Overweight/obesity-associated
transcriptome and unsupervised
hierarchical clustering analysis

Of the selected 199 HCC patients in the training cohort, 91

and 108 cases had BMI over 25 and below 25, respectively. The

mRNA expression data, with the format of fragments per

kilobase million (FPKM), were initially normalized by log2
(FPKM + 0.001) and then utilized for the DEG analysis

(p < 0.05, |log1.5 (fold change)| > 1) between patient samples

with BMI over 25 and below 25, by using the package “DeSeq2”.

The result of the DEG analysis was exhibited via the volcano plot

by using the package “ggplot2”. Based on the overweight/

obesity-derived DEGs, which were also defined as the

integrated overweight/obesity-associated transcriptome,

unsupervised hierarchical clustering separated this part of

HCC patients into different clusters by using the package

“Fastcluster”. The Kaplan–Meier curve analysis was conducted

to compare the OS of different clusters by using the package

“survival”. Similarly, in the whole TCGA-HCC cohort,

unsupervised hierarchical clustering by a foundation of

overweight/obesity-associated transcriptome also distinguished

two clusters (clusters 1 and 2), and the principal component

analysis (PCA) was conducted to display the discrepancy of

these two clusters by using the package “ggbiplot”.
2.3 Functional enrichment analysis

Based on the DEGs between different clusters, Gene Ontology

(GO; http://geneontology.org/) and Kyoto Encyclopedia of Genes

and Genomes (KEGG; https://www.kegg.jp/) pathway enrichment

analyses (16, 17) were performed by using the package

“clusterProfiler” to exhibit the biological activities underlying

overweight/obesity-associated transcriptome.
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2.4 Tumor microenvironment evaluation

Additionally, tumor purity, ESTIMATE, and TIDE scores

were employed to evaluate the tumor microenvironment (TME)

of these two clusters (18, 19). Based on the bulk mRNA

expression data, a total of 122 immune-related modulators,

including chemokines, MHC molecules, receptors, and other

immunomodulators, were retrieved to estimate the

immunological characteristics (20). The expression of 122

immunomodulators was exhibited by using the package

“pheatmap”. The cancer immunity cycle, containing seven

steps and reflecting the anti-cancer immune response, was

used to determine the activities of anti-cancer immunity (21).

The single-sample gene set enrichment analysis (ssGSEA) was

conducted to characterize the activity of each step (22). Finally,

multiple kinds of immune checkpoint gene expression profiles

were investigated (23).
2.5 Machine learning for the
construction of a novel OAG signature

Initially, mRNA expression data of HCC tumor and normal

samples were downloaded from the data portal of UCSC xena

(https://xenabrowser.net/datapages/) to identify HCC-

associated DEGs. Next, the overlapping gene set between

overweight/obesity-associated DEGs and HCC-associated

DEGs was collected, which was visualized in a Venn plot by

using the package “eulerr”. The overlapping genes were then

enrolled into the univariate Cox regression analysis by using the

package “rms” to screen out the OS-related genes. Subsequently,

the random forest (RF) algorithm was used to select the

representative genes (normalized variable importance measure

index > 0.40) by using the package “randomSurvivalForest”.

Based on the expression of representative genes, the least

absolute shrinkage and selection operator (LASSO) Cox

regression analysis was conducted to construct a novel OAG

signature by using the package “glmnet”; correspondingly, the

OAG score of each sample was calculated by the following

formula:

OAGs   score   =  o
n

x=1
OAGx*Coefx

where n, OAGx, and Coefx represent the number of OAGs

included in the signature, OAG expression level, and

coefficient value, respectively.

In TCGA-HCC cohort, patients were assigned to the high

and low OAG score groups according to the median OAG score

as the cutoff value. The Kaplan–Meier curve analysis was

conducted to compare the OS between these two groups. The

receiver operating characteristic (ROC) curve analysis,

quantified by the value of area under the ROC curve (AUC),
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was utilized to evaluate the performance of the OAG score in

prognosis prediction by using the package “rms”. In addition,

the Kaplan–Meier curve and ROC curve analysis were also

conducted in the ICGC-LIHC-JP cohort and GSE54236

dataset to validate the robustness of the OAG score in

prognosis prediction. Furthermore, we compared the

predictive accuracy of the OAG signature with other risk

signatures, including immune- (24), mitochondrial- (25),

energy metabolism- (26), ferroptosis- (27), cuprotosis- (28),

and TGF-b-related (29) signatures. The univariate and

multivariate Cox regression analyses were conducted to

recognize whether the OAG score was an independent

prognostic factor.
2.6 Single OAG analysis and
immunohistochemistry staining

Regarding the role of single OAG expression in HCC, the

heatmap plot demonstrated the detailed information of each

signature-related OAG expression and corresponding clinical

features in samples from TCGA-HCC cohort. Moreover,

Pearson’s correlation analysis was conducted to investigate the

correlation of each OAG expression. Underlying a single OAG

expression, the Kaplan–Meier curve analysis was conducted to

exhibit the prognostic significance of OAGs; meanwhile, the

ROC curve analysis was also performed for each OAG.

Eventually, OAG protein expression was analyzed by

immunohistochemistry (IHC) staining using the available

HCC tumor macro-array staining from the Human Protein

Atlas (https://www.proteinatlas.org/). Collectively, 10–12 HCC

samples were analyzed for the expression of DPYSL4, MMP3,

HTRA3, PDX1, C21orf29, ATHL1, PDE6A, DCAF8L1, SLC6A3,

and RIBC2 proteins, while there was no information of IHC

staining for the expression of GABRR1, GAGE2D, KCNH2,

PRTG, SHC4, and SMIM32 proteins. Also, there was no IHC

staining information on C1orf133, which was a kind of non-

coding RNA (ncRNA).
2.7 Molecular characterizations
associated with OAG score

Based on the DEGs between the high and low OAG score

groups, GO and KEGG pathway enrichment analyses were

initially conducted to identify the critical biological activities/

pathways associated with the OAG score. First, the gene set

enrichment analysis (GSEA) was performed by using the

package “GSVA”, and Hallmark gene sets were obtained for

GSEA (https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?

collection=H). Second, genomic alteration data in TCGA-HCC

cohort was employed to visualize the discrepancy between the
frontiersin.org
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high and low OAG score groups by using the package

“maftools”; meanwhile, the CoMEt algorithm was utilized to

investigate the co-occurrence and mutually exclusive alterations

(30). The specific alteration sites of the prevalent genes were

exhibited via the lollipop plot. Same as described before, TME

characteristics associated with OAGs were lastly investigated by

the following indexes: tumor purity, ESTIMATE, TIDE, and the

infiltration of 22 immune cells. Immunological characteristics of

immunomodulators, cancer immunity cycle, and immune

checkpoint gene expression associated with the OAG score

were also compared between the high and low OAG

score groups.
2.8 Estimate of treatment responses by
sorafenib, TACE, and chemical drugs

As known, sorafenib, TACE, and chemotherapeutic

treatments are usually selected for HCC patients. GSE109211

dataset (31), composed of 21 responders and 46 non-

responders (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE109211) when receiving sorafenib treatment, was

downloaded to explore whether the OAG score or OAG

expression was correlated with sorafenib treatment response

in HCC. Subsequently, the GSE104580 dataset (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104580) of 147

HCC patients treated with TACE treatment, including 81
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responders and 66 non-responders, respectively, was

retrieved to investigate the correlation between the OAG

score or OAG expression and response to TACE treatment.

In addition, the Genomics of Drug Sensitivity in Cancer

(GDSC; https://www.cancerrxgene.org/) database of

pharmacogenomic data was downloaded to calculate the half-

maximal inhibitory concentration (IC50 value), which was

used for chemotherapeutic response prediction. In the

present study, cisplatin, 5-fluorouracil (5-FU), paclitaxel,

vinblastine, and other commonly used chemical drugs

were evaluated.
2.9 Statistical analysis

All statistical analyses were conducted in the present study

via the R software (version 4.1.1). Fisher’s exact test and

Student’s t-test were used for comparisons of categorical

variables and continuous variables. Moreover, the Wilcoxon

test and Kruskal–Wallis test were applied for comparisons

between two and multiple comparisons. The Kaplan–Meier

curve analysis was conducted using the log-rank test. The

univariate and multivariate Cox regression analyses were used

to disclose the factors associated with survival. The correlation

between variables was calculated by using Pearson’s coefficient.

The significant difference was considered with at least p < 0.05.

The overall study design is shown in Figure 1.
FIGURE 1

A flowchart of study design in the present study.
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3 Results

3.1 Identification of overweight/obesity-
associated transcriptome among patients
not using alcohol

As previously described, alcohol consumption significantly

increased the risk of HCC; correspondingly, HCC-related

symptoms aggravated gradually. In line with previous findings,

we did not observe any significant difference in OS between

HCC patients with distinct BMI in the whole TCGA-HCC

cohort (Table 1; Figure S1A). As those patients with alcohol

consumption were excluded (Table S1), intriguingly, remaining

HCC patients with overweight/obesity (BMI ≥ 25) tended to

have a worse OS (median OS, 51.25 months vs. unreached,

p = 0.34, Figure S1B). Between HCC patients with BMI ≥25 and

<25, a total of 882 DEGs were identified (p < 0.05, |log1.5 (fold

change)| > 1, Figure S1C), and these DEGs were mainly enriched

in the biological activities of metabolic processes, oxygen

transport, stem cell proliferation, and WNT protein binding

(Figure S1D). Based on the expression of 882 DEGs,

unsupervised hierarchical clustering analysis (Figure S1E)

identified two subgroups with distinct OS (median OS, 51.25

months vs. unreached, p = 0.0019, Figure S1F) among HCC

patients without alcohol consumption.
3.2 Overweight/obesity-associated
transcriptome and functional annotation

When the whole TCGA-HCC cohort was considered as a

tra ining cohort , the overweight/obes i ty-associated

transcriptome also differentiated two clusters (Figure 2A) with

significantly different OS (median OS: cluster 1 vs. cluster 2,

46.75 months vs. 81.67 months, p = 0.032, Figures 2B, C), and

there was a higher proportion of patients with overweight/

obesity in cluster 1 (p = 0.262, Figure 2D). Functional

enrichment revealed that overweight/obesity-associated

transcriptome was highly correlated with fatty acid

metabolism, cytochrome P450-mediated metabolism, oxidative

signaling pathways, and multiple cancer-related metabolisms

(Figure S2). Furthermore, no significant difference in tumor

mutational burden (TMB) was observed between the two

clusters (Figure 2E), but it was noticeable that cluster 1 had

higher ESTIMATE and TIDE scores but lower tumor purity

(Figures 2F–H). In addition, a large number of chemokines,

receptors, MHC molecules, and immunomodulators (Figure 2I)

as well as the effector genes of CD8+ T cells, dendritic cells,

macrophages, NK cells, and Th1 cells were upregulated in

cluster 1 (Figure 2J). Correspondingly, activities of Steps 1

(release of cancer cell antigens) and 4 (trafficking of immune

cells tumors) were upregulated in cluster 1; however, activities of
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Steps 2 (cancer antigen presentation), 6 (recognition of cancer

cells by T cells), and 7 (killing of cancer cells) were

downregulated (Figure 2K), while the expression of most

immune checkpoint genes, including PD-L1, PD-1, CTLA-4,

LAG-3, TIGIT, TIM-3, CD80, CD200, and CD276, was

markedly upregulated, but only the expression of PVR was

downregulated in cluster 1 (Figure 2L).
3.3 A novel OAG score as correlate of
prognosis of HCC patients

Given overweight /obes i ty -assoc ia ted metabo l i c

transcriptome, RF algorithm and LASSO Cox regression

analysis were conducted to construct an OAG signature.

Initially, it was discovered that 543 of 882 OAGs were

differentially expressed between normal and tumor samples

(Figure 3A; Table S2), among which the expression of 262

OAGs was significantly correlated with OS of HCC patients in

TCGA-HCC cohort (Table S3). Next, the RF algorithm screened

out the most representative 26 OAGs (Figures 3B, C). After the

over-fitting by the LASSO Cox regression analysis was

minimized, a novel signature consisting of 17 OAGs together

with an OAG signature scoring system was constructed

(Figure 3D; Table 2). According to the median cutoff value,

the OAG score separated TCGA-HCC cohort population into

two distant groups, termed the high and low OAG score groups.

Comparatively, the high OAG score group had quite worse OS

(median OS, 24.87 vs. 83.51 months, p < 0.0001, Figure 3E).

Noticeably, the AUC values of the OAG score in predicting 1-, 2-

, 3-, and 4-year OS were 0.81, 0.80, 0.83, and 0.85, respectively

(Figure 3F), suggesting that a novel OAG signature performed

well in prognosis prediction. Subsequently, the OAG signature

was further verified in two independent cohorts, ICGC-LIHC-JP

cohort (Table S4) and GSE54236 dataset (Table S5), and indeed,

it was observed that the OAG score was negatively correlated

with OS (median OS in ICGC-LIHC-JP cohort: unreached vs.

unreached, p = 0.0004; GSE54236 dataset, 16.98 vs. 28.01

months, p < 0.0001, Figures 3G–J). Within these two

independent validation cohorts, almost all AUC values of the

OAG score in predicting OS were relatively high, confirming

that the OAG signature is reliable and robust in prognosis

prediction. When being compared with already reported

prognostic signatures, such as immune, mitochondria, energy

metabolism, ferroptosis, cuprotosis, and TGF-b related

signatures, the OAG signature outperformed in prognosis

prediction (Figure S3). For HCC patients without alcohol

consumption, the OAG signature seemed to perform better in

prognosis prediction (Figure S4), and the high OAG score group

had a higher proportion of patients with overweight/obesity

(51.01% vs. 41.10%, p = 0.215) when compared with the low

OAG score group.
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3.4 Prognostic significance and
contribution of OAGs

Overall, there were 11 and 6 OAGs serving as OS-related risk

factors and protective factors, respectively (Figure 4A). In
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TCGA-HCC cohort, the expression of GAGE2D, PDE6A,

GABRR1, DCAF8L1, DPYSL4, SLC6A3, MMP3, RIBC2,

KCNH2, HTRA3, and PDX1 remarkably increased in the high

OAG score group, and the expression of each OAG was

positively associated with the OAG score, whereas the
TABLE 1 Patient characteristics in TCGA-HCC cohort.

Features Number

Total 360

Age Median (range) 61 [16, 90]

Gender Male 242

Female 118

Alcohol use Used 161

Other 199

Body mass index <25 173

≥25 154

Vascular invasion Macro 16

Micro 89

None 202

Histological grading G1 54

G2 171

G3 118

G4 12

T stage T1 177

T2 90

T3 77

T4 13

NA 3

N stage N0 247

N1 3

M stage M0 260

M1 3

Clinical stage I 169

II 84

III 82

IV 4

HBV/HCV status HBV positive 94

HCV positive 211

HBV and HCV positive 7

HBV and HCV negative 48

HBV/HCV, hepatitis B/C virus.
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FIGURE 2

The overweight-associated transcriptome highly correlated with prognosis, immune characteristics, and anti-cancer immunity in TCGA-HCC
cohort. (A) Unsupervised hierarchical clustering by foundation of overweight-associated transcriptome in TCGA-HCC cohort. (B) Principal
component analysis for two clusters. (C) Kaplan–Meier curve analysis for two clusters. (D) Proportional analysis of patients with overweight/obesity
between these two clusters. (E–H) Comparison of TMB level (E), ESTIMATE score (F), TIDE score (G), and tumor purity (H) between clusters 1 and 2.
(I) Differences in the expression of immunomodulators (chemokines, receptors, MHC molecules, and other immunomodulators) between clusters 1
and 2. (J) Evaluation of effector gene expression of tumor-infiltrating immune cells. (K) Comparison of cancer immunity cycles between clusters 1
and 2. (L) Comparison of immune inhibitory checkpoint expression between clusters 1 and 2. TMB, tumor mutational burden.
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expression of ATHL1, PRTG, SHC4, C21orf29, SMIM32, and

C1orf133 (ncRNA) elevated in the low OAG score group, and

their expression was negatively associated with the OAG score

(Figures 4A, B). As expected, the overexpression of 11 risk-

related OAGs indicated poorer OS, but the overexpression of six

protective-related OAGs was correlated with prolonged OS in

HCC (p < 0.05, Figure 4C). It was noteworthy that the AUC

values of ATHL1, GAGE2D, and RIBC in predicting 1-, 2-, 3-,

and 4-year OS were all beyond 0.60, although the predictive

ability of single OAG was inferior to that of the OAG signature

(Figure S5). In addition, it was observed that 11/11, 11/11, 4/12,

2/12, 1/11, and 12/12 HCC samples expressed DPYSL4, MMP3,

HTRA3, PDX1, C21orf29, and ATHL1 proteins in the

cytoplasm/membrane, respectively (Figure 4D), but the IHC

staining of PDE6A (0/11), DCAF8L1 (0/11), SLC6A3 (0/11), and

RIBC2 (0/10) was negative. In contrast, in the Human Protein

Atlas (HPA) database, there was no information on the IHC

staining of GABRR1, GAGE2D, KCNH2, PRTG, SHC4, and

SMIM32. Moreover, C1orf133 belonged to ncRNA.
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3.5 Association between independent
OAG score and clinical features

A combination of univariate and multivariate Cox regression

analyses revealed that the OAG score was a robust prognostic

factor (HR = 5.20, 95% CI, 2.55–10.60, p < 0.0001), which was

independent of clinical features in TCGA-HCC cohort (Table 3).

More importantly, the OAG score was a better predictor of OS

for HCC patients than the baseline clinical characteristics

(Figure S6). Regarding the relationship between an

independent OAG score and clinical features, the high OAG

score group had more HCC patients with higher alpha-

fetoprotein (AFP) levels (p < 0.01), T stages (p < 0.01), clinical

stages (p < 0.05), grades (p < 0.05), and macro- or micro-

vascular invasions but a lower proportion of HBV-infected HCC

patients (p < 0.001, Figure S7). Correspondingly, the OAG score

was positively correlated with AFP level (p < 0.001), T stage (p <

0.001), clinical stage (p < 0.001), high grade (p < 0.05), and

vascular invasion, and HBV-infected HCC patients had the
B C D
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FIGURE 3

Machine learning for construction of overweight-associated gene (OAG) signature. (A) Overlapping of overweight-associated genes and
differentially expressed genes between cancer and normal samples. (B) The random forest algorithm for identification of key genes correlated
with overall survival (OS) in HCC. (C) The evaluation of the importance of selected OAGs. (D) The least absolute shrinkage and selection
operator (LASSO) Cox regression analysis for determining an OAG signature and corresponding scoring system. (E) Kaplan–Meier curve analysis
between high and low OAG score in TCGA-HCC cohort. (F) The receiver operating characteristic (ROC) curve analysis of OAG signature in
prognosis prediction in TCGA-HCC cohort. (G) Kaplan–Meier curve analysis between high and low OAG score in ICGC-LIHC-JP cohort. (H) The
ROC curve analysis of OAG signature in prognosis prediction in ICGC-LIHC-JP cohort. (I) Kaplan–Meier curve analysis between high and low
OAG scores in GSE54236 dataset. (J) The ROC curve analysis of OAG signature in prognosis prediction in GSE54236 dataset. HCC,
hepatocellular carcinoma.
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lowest OAG score (p < 0.001, Figure S8). Owing to a limited

number of patients with lymph node metastasis or distant

metastasis, there was no discrepancy in the OAG score

between N0 and N1+ stage groups or M0 and M1 stage

groups. As for distinct HCC subtypes that were separated by

these baseline clinical features, the OAG score still exhibited

excellent performance in prognosis prediction, and the high

OAG score group always had an inferior OS (p < 0.05, Figure

S9). Moreover, stratification analysis demonstrated that the

OAG score could potentially predict prognosis for early-stage

HCC patients.
3.6 OAG score-associated tumors with
different metabolic characteristics

A total of 2,502 DEGs (p < 0.05, |log1.5 (fold change)| > 1,

Table S6) were identified between the high and low OAG score

groups. These genes were subsequently enrolled into functional

enrichment analysis to evaluate the differential biological

activities and signaling pathways between the high and low

OAG score groups. GO and KEGG pathway enrichment

analyses showed that fatty acid metabolism, cytochrome P450-

mediated metabolism, amino acid metabolism, retinol

metabolism, and xenobiotic metabolism were majorly involved

(Figures 5A, B). Noticeably, GO and KEGG pathway enrichment
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analyses underlying a single OAG resulted in similar findings

(Table S7). The GSEA of Hallmark pathways revealed that

oxidative phosphorylation and cell cycle/DNA replication-

related signaling pathways, including G2M checkpoint, E2F

targets, and mitotic spindle, were significantly enriched in the

high OAG score group (Figure 5C), whereas bile acid and

xenobiotic metabolism were suppressed in the high OAG

score group.
3.7 OAG score associated with distinct
somatic genome

Likewise, there was no significant association between the

OAG score and TMB level (Figure 6A). Based on the whole-

exome sequencing (WES) data from TCGA-HCC cohort, it was

identified that 52 genes and 52 genes were altered in more than

5% of patient samples in the high and low OAG score groups,

respectively (Table S8). Subsequently, oncoprint plots illustrated

the top 20 most prevalently altered genes in the corresponding

groups (Figures 6B, C). Collectively, most genomic alterations

were missense; meanwhile, TP53, TTN, and CTNNB1 occupied

the top three positions in both groups. Based on the top 20 most

frequently altered genes in the high and low OAG score groups,

it was found that co-occurrence landscapes were distinct

between the high and low OAG score groups (Figures 6D, E),
TABLE 2 A total of 17 genes included in overweight-associated genes signature.

Gene name HR 95% CI Coefficient

ATHL1 0.5179 0.3643−0.7362 −0.1429

SMIM32 0.4909 0.3438−0.7009 −0.1096

PRTG 0.5421 0.3770−0.7794 −0.0026

SHC4 0.5573 0.3888−0.7988 −0.0411

C21orf29 0.5339 0.3666−0.7775 −0.0306

C1orf133 0.4811 0.3293−0.7026 −0.1294

MMP3 2.3626 1.6101−3.4668 0.0305

GABRR1 2.1684 1.5228−3.0877 0.1039

GAGE2D 2.7373 1.8823−3.9806 0.1021

DPYSL4 2.2922 1.3895−3.7813 0.0307

SLC6A3 1.7895 1.2593−2.5429 0.0086

RIBC2 1.6269 1.1503−2.3011 0.0086

DCAF8L1 1.6812 1.1560−2.4449 0.0157

PDE6A 1.5970 1.0556−2.4161 0.1873

KCNH2 1.5493 1.0335−2.3225 0.0740

HTRA3 1.6280 1.1363−2.3324 0.0641

PDX1 1.4462 1.005−2.0814 0.0439
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and interestingly, significantly co-occurrence pairs were

enriched in both groups except two special pairs (CTNNB1-

AXIN1 and CTNNB1-TP53) in the low OAG score group,

demonstrating mutually exclusive alterations (Figure 6E). By

further statistical analysis, it was highlighted that TP53 (37.71%

vs. 22.67%) and DNAH10 (8.00% vs. 0.58%) were significantly

more prevalent in the high OAG score group; but comparatively,
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none of the genes was significantly more altered in the low OAG

score group instead (Figure 6F). Furthermore, TP53 or DNAH10

alterations were positively correlated with the OAG score

(Figures 6G, H), and correspondingly, the TP53 or DNAH10

altered group had inferior OS indeed (Figures 6I, J). The in-

depth investigation of specific altered locations did not recognize

any difference between these two groups (Figures 6K, L).
A B
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FIGURE 4

Prognostic significance and contribution of overweight-associated genes (OAGs) involved in the signature. (A) The heatmap for OAG expression
profiling. (B) The correlation between OAG expression and OAG score. (C) Kaplan–Meier curve analysis based on the expression of single OAG.
(D) The immunohistochemistry staining of OAG protein expression in TCGA-HCC samples.
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3.8 TME characteristics associated with
OAG score

Subsequently, TME was further evaluated between the high

and low OAG score groups. Although there was no statistically

significant difference in ESTIMATE score between these two

groups, a higher OAG score indicated an increased TIDE

(p < 0.05) score but lower tumor purity (p < 0.01, Figures 7A–

C). Moreover, it was identified that indeed the expression of

chemokines (CCL7, CCL13, CCL20, CCL26, CXCL1, CXCL3,

CXCL5, and CXCL6), paired receptors (CCR1, CCR3, CCR8,

CCR10, CXCR2, and CXCR4), and a large number of MHC

molecules (HLA-DQA, HLA-DOB, HLA-DQB1, HLA-DPA1,
Frontiers in Endocrinology 12
HLA-DMB, HLA-DRA, HLA-DMA, HLA-DOA, TAP1, and

TAP2) significantly elevated in the high OAG score group

(Figure 7D). The expression of CCL14, CCL15, CCL16, IL6R,

and ICOSLG was upregulated in the low OAG score group.

Furthermore, the OAG score was also positively correlated with

a majority of other immunomodulators. Notably, it was further

found that there was almost no significant difference in the

expression of effector genes of CD8+ T cells, NK cells, and Th1

cells, although several dendritic cell- and macrophage-associated

effector genes, including SLAMF8, LILRB4, IL21R, CLEC5A,

C1QA, CSF1R, CYBB, and LILRA2, were significantly

upregulated in the high OAG score groups (Figure 7E).

Correspondingly, cancer immunity cycle activity analysis
TABLE 3 Univariate and multivariate Cox regression analyses for OAG score and clinical features in TCGA-HCC cohort.

Variable Univariate Multivariate

HR 95% CI p-Value HR 95% CI p-Value

OAG score

High/low 4.60 3.09–6.83 <0.01** 4.26 2.32–7.81 <0.01**

Age

≥61/<61 1.28 0.90–1.80 0.17 2.13 1.18–3.85 <0.05*

Gender

Male/female 0.81 0.57–1.15 0.23 1.59 0.83–3.03 0.16

Body mass index

≥ 25/<25 0.80 0.56–1.17 0.25 0.88 0.50–1.53 0.64

Alcohol use

Yes/no 1.08 0.75–1.57 0.68 0.53 0.25–1.14 0.10

Vascular invasion

Yes/no 1.34 0.89–2.03 0.16 1.12 0.63–1.99 0.70

Grade

High/low 1.11 0.78–1.60 0.56 1.73 0.98–3.06 0.06

T stage

High/low 2.47 1.73–3.52 <0.01** 1.05 0.12–8.83 0.97

N stage

N1/N0 1.19 0.17–8.60 0.86 1.17 0.39–5.18 0.32

M stage

M1/M0 4.06 1.27–12.9 0.02* 2.63 0.71–9.69 0.15

Clinical stage

High/low 2.38 1.64–3.45 <0.01** 1.80 0.22–14.6 0.58

Virus status

Positive/negative 0.52 0.35–0.76 <0.01** 0.67 0.35–1.31 0.25

OAG, overweight/obesity-associated gene.
*: p < 0.05; **: p < 0.01.
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revealed that the release of cancer cell antigens (Step 1) and

trafficking of immune infiltrating cells to tumor cells (Step 4:

basophil recruitment, eosinophil recruitment, myeloid-derived

suppressor cell (MDSC) recruitment, and neutrophil

recruitment) were upregulated in the high OAG score group.

In contrast, the activity of killing cancer cells (Step 7) was

downregulated (Figure 7F). Lastly, it was found that the OAG

score was positively correlated with a majority of the expression

of immune checkpoint genes, especially TIM3, CD80, LAIR1,

and VTCN1 (Figure 7G). Moreover, there existed a close

relationship in the expression between PD-L1, PD-1, CTLA4,

LAG3, TIM3, TIGIT, IDO1, CD80, LAIR1, and CD200R1.
3.9 Underlying response of sorafenib,
TACE, and chemotherapeutic treatments

Sorafenib remains the standard of care in the first-line

treatments for HCC patients. In the present study, the

relationship between the sorafenib responder and the OAG

score was then investigated. Noticeably, it was discovered that

responders to sorafenib had higher OAG scores compared with

those without response (p = 0.002, Figure 8A). Regarding the

role of each involved OAG, it was noticed that the lower

expression of ATHL1 but higher expression of GABRR1,

KCNH2 , RIBC2 , PDE6A , and PDX1 was significantly

correlated with the response of sorafenib treatment in HCC
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(p < 0.05, Figure 8B). Conversely, response assessment for

patients treated with TACE treatment showed that responders

had markedly lower OAG scores than non-responders (p <

0.001, Figure 8C). At the same time, the expression of ATHL1

and C1orf133 was positively correlated with the response of

TACE treatment in HCC (p < 0.05, Figure 8D). In addition, the

GDSC database analysis further demonstrated that the predicted

IC50 values of paclitaxel, vinblastine, vorinostat, vinorelbine,

methotrexate, 5-FU, belinostat, and tivozanib were significantly

lower in the high OAG score group (p < 0.05, Figure 8E),

whereas the predicted IC50 values of erlotinib and phenformin

were significantly lower in the low OAG score group (p < 0.05,

Figure 8E). Overall, the OAG score was of guiding significance in

treatment selection.
4 Discussions

HCC is a type of malignant cancer with extraordinary

heterogeneity, usually accompanied by concomitant multiple

molecu lar heterogene i t i e s in genomic ins tab i l i ty ,

transcriptomic disturbance, and signaling maladjustment. In

most cases, HBV/HCV infections or alcohol-induced chronic

hepatitis and fibrosis are thought as the major causes

contributing to HCC. Nevertheless, the pandemic of

overweight/obesity has gradually changed such a circumstance,

and a growing body of evidence has demonstrated that
B

C
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FIGURE 5

Biological enrichment analysis between high and low OAG score groups. (A) Gene ontology enrichment analysis. (B) Kyoto Encyclopedia of
Genes and Genomes enrichment analysis. (C) Gene set enrichment analysis based on the Hallmark pathways. OAG, overweight/obesity-
associated gene.
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overweight and obesity are highly correlated with increased risk

and earlier recurrence in HCC (32, 33). Nevertheless, precise

molecular mechanisms through which overweight/obesity

promotes the development and progression and potentially

affects the therapy response of HCC are scarcely known. As a

multiplicative interaction between overweight/obesity and

alcohol despite low and moderate alcohol intakes, over other
Frontiers in Endocrinology 14
risk factors, increases the risk and death due to HCC (34, 35), in

the present study, a comprehensive overweight/obesity-

associated transcriptome was identified after excluding HCC

patients with the alcohol consumption history. Notably,

overweight/obesity-associated transcriptome was found to be

mainly involved in the metabolic processes, and this overweight/

obesity-associated metabolic transcriptome was closely
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FIGURE 6

OAG score associated with distinct somatic genome. (A) The evaluation of TME level between high and low OAG score groups. (B) Oncoprint
plot for genomic alterations of patients from high OAG score group. (C) Oncoprint plot for genomic alterations of patients from low OAG score
group. (D) The heatmap of mutually co-occurrence and exclusive alterations of the top 20 altered genes in high OAG score group. (E) The
heatmap of mutually co-occurrence and exclusive alterations of the top 20 altered genes in low OAG score group. (F) The somatic alteration
enrichment analysis for high and low OAG score groups. (G) DNAH10 somatic alteration associated with OAG score. (H) TP53 somatic alteration
associated with OAG score. (I) Kaplan–Meier curve analysis between patients with DNAH10 somatic alterations or not. (J) Kaplan–Meier curve
analysis between patients with TP53 somatic alterations or not. (K) The profiling of alteration sites of DNAH10 somatic alterations between high
and low OAG score groups. (L) The profiling of alteration sites of TP53 somatic alterations between high and low OAG score groups. OAG,
overweight/obesity-associated gene; TME, tumor microenvironment.
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FIGURE 7

Tumor microenvironment (TME) associated with OAG score. (A) The stromal, immune, and ESTIMATE scores between high and low OAG score
groups. (B) The dysfunction, exclusion, and TIDE score between high and low OAG score groups. (C) The evaluation of tumor purity.
(D) Comparison of immunomodulator-related gene expression between high and low OAG score groups. (E) Transcriptomic profiling of effector
genes of tumor-infiltrating immune cells in high and low OAG score groups. (F) Evaluation and comparison of anti-cancer immunity by cancer
immunity cycle between high and low OAG score groups. (G) Correlation between OAG score and immune inhibitory checkpoint gene
expression. OAG, overweight/obesity-associated gene.
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correlated with not only clinical outcome but also the immune

microenvironment and immunomodulation in HCC. By the

foundation of this, a more robust OAG signature was

constructed, whereas clinical association analysis showed that

the OAG signature was not correlated with BMI in the whole

TCGA-HCC cohort. Regarding non-alcoholic HCC patients, a

higher OAG score was associated with a higher proportion of

individuals with overweight/obesity (51.01% vs. 41.10%), but

there was no statistically significant difference either. In most

cases, risk factors of viral infection, alcohol, smoking,

overweight/obesity, and others did not occur alone in HCC,

and usually, they were synergistic risk factors (36, 37). Therefore,

multiplicative interaction between risk factors mainly caused

clinical features of gender, age, BMI, and others, which were not

independent prognostic factors; meantime, it was identified that

there was nearly no positive correlation between the OAG

signature and BMI. In addition, heterogeneity between
Frontiers in Endocrinology 16
different individuals also causes the deviation of BMI;

unfortunately, there is a lack of systemic classification methods

defining cases of overweight/obesity (38). In the present study, it

was identified that the OAG signature was the only independent

prognostic factor in three retrospective cohorts, and the OAG

signature performed quite well in prognosis prediction for HCC

patients, even for early-stage individuals. Moreover, the OAG

score was highly correlated with molecular characteristics and

the immune microenvironment and had the potential capacity

of evaluating the response of sorafenib, TACE, or

chemotherapy treatment.

Regarding the novel established the OAG signature, which

contained a total of 17 genes and was independent of clinical

features in HCC, within the OAG signature, 6 and 11 of these 17

OAGs, respectively, served as protective factors and risk factors

at the transcriptomic level. Furthermore, enrichment analysis

revealed that identified OAGs were majorly involved in the
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FIGURE 8

Underlying response of sorafenib, transcatheter arterial chemoembolization (TACE), and potential chemotherapeutic treatment regimens.
(A) OAG score associated with sorafenib treatment response in GSE109211 dataset. (B) A part of OAG (ATHL1, GABRR1, KCNH2, RIBC2, PDE6A,
and PDX1) expression also correlated with sorafenib treatment response in GSE109211 dataset. (C) Correlation between OAG score and TACE
treatment response in GSE104580 dataset. (D) ATHL1 and C1orf133 expression correlated with TACE treatment response in GSE104580 dataset.
(E) The GDSC database analysis revealed that OAG score could distinguish patients potentially sensitive to different chemotherapeutic regimens.
OAG, overweight/obesity-associated gene; GDSC, Genomics of Drug Sensitivity in Cancer.
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metabolic processes. In contrast, it should be emphasized that

the expression of only DPYSL4, MMP3, HTRA3, PDX1,

C21orf29, and ATHL1 proteins was ever observed in the

cytoplasm/membrane by IHC staining analysis among HCC

patients, of which the expression of DPYSL4, MMP3, and

ATHL1 proteins was clearly detected in all involved samples.

As reported, DPYSL4 was associated with glycolysis (39) and

hypoxia (40) in HCC, and meanwhile, its overexpression was

proved to be correlated with the progression and metastasis of

HCC.MMP3, encoding a kind of protein as a member of matrix

metalloproteinase, was well known to be involved in tumor

progression and invasion (41), while specific peptide inhibitors

targeting MMP3 could suppress HCC cell migration (42). In

contrast, the function or role of HTRA3, PDX1, C21orf29, or

ATHL1 in HCC was still unknown, and it was the first time that

this is revealed in the present study that their expression was

significantly correlated with prognosis. Of note, it should be

highlighted that ATHL1 expression was correlated with

prognosis and performed well in prognosis prediction. More

impressively, downregulation and upregulation were

significantly associated with sorafenib and TACE treatment

response, respectively. ATHL1, encoding a protein-glucosyl-

galactosyl-hydroxylysine glucosidase (PGGHG), was mainly

involved in the carbohydrate metabolic process, and three

carboxyl residues, Asp301, Glu430, and Glu574, were

responsible for the functional role of PGGHG (43). Altogether,

it could be inferred that inhibition of ATHL1 expression or

PGGHG activity before sorafenib treatment might improve the

therapeutic response. In addition, the IHC staining of the

expression of GABRR1, GAGE2D, KCNH2, PRTG, SHC4, and

SMIM32 proteins was unknown and not reported in the HPA

database and, hence, needs further investigations at the protein

level. In our study, the expression of GABRR1, GAGE2D,

KCNH2, PRTG, SHC4, and SMIM32 was significantly

correlated with OS of HCC, and the expression of GABRR1

and KCNH2 was associated with sorafenib treatment response.

C1orf133 was known as a kind of ncRNA SERTAD4-AS1, and

also its expression was first identified in our study to be

correlated with prognosis of HCC and even associated with

TACE treatment response.

Dysregulation of hepatic metabolisms, such as oxidative

phosphorylation, glycolysis, and fatty acid metabolism, was

critical to the development and progression of liver disease,

especially in patients with non-alcoholic hepatitis disease (44,

45). Similarly, GO and KEGG pathway enrichment disclosed

that the aberrantly regulated biological activities associated with

the OAG score in the present study were abundantly enriched

with genes involved in the cytochrome P450-mediated

metabolism, fatty acid metabolism, amino acid metabolism,

retinol metabolism, and xenobiotic metabolism. Cytochrome

P450-mediated metabolism usually caused the accumulative

reactive oxygen species (ROS), including superoxide anion,

hydrogen peroxide, and hydroxyl radical, which played a key
Frontiers in Endocrinology 17
role in contributing to steatohepatitis (46) and promoting

invasiveness of HCC cells (47). The dysregulation of fatty acid

metabolism might directly result in the anomalous activities of

peroxisome proliferation-activated receptors (PPARs: a, b, g)
and related signaling pathways, which acted as fatty acid sensors

(48). Moreover, these PPAR members were critical transcription

factors regulating mitochondrial functions and energy

homeostasis (49); thus, some pharmacological strategies of

PPAR agonists have emerged and are associated with

improved clinical outcomes (50). Moreover, perturbation of

amino acid metabolism was also correlated with the

progression of hepatic live diseases (51). Noticeably,

cepharanthine treatment could inhibit HCC cell proliferation

and migration by regulating amino acid metabolism (52). Of

note, hepatic tissue in individuals stores almost 70% of retinoids

(53); as reported, the inhibition of retinoids or the loss of hepatic

retinoid signaling potentially leads to oxidative stress (54), which

was associated with the progression of liver diseases (55).

Moreover, retinoids were involved in many biological

activities, including apoptosis promotion and inflammation

response; altogether, retinol metabolism was markedly

correlated with the development and progression of HCC (56).

In addition, Hallmark pathways of oxidative phosphorylation

and cell cycle/DNA replication-related signaling were

abundantly enriched in the HCC patient group with inferior

survival further confirming that increased oxidative stress/

oxidative phosphorylation significantly promoted the

progress ion of HCC (57) . Furthermore , oxidat ive

phosphorylation activation was also correlated with

chemotherapeutic resistance (58). Overall, dysregulated

metabolisms associated with the OAG score enormously

affected clinical outcomes and immunomodulation or

inflammatory regulation in HCC.

From another aspect, genomic characterization can offer a

compelling framework to demonstrate the functional

significance and discover key genes stimulating the

development and progression of HCC. Nevertheless, evidence

is mounting that more and more therapeutic regimens targeting

on-oncogene alterations are engendered, compared to the tumor

suppressor genes or recurrently altered passenger genes (59).

However, there were only a few disparities in the genomic

characterizations between the high and low OAG score

groups. Despite that TP53 and DNAH10 frequently altered in

the high OAG score groups, no specific alteration sites of TP53

or DNAH10 were significantly more prevalent. According to the

Catalogue of Somatic Mutations in Cancer database, over 30% of

all HCC patients harbored at least one alteration in TP53,

ranking first in terms of alteration frequency in HCC. As a

tumor suppressor gene, TP53 alterations were expectedly

correlated with the development of progression of HCC (60),

and consistent with this, HCC patients with high OAG scores

had more altered TP53 and inferior OS. Generally, cells with

altered TP53 protein could escape from apoptosis and gradually
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develop into HCC cells due to DNA damage events, which could

also contribute to HCC progression (61). Moreover, DNAH10

alteration was positively correlated with the OAG score, and it

was found that patients harboring DNAH10 alterations had

significantly worse OS in HCC, compared with wild-type

patients. DNAH10, namely, dynein axonemal heavy chain 10,

encodes a protein of inner arm dynein heavy chain (62);

however, the role of DNAH10 in liver tissue is scarcely known.

In contrast, there were several studies revealing that altered

DNAH10 was correlated with the elevated level of high-density

lipoprotein cholesterol (63), adipocyte function (64), and

adipocyte differentiation (65). Based on the experiment of

RNAi-knockdowns for DNAH1 expression in Drosophila, the

total triglyceride levels were elevated within the body (66).

Altogether, it could be implied that altered DNAH10 might

aggravate the progression of HCC by influencing lipid

metabolism, which needed further experimental validation.

Interestingly, there existed two cases of CTNNB1-AXIN1 and

CTNNB1-TP53 exhibiting mutually exclusive alterations in the

low OAG score group, suggesting that their effects in the same

pathway were probably redundant and that there was an

epistatic association between these two genes; however, this

phenomenon did not occur in the high OAG score group.

Multi-kinase inhibitors, such as sorafenib and lenvatinib, are

still the first-line treatment, while immune checkpoint blockades,

alone or in combination with other regimens, have revolutionized

the clinical management and treatment of HCC (67).

Nevertheless, the molecular mechanisms influencing immune

response and evasion in HCC remain to be fully elucidated.

Impressively, it was initially identified that overweight/obesity-

associated transcriptome in the present study was markedly

associated with immunomodulation and the immune

microenvironment of HCC. Moreover, most chemokines,

receptors, immunomodulators, and MHC molecules were

upregulated in the high OAG score group, implying that a high

OAG score potentially had higher activity in antigen presentation

and processing as well as the promoting recruitment of antigen-

presenting cells, CD8+ T cells, and Th17 cells. Comparatively, the

cancer immunity cycle was a more comprehensive reflection of

the immunomodulation system, representing the immune

response to tumors (21). Controversially, the activity of killing

cancer cells (Step 7) was downregulated in the high OAG score

group, which presented with a higher level of inflamed TME and

increasing activity in both the releasing of cancer cell antigens

(Step 1) and part of the trafficking of immune infiltrating cells to

tumor cells (Step 4). This discordance might be due to the positive

association between the OAG score and PD-L1/PD-1 expression

as well as a majority of immune checkpoint gene expression,

indicating that these immune checkpoints would suppress cancer
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immunity and lead to immune evasion (68). In addition, the high

OAG score group had a higher level of TIDE score, which has

been proven to be negatively correlated with the infiltration of

effective CD8+ T cells within tumors (19). Altogether, it was

reasonably believed that the final activity of anti-cancer immunity

might be downregulated in the high OAG score group. In

summary, we strongly recommended that immunosuppressive

factors should be inhibited first to prevent the exclusion of T cells

from infiltrating tumors (69), which could improve the response

of immunotherapy in the high OAG score group. However,

immunotherapy was probably not suitable for HCC patients

with a low OAG score because of a low level of inflamed TME

and immune checkpoint gene expression.

Reversely, over-inflammation in the high OAG score group

could substantially stimulate the progression of HCC, while

targeting inflammation could become a promising treatment

strategy for these patients (70). Sorafenib, having been approved

by Food and Drug Administration as the standard treatment for

HCC (71), could inhibit inflammatory pathways and reduce liver

fibrosis in cirrhotic rats (72). Consistently in the present study, a

higher OAG score was significantly correlated with the response to

sorafenib treatment, probably owing to the higher level of inflamed

TME among these patients. As exhibited, Macrophage M0 was

abundantly enriched in the high OAG score group. Compared to

the single drug sorafenib for HCC patients, depletion of

macrophages by zoledronic acid or clodrolip in combination with

sorafenib resulted in the stronger inhibition of HCC progression,

angiogenesis, and even lung metastasis (73). Therefore, a

combination treatment of sorafenib and zoledronic acid or

clodrolip seemed to be more effective for patients with a high

OAG score. In addition, it was further identified that the OAG score

was negatively correlated with the response to TACE treatment.

Regarding the relatively early-stage HCC patients, as suggested,

patients with a lower OAG score associated with a lower level of

inflamed TME are likely to receive the TACE treatment. Overall, it

was demonstrated that the OAG score also had the potential to

become a reliable and robust predictor for the response of sorafenib

or TACE treatment, which would greatly help promote clinical

management and precision medicine for HCC patients. The GDSC

data analysis revealed that patients in the high OAG score group

were likely to have a higher sensitivity to chemotherapy via the

drugs paclitaxel, vinblastine, vorinostat, vinorelbine, methotrexate,

5-FU, belinostat, and tivozanib, whereas those in the low OAG

score group seemed to be more sensitive to erlotinib and

phenformin. However, it needed to be proposed that the

evaluation of chemotherapeutic sensitivity was mainly based on

pharmacogenomic analysis in cancer cells (74), so further

investigations in animal models or clinical trials are needed

for verification.
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The comprehensive overweight/obesity-associated metabolic

transcriptome was profoundly correlated with clinical outcome,

immunomodulation, and the immune microenvironment, and

afterward, the novel constructed OAG signature could function as

an effective independent predictor of prognosis and determine the

molecular characterization and TME of HCC, as well as predict the

response of sorafenib and TACE treatment. In contrast, there still

existed some limitations that should be noted. First, this study was

mainly based on the public database and more likely as a

retrospective cohort analysis; thus, prospective studies are needed

for validation. Second, it was powerful to use machine learning for

the construction of the OAG signature, but the bioinformatics

analysis still predominated in this process, and it might hinder the

clinical significance of some overweight/obesity-associated genes in

HCC. Because of this, we found that the OAG score was not

significantly associated with BMI; thus, the OAG signature might

lack the power to distinguish HCC patients from overweight/

obesity patients. However, an in-depth investigation of

overweight/obesity-associated transcriptome provided more

information about molecular characteristics, the immune

microenvironment, and therapy response. Finally, we indirectly

evaluated the underlying response of immunotherapy, and HCC

patients treated with immunotherapy were not really verified in our

study, so more clinical trials should be designated for further

exploration. Overall, it might be concluded that transcriptomic

characterization driven by overweight/obesity (or higher BMI)

played a vital role in the progression of HCC meanwhile, which

was also highly associated with the immune microenvironment and

therapy response.
5 Conclusions

The findings in the present study first disclosed that

comprehensive overweight/obesity-associated metabolic

transcriptome was significantly correlated with prognosis and

TME of HCC, and a novel constructed OAG signature exhibited

better performance in prognosis prediction. Moreover, the OAG

signature was also associated with the response of sorafenib,

TACE, or chemotherapy. This study could offer a clinically

applied tool to promote the management of HCC and increase

the need for a clear strategy of precision medicine in HCC.
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