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Background: Gestational diabetes mellitus (GDM) is a metabolic condition

defined as glucose intolerance with first presentation during pregnancy. Many

studies suggest that environmental exposures, including air pollution,

contribute to the pathogenesis of GDM. Although hair metabolite profiles

have been shown to reflect pollution exposure, few studies have examined

the link between environmental exposures, the maternal hair metabolome and

GDM. The aim of this study was to investigate the longitudinal relationship

(from pre-conception through to the third trimester) between air pollution

exposure, the hair metabolome and GDM in a Chinese cohort.

Methods: A total of 1020women enrolled in the Complex Lipids in Mothers and

Babies (CLIMB) birth cohort were included in our study. Metabolites from

maternal hair segments collected pre-conception, and in the first, second, and

third trimesters were analysed using gas chromatography-mass spectrometry

(GC-MS). Maternal exposure to air pollution was estimated by two methods,

namely proximal and land use regression (LUR) models, using air quality data
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from the air quality monitoring station nearest to the participant’s home.

Logistic regression and mixed models were applied to investigate

associations between the air pollution exposure data and the GDM

associated metabolites.

Results: Of the 276 hair metabolites identified, the concentrations of fourteen

were significantly different between GDM cases and non-GDM controls,

including some amino acids and their derivatives, fatty acids, organic acids,

and exogenous compounds. Three of the metabolites found in significantly

lower concentrations in the hair of women with GDM (2-hydroxybutyric acid,

citramalic acid, and myristic acid) were also negatively associated with daily

average concentrations of PM2.5, PM10, SO2, NO2, CO and the exposure

estimates of PM2.5 and NO2, and positively associated with O3.

Conclusions: This study demonstrated that the maternal hair metabolome

reflects the longitudinal metabolic changes that occur in response to

environmental exposures and the development of GDM.
KEYWORDS
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Introduction

Industrialization accelerated the consumption of coal

combustion and fossil fuels for transportation and other

human activities. Environmental pollution, in particular air

pollution, has become a major public health issue and a

leading cause of disease especially in developing countries (1,

2). In China, air pollution was estimated to cause approximately

1.24 million deaths and a reduction in the mean life expectancy

by about 1.25 years in 2017 (3). Air pollution is also associated

with numerous inflammatory diseases that frequently arise with

comorbidities, such as chronic obstructive pulmonary disease,

cancer, metabolic diseases, and diabetes (4–8).

Pregnancy and early infancy are considered to be highly

sensitive periods where exposures could lead to lifelong

consequences (9). Pregnant women are exposed to hundreds

of chemicals at low levels and these exposures could operate

additively or interactively, raising the possibility of ‘mixture’
ss index; CO, carbon

Babies; D6D, delta-6

pentaenoic acid; GC-

Gestational diabetes

chloroformate; NO2,

r less than 2.5mm in

diameter; SO2, sulfur

d Projection; 2-HB, 2-
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effects (10). Exposure to air pollution in pregnancy has been

linked to a range of adverse outcomes, including miscarriage,

pre-eclampsia, preterm birth, birth to an infant small for

gestational age, and gestational diabetes mellitus (GDM) (11–

17). Pregnancy involves a dynamic flow of metabolic changes

week by week, with substantial physiological alterations in

glucose and lipid metabolism (18). Pregnant women are

particularly prone to abnormal glycaemia as elevated insulin

resistance is part of the normal physiological adaptation to

pregnancy, to ensure greater substrate availability for fetal

growth (19). However, up to 20% of all pregnancies develop

some degree of impaired glucose tolerance in China (20). GDM

is associated with serious short-term and long-term adverse

health consequences for both the mother and baby (21–23).

Although the precise pathogenesis of GDM remains unclear,

GDM shares similar pathophysiological features with type 2

diabetes mellitus (24). Several studies have reported that air

pollution is an important risk factor for type 2 diabetes mellitus,

through inflammation-related insulin resistance, endothelial

dysfunction, and dysregulation of adipose tissue (8, 25–27).

Genome-wide association studies indicate that genetic factors

contribute to only a small proportion of GDM risk, and the

increased prevalence of GDM has occurred with minor to no

shift in the genetic composition of the population (28, 29).

Specific air pollution exposures potentially associated with

increasing GDM risk include exposure to particulate matter

less than 10 mm in diameter (PM10), NO2, and SO2, among

others (30–34). The timing of air pollution exposure in
frontiersin.org
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pregnancy may impact GDM risk but data are scarce and often

contradictory (35). Therefore, it is of great significance to study

the biological effects of environmental exposures during

pregnancy and early infancy.

The burden of the risk attributable to environmental factors

is unclear, and this is in part due to the limited capacity to

accurately measure the complex mix of pollutants and other

environmental exposures across an extended timeframe.

Metabolomics is a powerful approach for directly identifying

and quantifying low molecular weight compounds.

Metabolomics aims to view the complex nature of how

physiology is related to external exposure, and how these

associations may be linked to disease outcomes (36–38).

Although epidemiological studies have shown associations

between air pollution and increased GDM risk, few studies

have linked these associations to longitudinal metabolic

changes in vivo. Conventional samples used in metabolomics

studies, such as urine and blood, can be influenced by acute and

transient factors such as recent dietary intake and immune status

(39, 40). The dynamic nature of conventional biological samples

can limit the discovery of robust biomarkers, making them less

suitable for the study of long-term effects of environmental

exposures on pregnancy outcomes. Conversely, hair is a highly

stable structure that assimilates endogenous compounds and

environmental compounds during growth. These accumulate in

an ordered temporal manner as hair grows. Hair sampling is also

non-invasive compared to the collection of other biological

samples such as blood. As a result, a hair sample offers several

potential advantages over other biospecimens, such as providing

a metabolite profile that reflects environmental exposures over

several months (41). In addition, our previous studies have

found that the maternal hair metabolome can reflect

differences between healthy pregnancies and complicated

pregnancies, including fetal growth restriction (FGR) and

GDM (42–44). Previously conducted hair metabolomic studies

have used a case-control design with a relatively small sample

size. To date, no study has investigated the maternal hair

metabolome in a large cohort in an attempt to understand

how external exposures may alter the metabolic profile in

association with GDM.

The aim of this research was to comprehensively assess the

relationship between air pollution, the maternal hair

metabolome and GDM status from the pre-conception period

through the three trimesters of pregnancy.
Methods

Study participants

Women were recruited from the prospective, longitudinal

CLIMB (Complex Lipids In Mothers and Babies) cohort, which

has been described previously (45). Recruitment of the CLIMB
Frontiers in Endocrinology 03
cohort began in September 2015 and ended in November 2016.

Among 17,382 eligible participants, 1500 pregnant women

(response rate 8.6%) enrolled between 11-14 gestational weeks

at the First Affiliated Hospital of Chongqing Medical University

(FCQMU) and Chongqing Health Centre for Women and

Children (CHC) (46). Women were included in the study if

they were between 20–40 years of age and had a singleton

pregnancy. Women were excluded from the study if they had

a previous pregnancy with complications which resulted in

delivery before 32 weeks. We also excluded women lost to

follow up (n=49), women with diabetes (n=5), women with a

history of GDM (n=1), those with insufficient hair samples

(weight < 1.5 mg, n=207; dyed hair, n=3) and those who did

not provide a hair sample (n=215) (Figure 1). A 75-g oral-

glucose-tolerance test (OGTT) was conducted between 24 and

28 weeks of gestation to identify women with and without GDM.

Diagnosis of GDM occurred according to the International

Association of Diabetic Pregnancy Study Group (IADPSG)

guidelines (fasting plasma glucose ≥ 5.1 mmol/L, one-hour

post 75g OGTT plasma glucose level ≥ 10 mmol/L, or two-

hour post 75g OGTT plasma glucose level ≥ 8.5 mmol/L) (47).

This study was conducted in accordance with the principles in
FIGURE 1

Flowchart of recruited participants. In total, 1500 pregnant
women were enrolled between 11-14 gestational weeks. Forty-
nine women were lost to follow up, five women with diabetes,
one woman with a history of GDM, three women dyed hair, 207
women provided insufficient hair samples and 215 women did
not provide a hair sample. A 75-g OGTT was conducted to
diagnose GDM according to the IADPSG guidelines. Two
hundred and seventy-two GDM women and 748 non-GDM
women were included in the final analysis.
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the Declaration of Helsinki. Ethical approval was granted by the

Ethics committee of the Chongqing Medical University (No.

2014034), and written informed consent was obtained from

all participants.
Hair sample collection and preparation

Maternal hair strands (n=1020) were collected at 32-34

weeks of gestation. Hairs were cut 0.5 cm away from the scalp

around the occipital area at the rear of the head and stored in

aluminum foil at -20 °C. The hair segments were cut according

to the method published by Delplancke et al. (48). The samples

for the first segment from the scalp-end of the hair (0–3 cm)

were enriched for growth that occurred in the early third

trimester. The next 0.5 cm segment (3–3.5 cm) was discarded

to avoid the overlap between the segments for the third and

second trimester. The samples for the second segment (3.5-

6.5 cm, second trimester), third segment (7-10 cm, first

trimester), and fourth segment (10.5-13.5 cm, pre-conception)

were collected; (0.5 cm between each segment was discarded).

All four hair segments were used for our final analysis.

All hair segments were washed and metabolites extracted

using the methods published by Sulek et al. (42). Dried hair

extracts were stored at −80°C prior to chemical derivatization.

Firstly, hair segments were washed with Milli-Q (MQ) water and

methanol twice. The hair segments were put inside glass vials

and weighed (range was between 1.5 to 5.5 mg). Alkaline

hydrolysis was performed by adding 400 µl of potassium

hydroxide (1M) and 20 µL of the internal standard mix

(2,3,3,3-d4-alanine (10 mM); 2,3,4,5,6-d5-phenylalanine

(10 mM); 3,3-d2-tyrosine (2 mM)) and incubated at 54°C for

18 h. Then, the hair extracts were neutralized to pH 7 by the

addition of 67 µl of sulphuric acid (3M). To remove salts and

proteins, 1 ml of methanol was added and the sample

centrifuged at 4000 rpm for 5 min. Portions (350 µL) of the

supernatant were then transferred to three microfuge tubes.

The quality control (QC) samples were prepared by pooling

the remaining supernatant (approx. 100 µL) from each sample

into one 15 ml centrifuge tube, mixing, and then dividing into

350 µL aliquots. All the extracts and QCs were evaporated to

dryness using a speedvac (CentriVap Concentrator 230V 50Hz,

Cold Trap −105°C Models, Labconco, USA) for 8 h and stored

at −80°C prior to derivatization.
Methyl chloroformate derivatization

All prepared samples were chemically derivatized by methyl

chloroformate prior to GC-MS analysis, as described previously

(49, 50). The dried hair extracts were resuspended in 200 ml of
sodium hydroxide (1M). Then samples were transferred to a

salinized glass tube and both 167 µl methanol and 34 µl pyridine
Frontiers in Endocrinology 04
were added. Derivatization was initiated by adding 20 µL MCF

followed by mixing for 30 seconds and this step was repeated

twice. MCF derivatives were partitioned by adding 400 µL

chloroform and mixing for 10 seconds. Subsequently, 400 µL

of sodium bicarbonate (50 mM) was added and mixed for an

additional 10 seconds. The samples were then centrifuged at

1500 rpm for 5 minutes before the upper aqueous layer was

discarded. Finally, the remaining water was eliminated by adding

anhydrous sodium sulphate and the derivatized samples were

transferred to GC vials for GC-MS analysis.
Gas chromatography-mass
spectrometry analysis

The hair MCF derivatives were analyzed using an Agilent

GC7890B system linked to a MSD5977A mass selective detector

(EI) set at 70 eV. The GC column used for metabolite analysis

was a ZB-1701 GC capillary column (30 m x 250 mm id x 0.15

mm with 5 m guard column, Phenomenex). The GC analysis

parameters were as previously described (49, 51). All samples

were introduced via pulsed splitless injection with the inlet

temperature at 290°C. A constant helium gas flow rate of 1

mL/min was used. The GC-oven was first held at 45°C for 2 min,

and then the temperature was elevated with a gradient of 9°C/

min to 180°C and was held for 5 min. The temperature was then

raised at 40°C/min to 220°C and was held for 5 min. Then the

temperature was elevated at 40°C/min to 240°C and was held for

11.5 min. Finally, the temperature was raised at 40°C/min to

280°C and was held for 7 min. The mass spectrometer was run

under scan mode with a speed of 3.12 scans/sec with a mass

range between 38-550 amu. The solvent delay ended after 5 min.

The auxiliary temperature was set to 250°C, the ion source

temperature was set to 230°C, and the quadrupole temperature

was 150°C (50).
Data extraction and normalization

Raw GC-MS chromatograms were deconvoluted using

Automated Mass Spectral Deconvolution and Identification

System (AMDIS) software and metabolites were identified

using our in-house MCF mass spectral library of 461

compounds and National Institute of Standards and

Technology (NIST14) mass spectral library. The criteria for

metabolite identification included a match to the MS spectrum

of the library compound of >75% and within a 1 min time

window of its respective chromatographic retention time. The

relative concentrations of the identified metabolites were

calculated using MassOmics R-based software (52) that

selected the peak height of the most abundant ion within an

expected retention time bin. After manual removal of

contaminants by comparison with the blank samples, GC-MS
frontiersin.org
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data were first normalised by the multiple internal standards

(2,3,3,3-d4-alanine, 2,3,4,5,6-d5-phenylalanine, 3,3-d2-tyrosine)

and initial batch correction was performed using median

centring according to metabolite levels in the QC samples.

Lastly, the data were normalised by hair biomass.
Data on air pollution exposure

The concentrations of particulate matter less than 2.5mm in

diameter (PM2.5), less than 10mm in diameter (PM10), sulfur

dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon

monoxide (CO) are indicators of air quality. Air pollution

measurements were obtained from the reports published by

the Chongqing Ecological Protection Bureau (53) between 1

January 2015 and 31 December 2017. Data were collected from

twenty-one air quality monitoring stations in the main urban

area of Chongqing (Figure 2). Monitoring sites were given a site

ID number and classified as traffic sites if they were <100m from

a major road (motorway, trunk road, primary road), and

background sites if they were >100m away from a major road

(Supplementary Table 1). In this study, we have used two

methods, namely proximal and land use models, to estimate

the amount of maternal exposure during pregnancy. With

regards to the proximal model, each pregnant woman was

linked to the nearest air quality monitoring station data,

according to her residential address. Exposures were calculated

as daily concentrations averaged over each of the trimesters.

Furthermore, Harper et al. (54) developed spatiotemporal land

use regression (LUR) models for PM2.5 and NO2 in Chongqing,

China, and used the models to estimate PM2.5 and NO2 exposure

for the participants in the CLIMB study. The accuracy of LUR

model in estimating PM2.5 and NO2 exposures was assessed by

the comparing measured and predicted pollutant levels using
Frontiers in Endocrinology 05
leave-one-out-cross validation (LOOCV), as displayed in

Supplementary Table 2. Therefore, in additional to measured

concentrations from the nearest monitoring site, we used the

LUR model to estimate the PM2.5 and NO2 exposure of our

study population.
Statistical analysis

The distribution of maternal clinical characteristics and air

exposure data were evaluated using the quantile-quantile (Q-Q)

plot and Shapiro-Wilk Normality Test. Student’s T-tests were

conducted for normally distributed data, while Mann-Whitney

tests were used for non-normally distributed data. All metabolite

intensities below the detectable threshold were replaced with 0.5

times the smallest non-zero value for the relevant metabolite and

subsequently log transformed to produce a Gaussian

distribution. The transformed metabolite profiles were used to

perform Uniform Manifold Approximation and Projection

(UMAP) dimensionality reduction and different clusters were

annotated using the R package UMAP v0.2.8.0 (55). Logistic

regression models were created for the four periods, including

the confounding factors BMI and age. Metabolites were

considered significant if they had a p-value and q-value less

than 0.05. A linear mixed model was applied to assess the

relationship between GDM and the hair metabolite levels

across the four timepoints, using the lme4 R package (56).

Hair metabolites were entered into the linear mixed model as

the response variable; GDM and hair segment were entered as

fixed effects; and experimental batch and individual were entered

as random effects. Unadjusted models and models adjusted for

major confounding variables as additional fixed effects were

established. Confounding variables considered when assessing

the relationship between GDM and hair metabolite levels were

maternal age and maternal BMI relevant to the timepoint of each

hair segment. Metabolites concentrations that were significantly

different between GDM and non-GDM groups were based on

the likelihood ratio test comparing a null model without GDM as

a predictor to one with both a main effect of GDM, and an

interaction between GDM and hair segment (indicating

differential changes over time). False discovery rates (q-values)

were used to account for multiple comparisons, using the R

package “qvalue” (57). The parameter p0 was set to the

conservative value of 1 rather than estimated. Metabolites were

considered significant if they had a q-value less than 0.05.

Significant results were then assessed for robustness by

trimming the top 0.5% and bottom 0.5% of measurements.

The Odds ratios (ORs) were estimated by logistic regression

models to analyzed the association between air pollution

exposures (increase per interquartile range (IQR)) and GDM

risk from pre-conception to third trimester periods either with

or without adjustment for maternal age and BMI. To investigate

associations between the air pollution exposure data and the
FIGURE 2

Map of Chongqing showing the location of the monitoring sites
and participants’ residential locations.
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metabolites found to be significantly associated with GDM,

mixed models were fitted with the GDM associated metabolite

as the response, and the pollutant as the predictor, controlling

for the effect of segment, batch, and individual effects. The set of

p-values produced across pollutants and GDM associated

metabolites underwent the q-value procedure, and associations

were considered statistically significant if they had a q-value less

than 0.05.
Results

Participant characteristics

The prevalence of GDM in our cohort (27.1%) was slightly

higher than in the general population of China (ranging from

17.6% to 24.24%) (58, 59). In total, 1020 CLIMB participants

were included in the study; 272 women were diagnosed with

GDM according to the IADPSG guidelines and 748 women were

included in the non-GDM group. Clinical characteristics for all

participants are listed in Table 1. As anticipated, the fasting, one-

hour, and two-hour blood glucose levels following the 75g

OGTT were statistically different between GDM and control

groups (p < 0.001). Compared to women in the control group,

participants with GDM had a significantly higher age and BMI

(in pre-conception and into the third trimester, p < 0.001).

Moreover, women in the GDM group tended to deliver earlier
Frontiers in Endocrinology 06
than women in the control group (p = 0.027). Education level,

blood pressure, placental weight, and birth weight exhibited no

significant differences between the GDM and control groups.
Hair metabolites and GDM status

A total of 276 metabolites were identified in the hair of the

participants. Information on all identified metabolites is listed in

Supplementary Tables 3–7. All identified metabolites were

integrated into a UMAP. Participant clusters were generated

using low resolution nearest-neighbor clustering and these were

divided into eight clusters according to GDM and non-GDM

groups across four time points. The UMAP scatter plot of

dimensional reduction colored by participants’ identity is

shown in Figure 3 (A). Clusters were positioned approximately

from pre-conception to the third trimester in a diagonal south-

eastward direction. GDM groups were clustered in the middle

while non-GDM groups were scattered around. The common

significant metabolites in the logistic regression and linear mixed

model were shortlisted to form a final list of metabolites

significantly associated with GDM. After adjustment for

multiple comparisons, fourteen metabolites were found to be

significantly different (q < 0.05) between GDM cases and non-

GDM controls at one timepoint or more from pre-conception to

the third trimester of pregnancy and robust in adjusted for

confounders (maternal age and BMI) (Table 2). In Figure 3B, the
TABLE 1 Clinical characteristics of the study participants.

GDM
n = 272

Non-GDM
n = 748

p-value

Maternal Age, years 29 (27, 32) 28 (26, 30) <0.001a

Maternal education, years 16 (15,16) 16 (15,16) 0.667a

Pre-pregnant BMI, kg/m2 21.6 (19.8, 23.5) 20.7 (19.1, 22.6) <0.001a

First-trimester BMI, kg/m2 22.0 (20.0, 24.0) 20.9 (19.3, 22.8) <0.001a

Second-trimester BMI, kg/m2 23.8 (22.2, 26.0) 23.1 (21.5, 25.2) <0.001a

Third -trimester BMI, kg/m2 25.4 (23.4, 27.4) 24.6 (22.7, 26.6) <0.001a

OGTT_fasting, mmol/L 5.1 (4.7,5.2) 4.6 (4.4,4.7) <0.001a

OGTT_1h, mmol/L 9.5 (8.6,10.4) 7.2 (6.4,8.3) <0.001a

OGTT_2h, mmol/L 8.5 (7.5,9.1) 6.7 (6.0,7.4) <0.001a

First-trimester Systolic blood pressure, mmHg 114 (108,121) 111 (106,120) 0.140a

First-trimester Diastolic blood pressure, mmHg 71 (66,77) 70 (65,74) 0.102a

Second-trimester Systolic blood pressure, mmHg 115 (109,120) 114 (108,121) 0.077a

Second-trimester Diastolic blood pressure, mmHg 70 (68,75) 70 (67,72) 0.081a

Third -trimester Systolic blood pressure, mmHg 117 (109,121) 115 (108,121) 0.090a

Third -trimester Diastolic blood pressure, mmHg 70 (66,74) 70 (65,73) 0.156a

Gestational age, weeks 39 (38,40) 39 (39,40) 0.027a

Placental weight, g 560 (510,600) 550 (510,600) 0.299a

Infant birth weight, g 3321 ± 427 3331 ± 395 0.741b
fronti
Values are means ± SD or median (IQR).
ap-value from Mann-Whitney test,
bp-value from Student T-test.
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heatmap demonstrates the ratios of the fourteen significant

metabolites between cases and controls from pre-conception

through each of the trimesters. In pre-conception, only five

hair metabolite levels were significantly reduced in the GDM

group compared to the non-GDM group. Whereas, ten

hair metabolites were significantly different between the two

groups across all trimesters, including some amino

acids and derivatives, fatty acids, organic acids, food additives,

and exogenous compounds. 2-hydroxybutyric acid, methionine

and myristic acid showed the most substantial ratio changes.

Furthermore, nine of these fourteen metabolites demonstrated a

significant interaction with the hair segment tested (timepoint 0,

1, 2, or 3) – indicating that there were longitudinal differences in

the concentrations of these metabolites and their relationship

with GDM (Figure 4). Of these metabolites, six showed the

largest differences from pre-conception, with differences

reducing in later trimesters. As displayed in Figures 4A, B, two

of the fourteen metabolites were consistently higher in GDM

participants compared to controls across all four timepoints; ten

were consistently lower in GDM participants across the

timepoints (i.e. 2-hydroxybutyric acid and myristic acid); and

two metabolites had relationships with GDM which changed

direction between timepoints (i.e. 2-ketoglutamarate, and

methyl 4-oxo-2-pentenoate were lower in GDM participants in

the pre-conception hair segments but were higher in GDM

participants in the third trimester hair segments) .

Interestingly, both 2-hydroxybutyric acid and myristic acid
Frontiers in Endocrinology 07
displayed reduced levels in GDM subclusters, as highlighted in

the UMAP (Figures 4C, D).
Air pollutions and GDM

The daily average calculated exposure concentrations of air

pollution for each timepoint based on the proximal model are

listed in Table 3. Table 4 describes the exposure estimates for

PM2.5 and NO2 using the LUR model. The estimates of PM2.5

and NO2 according to the LUR model were higher in the GDM

group during pre-conception and early pregnancy, respectively

(p < 0.05). Figure 5 demonstrates the association between air

pollution and GDM risk across four periods. After adjusting for

maternal age and BMI, we only found that exposure to PM2.5

(LUR) within the pre-conception (OR=1.584, 95% CI: 1.032-

2.432, p=0.035) was significantly associated with GDM

occurrence. This result was consistent with PM2.5 estimated by

the LUR model, which was higher in the GDM group during

pre-conception.
Air pollutions and hair metabolites

The relationships between GDM-associated hair

metabolites and specific pollutants (including daily average

concentrations of PM2.5, PM10, SO2, NO2, O3, CO and the
TABLE 2 Metabolites with significant and robust differences between GDM cases and non-GDM controls in logistic regression and linear mixed models.

Metabolites Logistic regression (q-value) Linear mixed model

Pre-
conception

First
trimester

Second
trimester

Third
trimester

p-
value

p-value
(adjusted)

q-
value

q-value
(adjusted)

Oxalic acid 0.110 0.002 0.181 0.056 0.003 <0.001 0.041 0.012

N-Formyl-d-threo-O-
methylthreonine

0.197 0.012 0.003 <0.001 0.001 0.049 0.027 0.321

Methyl 4-oxo-2-pentenoate 0.122 0.037 0.004 <0.001 0.026 0.004 0.221 0.049

Decamethyl-cyclopentasiloxane 0.110 0.053 0.046 0.037 <0.001 <0.001 <0.001 0.009

Ethyl ether 0.017 <0.001 <0.001 0.001 0.001 <0.001* 0.026 0.009*

2-Hydroxybutyric acid 0.001 <0.001 <0.001 <0.001 0.002 0.001 0.030 0.020

Citramalic acid 0.014 <0.001 0.002 0.011 <0.001 <0.001 0.016 0.008

para-Toluic acid 0.365 0.034 <0.001 <0.001 0.001 0.010 0.023 0.109

Glyoxylic acid 0.417 0.014 <0.001 0.007 <0.001 0.002* 0.011 0.025*

2-ketoglutamarate 0.289 0.270 0.416 0.027 <0.001 0.001 0.016 0.017

1,1,2,2-tetraethoxy-2- Ethane 0.004 <0.001 <0.001 <0.001 <0.001 <0.001* 0.016 0.008*

N-methyl-N-ethoxycarbonyl-
alanine

0.266 0.184 0.018 <0.001 0.001 0.001 0.019 0.016

Myristic acid (C14_0) 0.132 0.004 0.010 0.014 0.006 0.002 0.085 0.025

Methionine 0.009 <0.001 0.005 0.024 0.001 <0.001 0.019 0.009
Values marked with a *correspond to p > 0.05 after trimming of extreme values.
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exposure estimate data of PM2.5 and NO2) are illustrated in

Figure 6. Three of the fourteen hair metabolites (2-

hydroxybutyric acid, citramalic acid, and myristic acid) that

showed a significant association with GDM were also

significantly associated with some, or all of the air pollutant

measures (q < 0.05, Table 5). Each of these were negatively

associated with daily average concentrations of PM2.5, PM10,
Frontiers in Endocrinology 08
SO2, NO2, CO and the exposure estimate of PM2.5 and NO2,

and positively associated with O3.

Standardized coefficients (showing the effect of one standard

derivation pollutant change on the standardized log metabolite

concentration) for PM2.5 and NO2 exposure estimated by the

proximal and LUR models displayed a similar correlation, three

metabolites were all negatively associated with PM2.5 and NO2.
B

A

FIGURE 3

UMAP projection and heatmap of the metabolites across pregnancy. (A) UMAP clustering of all participants labelled and colored by GDM status and
different periods of gestation. Groupings include pre-conception GDM [pre (GDM)], first trimester GDM [1st T (GDM)], second trimester GDM [2nd T
(GDM)], third trimester GDM [3rd T (GDM)], pre-conception non-GDM [pre (non-GDM)], first trimester non-GDM [1st T (non-GDM)], second trimester
non-GDM [2nd T (non-GDM)], and third trimester non-GDM (3rd T (non-GDM)). (B) The ratio of fourteen metabolite levels significantly different
between GDM case and control groups. Red color indicates higher metabolite levels in the GDM group than the control group, while blue color
indicates lower metabolite levels in the GDM group than the control group. Metabolites with both p-value and q-value less than 0.05 in the logistic
regression adjusted for age and BMI are marked with *p-value and q-value less than 0.01 are marked with **p-value and q-value less than 0.001 are
marked with ***.
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However, only citramalic acid was significantly associated with

NO2 exposures estimated by the proximal model, but myristic

acid and citramalic acid were remarkable in the LUR model,

indicating that exposure estimation by the LUR model showed

more statistical significance than the proximal model.
Discussion

To our knowledge, this is the first study to investigate

associations between environmental exposures, the hair

metabolome, and GDM longitudinally from pre-conception

through to the third trimester. The main focus of hair

metabolomic research to date has been the identification of

metabolic biomarkers for the prediction of pregnancy

complications (42–44). Our results demonstrated that the

maternal hair metabolome was altered in response to

endogenous and exogenous exposures, prior to, and

throughout pregnancy. Moreover, exposure to PM2.5 during

pre-conception may increase the risk of GDM. The levels of 2-

hydroxybutyric acid, citramalic acid, and myristic acid in the

hair of GDM women were negatively associated with the air

pollutant levels. Our findings suggest that the hair metabolome

changes in response to maternal and environmental

perturbations with substantial potential to estimate exposure

risk factors and better understand the underlying

GDM pathophysiology.
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Pre-conception exposure to air pollution
may increase the risk of GDM

Air pollution has become a major public health issue in

developed and developing countries (1). Particulate matter (PM)

is composed of complex chemical constituents from a variety of

sources, such as elemental carbon, metals, and organic chemicals

derived from coal combustion, biomass burning, vehicle

emissions, dust, and industrial sources (60). We have

published a LUR model that was developed on a daily basis

incorporating measurement data, temporal variables on

meteorology, and spatial variables produced using a

geographical information system (54). This spatiotemporal

model demonstrated better performance than the proximal

model in discriminating GDM and non-GDM groups from

pre-conception to the first trimester. Our results demonstrated

that the estimates of PM2.5 and NO2 by the LUR model were

higher in the GDM group during pre-conception and in early

pregnancy, respectively. Meanwhile, the calculated daily average

exposure to PM2.5 and NO2 based on the proximal model did

not show any differences from pre-conception to third trimester.

Consistently, evidence from our study also suggested that PM2.5

exposure during pre-conception increased the risk of GDM.

Similar to our results, Zhang et al. found that higher exposure to

PM2.5 within three months before pregnancy was associated with

increased GDM risk, as well as elevated fasting glucose levels

(61). Another study in China showed that pre-conception PM2.5
B

C

D

A

FIGURE 4

Line plots and UMAP of GDM-associated metabolites across pregnancy. (A) shows unadjusted models while (B) shows the results of linear mixed
models adjusted for maternal age and BMI. Triangles represent the fitted effects in GDM maternal hair and squares represent non-GDM. Blue
denotes a consistent effect across gestation in the GDM group (no significant interaction with time), while red corresponds to a time-specific effect.
(C, D) UMAP representation of myristic acid and 2-hydroxybutyric acid from data in Figure 3 (A). Red dots indicate higher metabolite levels in GDM
women compared with the non-GDM women, while blue dots indicate lower levels. Data are visualized after log transformation.
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TABLE 3 Daily average concentrations exposure of the pollutants using the proximal model.

Pollutant (μg/m³) Pre-conception First trimester Second trimester Third trimester

Non-GDM GDM Non-GDM GDM Non-GDM GDM Non-GDM GDM

PM 2.5

Min 22.6 16.4 15.7 22.2 20.8 22.4 20.8 23.3

Median (IQR) 47.8 (40.9,
56.5)

46.7 (39.8, 57.1) 51.8 (40.6,
58.6)

49.0 (40.1,
61.4)

55.3 (43.2,
64.6)

52.3 (43.5,
63.4)

50.8 (42.0,
62.2)

49.4 (41.9, 59.5)

Max 80.1 76.7 82.5 116.5 81.1 83.2 79.7 76.9

PM 10

Min 34.0 24.9 19.8 34.4 32.8 34.3 36.8 38.7

Median (IQR) 80.1 (65.8,91.1) 76.6 (63.3, 91.1) 79.4 (64.9,
91.8)

76.5 (64.4,
91.1)

83.1 (66.2,
93.7)

81 (66.7, 91.5) 80.6 (66.8,
93.3)

77.9 (65.5, 91.0)

Max 116.3 114.8 117.0 116.5 118.3 118.3 118.1 117.5

SO2

Min 7.4 2.8 4.5 7.4 5.4 7.2 6.7 7.3

Median (IQR) 12.1 (10.8,
14.5)

12.5 (11.1, 14.8) 12.0 (10.6,
14.6)

12.4 (10.9,
14.9)

13.2 (10.3,
15.1)

12.6 (9.9, 15.2) 12.1 (9.8, 14.6) 11.5 (9.6, 14.3)

Max 27.2 24.8 25.1 25.6 26.2 25.8 25.8 23.9

NO2

Min 10.1 10.1 7.9 10.1 10.4 12.9 11.4 12.3

Median (IQR) 47.8 (33.3,
61.9)

42.5 (30.0, 60.1)
*

47.7 (33.5,61.3) 43.4 (30.5,
61.6)

51.0 (36.8,
63.9)

47.2 (35.0,
63.1)

51.1 (35.8,
65.8)

46.8 (32.8, 64.0)

Max 74.5 75.0 74.6 74.9 75.4 74.6 75.2 74.6

CO

Min 0.5 0.2 0.1 0.5 0.5 0.5 0.5 0.5

Median (IQR) 0.9 (0.8, 1.0) 0.9 (0.8, 1.1) 1.0 (0.8, 1.1) 1.0 (0.86, 1.1) 1.0 (0.9, 1.1) 0.9 (0.8, 1.1) 1.0 (0.8, 1.1) 0.9 (0.8,1.1)

Max 1.5 1.6 1.7 1.6 1.6 1.6 1.6 1.6

O3

Min 6.4 6.4 6.4 6.5 6.5 6.5 6.6 6.6

Median (IQR) 39.4 (26.5,53.8) 39.1 (24.2, 54.6) 38.4 (20.5,
53.3)

37.2 (19.8,
53.0)

29.6 (14.8,
50.8)

34.0 (18.3,
51.3)

39.2 (20.8,
54.0)

46.2 (26.8, 55.4)
*

Max 112.5 112.4 115.1 114.0 115.0 115.2 115.2 115.0
Frontiers in Endocrino
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*p-value less than 0.05 between GDM and non-GDM.
Exposures were calculated as daily concentrations averaged over each timepoint (pre-conception – third trimester).
TABLE 4 Exposure estimate data of PM2.5 and NO2 using the LUR model.

Pollutant (μg/m³) Pre-conception First trimester Second trimester Third trimester

Non-GDM GDM Non-GDM GDM Non-GDM GDM Non-GDM GDM

PM 2.5

Min 39.2 38.4 37.5 38.3 38.5 38.5 37.6 37.0

Median (IQR) 53.1 (44.0,
62.5)

55.9 (45.0, 65.6)
**

52.0 (43.9,
61.1)

53.5 (44.0,
63.5)

58.6 (47.6,
67.1)

56.6 (46.4,
66.0)

61.8 (47.1,
75.8)

59.9 (46.8,
69.7)

Max 80.3 79.5 82.4 80.0 89.1 90.0 94.7 93.6

NO2

Min 26.1 25.9 28.4 29.1 32.4 31.1 23.5 20.6

Mean ± SD 49.6 ± 6.2 50.5 ± 6.9 48.7 ± 6.4 49.7 ± 6.6 * 51.0 ± 6.3 50.5 ± 6.3 51.7 ± 6.8 51.5 ± 7.0

Max 66.6 67.1 69.3 67.3 68.4 70.4 75.1 70.7
*p-value less than 0.05 between GDM and non-GDM.
**p-value less than 0.01 between GDM and non-GDM.
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and PM10 exposure was associated with a higher risk of

developing GDM (62). In a case-control study in Taiwan,

researchers found that higher pre-conception and pregnancy

exposures to PM2.5 for mothers were associated with a

significantly elevated risk of GDM (63). Yu et al. indicated that

exposure to PM2.5 in the second trimester of pregnancy was

associated with an increased risk of GDM (64). A pregnancy

cohort in Southern California showed that pre-conception NO2

was associated with an increased risk of GDM, and first trimester

NO2 was weakly associated with GDM (65). The majority of

studies found that maternal exposure to PM2.5 and NO2 was

associated with a significantly elevated risk of GDM. However,
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the results of recent meta-analyses indicated that increased

exposure to PM2.5 was not statistically related to the incidence

of GDM (30, 66). It is worth noting that inconsistence among

these studies may reflect intrinsic dissimilarities in exposure

assessment, outcome definition, effect estimation models and

adjusted variables, which may contribute to the heterogeneity

(31). Overall, these results suggest that exposure to higher levels

of PM2.5 and NO2 during early pregnancy may increase

susceptibility to GDM development.
The potential relationship between air
pollution and GDM

It remains unclear how air pollution and its components are

associated with GDM. Previous studies suggested that oxidative

stress and inflammation may play important roles in the

development of GDM. Oxidative stress is a well-recognised

risk factor for insulin resistance. Several studies have shown

unequivocally that oxidative stress precedes insulin resistance

(67–69). An epidemiological study showed that air pollution

exposure could increase markers for oxidative stress among

pregnant women (70). Particulate matter (PM) is enriched

with metals and organic chemicals and has been thought to

initiate toxic effects and induce oxidative damage (71, 72). For

instance, PM2.5 alters levels of oxidative stress biomarkers in

mice including glutathione peroxidase and malonic dialdehyde

(73). Research has identified oxidative stress as one potential

feature underlying the toxic effect of air pollution, which

activates NF-kB translocation into the nucleus and causes an

inflammatory response and cytokine production (74–77).

Meanwhile, air pollution can produce pro-inflammatory

mediators, including highly sensitive C-Reactive Protein, TNF-

a, IL-1b, IL-6 and IL-8, resulting in local or systemic

inflammation (8, 78, 79). Increased inflammatory response

plays an important role in the development of GDM (80).

Moreover, It has been argued that NO2 can cause similar

inflammatory responses to those of PM (81). Both

experimental and epidemiological studies indicate that air

pollution may induce oxidative damage and trigger the release

of inflammatory cytokines, subsequently contributing to insulin

resistance, which consequently promotes the development

of GDM.
FIGURE 5

Odds ratios between air pollution exposures and GDM occurrence.
Green indicates the unadjusted odds ratio (95% CI); blue indicates
the adjusted odds ratio (95% CI). Hollow shapes represent statistical
significance, while solid shapes are non-significant.
FIGURE 6

The association between GDM related metabolites and specific
air pollutants. The grey numbers are standardized regression
coefficients that show the effect of one standard derivation (SD)
pollutant change on the standardized log metabolite
concentration. The red right-handed ellipses indicate positive
relationships between metabolites and air pollutants, while the
blue left-handed ellipses indicate negative relationships. Only the
significant associations (q-values < 0.05) between metabolites
and pollutants are displayed by ellipses.
TABLE 5 q-values for metabolites with significant association with one or more pollutants.

q-value PM2.5(LUR) NO2(LUR) PM2.5 PM10 NO2 SO2 CO O3

Citramalic acid <0.001 <0.001 <0.001 <0.001 0.031 <0.001 <0.001 <0.001

Myristic acid (C14_0) <0.001 <0.001 <0.001 <0.001 0.275 <0.001 <0.001 <0.001

2-Hydroxybutyric acid 0.089 0.461 0.072 0.061 0.487 0.002 0.092 0.002
frontier
The bold values means q-value less than 0.05.
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The association of air pollutants and hair
metabolites in GDM

The metabolome reflects phenotypic changes in response to

physiological status and environmental stimuli. There were three

metabolites, myristic acid, 2-hydroxybutyric acid, and citramalic

acid, found in significantly lower levels in the hair samples of

women with GDM that were negatively associated with PM2.5,

PM10, SO2, and CO. Of these three metabolites, myristic acid (14:0)

levels were observed at lower levels in the hair samples of our GDM

participants from the first trimester to the third trimester.

Cumulative evidence has shown that fatty acids with different

degrees of saturation affect insulin sensitivity and lipid/glucose

metabolism differently. Saturated fatty acids are generally more

likely to cause insulin resistance via inflammatory processes, while

unsaturated fatty acids ameliorate the pathology associated with

diabetes (82, 83). On the contrary, there are several studies showed

that myristic acid has been inversely associated with a higher risk of

type 2 diabetes (84–87). Interestingly, myristic acid has been

demonstrated to increase glucose uptake in C2C12 skeletal

muscle cells and reduce hyperglycaemia and insulin resistance in

spontaneously diabetic Nagoya–Shibata–Yasuda (NSY) mice (88–

90). However, the detailed effects of myristic acid on

hyperglycaemia and insulin resistance have not been thoroughly

investigated. It has been shown that the activity of delta-6(D6)
desaturase (D6D) can be increased by myristic acid in cultured rat

hepatocytes (91). Delta-6 desaturase, encoded by the fatty acid

desaturase 2 (FADS2) gene, is the rate-limiting enzyme for the

conversion of a-linolenic acid (ALA) to eicosapentaenoic acid

(EPA) and docosahexaenoic acid (DHA) (92). Meanwhile,

myristic acid has been reported to elevate EPA and DHA levels

in human and rat plasma (93–95). EPA and DHA are long-chain

polyunsaturated fatty acids (PUFAs), which have been found to be

inversely associated with IL-6 and TNF-a concentrations and

positively associated with the concentrations of the anti-

inflammatory cytokines IL-10 and TGF-b (96). Since myristic

acid promotes the production of EPA and DHA and is negatively

correlated with air pollutants, the lower levels of myristic acid in the

GDM hair samples could potentially link air pollution exposure to

reduced anti-inflammatory capacity in women with GDM.

2-Hydroxybutyric acid (2-HB) was another hair metabolite that

exhibited a lower concentration in GDM from pre-conception to

the third trimester and was negatively associated with SO2. The

results from a meta-analysis and cohort studies have found that

maternal exposure to SO2 increased the risk of GDM (31, 63, 97,

98). Plasma 2-hydroxybutyric acid has been previously reported to

be associated with insulin resistance and type 2 diabetes (99, 100).

Research has demonstrated that 2-hydroxybutyric acid was

produced from 2-ketobutyric acid in response to oxidative stress-

induced glutathione synthesis (100, 101). Elevated oxidative stress

may increase methionine catabolism by cystathionine b-synthase to
produce cysteine for glutathione synthesis, while 2-ketobutyric acid
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is generated as a by-product (102). Indeed, a lower level of 2-

ketobutyric acid (1st and 2nd trimesters), methionine (all four

periods), and cysteine (3rd trimester) were also observed in the

hair of women diagnosed with GDM. Since glutathione metabolism

could be downregulated by hyperglycemia, a lower level of 2-

hydroxybutyric acid may be reflecting poor antioxidant capacity

in women with GDM.
Limitations

Lastly, we found that the spatiotemporal LUR model estimate

data of PM2.5 and NO2 related to hair metabolites were more

statistically significant than the classical proximal-distance model.

LUR models are trained and validated against measured pollutant

concentrations using variables generated from a geographic

information system (GIS), such as distance to nearest source,

road network density, land use, terrain, population density, and

meteorological variables to predict the concentrations at residential

locations. The specific limitations of the LUR models used in this

study are described elsewhere (54). Despite the fact that the LUR

model provides a better basis for air exposure estimation, only

PM2.5 and NO2 LURmodels are currently available for the CLIMB

study. Furthermore, air pollutant exposures usually have a

hysteresis effect, distributed lag non-linear model (DLNM) might

be more appropriate to consider the lag time when estimating the

effects of air pollutants on metabolites. Future studies should

establish LUR models to estimate other air pollutants (PM10,

SO2, CO, and O3) and consider delayed effects of air pollution

for our Chongqing cohort. We should also validate our findings in

a large multicentre cohort with diverse environmental exposures.

In addition, it would be beneficial for future studies to consider

pollutant exposure beyond the residential setting which was used

in this study, expanding to include exposures from participants’

workplaces and outdoor activities. A potential limitation of this

study was that lifestyle behaviours such as nutritional intake,

physical activity, and stress during pregnancy were not

accounted for and may have been a source of residual

confounding. Future studies should also validate the significant

metabolites by targeted metabolomics using calibration curves to

determine their limits of detection (LODs).
Conclusions

This study was the first to investigate the association between

environmental pollution, the hair metabolome, and GDM status

longitudinally from pre-conception through to the third

trimester. We demonstrated that there were significant

alterations to the maternal hair metabolome, which were

related to later GDM development. Three of these altered

metabolites were also associated with maternal air pollution
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exposure reflecting that exposure to environmental pollutants

can increase the risk of GDM. Based on these findings we

propose that air pollution contributes to altered metabolism,

and potentially an increase in oxidative stress and inflammatory

reaction, all of which may contribute to the aetiology of GDM

(Figure 7). Our findings that the hair metabolome is altered in

response to maternal and environmental perturbations suggest

that maternal hair could be used to estimate exposure risk factors

and better understand the underlying GDM pathophysiology.
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FIGURE 7

The potential pathways that air pollution exposure influences GDM development through fatty acids and glutathione metabolism. Higher PM2.5

and NO2 air pollution exposure from pre-conception to early pregnancy are likely to increase pregnant women’s susceptibility to GDM through
induced oxidative stress and inflammation. Myristic acid could promote the production of EPA and DHA to compete against inflammation.
Methionine is catablised into cysteine and 2-ketobutyric acid (2-KB), which in turn is converted into glutathione and 2-hydroxybutyric acid (2-
HB) respectively. The lower level of myristic acid and 2-HB in hair could be related to poor antioxidant and anti-inflammatory capacity in
women with GDM. Therefore, increased exposure to air pollutants might promote GDM pathogenesis by downregulating fatty acids and
glutathione metabolism. Abbreviations as follows: ALA, a-linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; D6D, delta-6
desaturase; 2-HB, 2-hydroxybutyric acid; 2-KB, 2-ketobutyric acid.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1060309
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2022.1060309
those of their affiliated organizations, or those of the

publisher, the editors and the reviewers. Any product that

may be evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by

the publisher.
Frontiers in Endocrinology 14
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fendo.2022.1060309/full#supplementary-material
References
1. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al.
Estimates and 25-year trends of the global burden of disease attributable to ambient
air pollution: An analysis of data from the global burden of diseases study 2015.
Lancet (2017) 389(10082):1907–18. doi: 10.1016/S0140-6736(17)30505-6

2. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, et al. The
lancet commission on pollution and health. Lancet (2018) 391(10119):462–512.
doi: 10.1016/S0140-6736(17)32345-0

3. Yin P, Brauer M, Cohen AJ, Wang H, Li J, Burnett RT, et al. The effect of air
pollution on deaths, disease burden, and life expectancy across China and its
provinces, 1990-2017: An analysis for the global burden of disease study 2017.
Lancet Planet Health (2020) 4(9):e386–e98. doi: 10.1016/S2542-5196(20)30161-3

4. Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Loft S, Sorensen M, et al.
Chronic obstructive pulmonary disease and long-term exposure to traffic-related
air pollution: A cohort study. Am J Respir Crit Care Med (2011) 183(4):455–61.
doi: 10.1164/rccm.201006-0937OC

5. Liu F, Chen G, HuoW,Wang C, Liu S, Li N, et al. Associations between long-
term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A
systematic review and meta-analysis. Environ Pollut (2019) 252(Pt B):1235–45.
doi: 10.1016/j.envpol.2019.06.033

6. Meo SA, Memon AN, Sheikh SA, Rouq FA, Usmani AM, Hassan A, et al.
Effect of environmental air pollution on type 2 diabetes mellitus. Eur Rev Med
Pharmacol Sci (2015) 19(1):123–8. Available at: https://www.ncbi.nlm.nih.gov/
pubmed/25635985

7. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr
G, et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective
analyses from the European study of cohorts for air pollution effects (Escape). Lancet
Oncol (2013) 14(9):813–22. doi: 10.1016/S1470-2045(13)70279-1

8. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, et al.
Ambient air pollution exaggerates adipose inflammation and insulin resistance in a
mouse model of diet-induced obesity. Circulation (2009) 119(4):538–46.
doi: 10.1161/CIRCULATIONAHA.108.799015

9. Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, et al.
The human early-life exposome (Helix): Project rationale and design. Environ
Health Perspect (2014) 122(6):535–44. doi: 10.1289/ehp.1307204

10. Royal College of Obstetricians & Gynaecologists. Chemical exposures during
pregnancy: Dealing with potential, but unproven, risks to child health (2013).
Available at: https://www.rcog.org.uk/en/guidelines-research-services/guidelines/
sip37/.

11. Gomez-Roig MD, Pascal R, Cahuana MJ, Garcia-Algar O, Sebastiani G,
Andreu-Fernandez V, et al. Environmental exposure during pregnancy: Influence
on prenatal development and early life: A comprehensive review. Fetal diagnosis
Ther (2021) 48(4):245–57. doi: 10.1159/000514884

12. Zanini MJ, Dominguez C, Fernandez-Oliva T, Sanchez O, Toda MT,
Foraster M, et al. Urban-related environmental exposures during pregnancy and
placental development and preeclampsia: A review. Curr Hypertens Rep (2020) 22
(10):81. doi: 10.1007/s11906-020-01088-4

13. Rappazzo KM, Nichols JL, Rice RB, Luben TJ. Ozone exposure during early
pregnancy and preterm birth: A systematic review and meta-analysis. Environ Res
(2021) 198:111317. doi: 10.1016/j.envres.2021.111317

14. Quenby S, Gallos ID, Dhillon-Smith RK, Podesek M, Stephenson MD,
Fisher J, et al. Miscarriage matters: The epidemiological, physical, psychological,
and economic costs of early pregnancy loss. Lancet (2021) 397(10285):1658–67.
doi: 10.1016/S0140-6736(21)00682-6

15. Bearblock E, Aiken CE, Burton GJ. Air pollution and pre-eclampsia;
associations and potential mechanisms. Placenta (2021) 104:188–94.
doi: 10.1016/j.placenta.2020.12.009
16. Jia L, Liu Q, Hou H, Guo G, Zhang T, Fan S, et al. Association of ambient air
pollution with risk of preeclampsia during pregnancy: A retrospective cohort study.
BMC Public Health (2020) 20(1):1663. doi: 10.1186/s12889-020-09719-w

17. Kim JH, Choi YY, Yoo SI, Kang DR. Association between ambient air
pollution and high-risk pregnancy: A 2015-2018 national population-based cohort
study in Korea. Environ Res (2021) 197:110965. doi: 10.1016/j.envres.2021.110965

18. Liang L, Rasmussen MH, Piening B, Shen X, Chen S, Rost H, et al. Metabolic
dynamics and prediction of gestational age and time to delivery in pregnant
women. Cell (2020) 181(7):1680–92 e15. doi: 10.1016/j.cell.2020.05.002

19. Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin obstetrics
gynecology (2007) 50(4):938–48. doi: 10.1097/GRF.0b013e31815a5494

20. Zhu WW, Yang HX, Wang C, Su RN, Feng H, Kapur A. High prevalence of
gestational diabetes mellitus in Beijing: Effect of maternal birth weight and other
risk factors. Chin Med J (2017) 130(9):1019–25. doi: 10.4103/0366-6999.204930

21. Reece EA, Leguizamon G, Wiznitzer A. Gestational diabetes: The need for a
common ground. Lancet (2009) 373(9677):1789–97. doi: 10.1016/S0140-6736(09)
60515-8

22. Vounzoulaki E, Khunti K, Abner SC, Tan BK, Davies MJ, Gillies CL.
Progression to type 2 diabetes in women with a known history of gestational
diabetes: Systematic review and meta-analysis. Bmj (2020) 369:m1361.
doi: 10.1136/bmj.m1361

23. American Diabetes Association. 2. classification and diagnosis of diabetes:
Standards of medical care in diabetes-2021. Diabetes Care (2021) 44(Suppl 1):S15–
33. doi: 10.2337/dc21-S002

24. Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes
mellitus and its association with type 2 diabetes. Diabetic Med J Br Diabetic Assoc
(2004) 21(2):103–13. doi: 10.1046/j.1464-5491.2003.00985.x

25. Riant M, Meirhaeghe A, Giovannelli J, Occelli F, Havet A, Cuny D, et al.
Associations between long-term exposure to air pollution, glycosylated
hemoglobin, fasting blood glucose and diabetes mellitus in northern France.
Environ Int (2018) 120:121–9. doi: 10.1016/j.envint.2018.07.034

26. Rao X, Montresor-Lopez J, Puett R, Rajagopalan S, Brook RD. Ambient air
pollution: An emerging risk factor for diabetes mellitus. Curr Diabetes Rep (2015)
15(6):603. doi: 10.1007/s11892-015-0603-8

27. Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: Mechanistic
insights. Diabetes (2012) 61(12):3037–45. doi: 10.2337/db12-0190

28. Angueira AR, Ludvik AE, Reddy TE, Wicksteed B, Lowe WLJr., Layden BT.
New insights into gestational glucose metabolism: Lessons learned from 21st
century approaches. Diabetes (2015) 64(2):327–34. doi: 10.2337/db14-0877

29. Zhang C, Bao W, Rong Y, Yang H, Bowers K, Yeung E, et al. Genetic
variants and the risk of gestational diabetes mellitus: A systematic review. Hum
Reprod Update (2013) 19(4):376–90. doi: 10.1093/humupd/dmt013

30. Tang X, Zhou JB, Luo F, Han Y, Heianza Y, Cardoso MA, et al. Air pollution
and gestational diabetes mellitus: Evidence from cohort studies. BMJ Open Diabetes
Res Care (2020) 8(1):e000937. doi: 10.1136/bmjdrc-2019-000937

31. Zhang H, Wang Q, He S, Wu K, Ren M, Dong H, et al. Ambient air
pollution and gestational diabetes mellitus: A review of evidence from biological
mechanisms to population epidemiology. Sci total Environ (2020) 719:137349.
doi: 10.1016/j.scitotenv.2020.137349

32. Elshahidi MH. Outdoor air pollution and gestational diabetes mellitus: A
systematic review and meta-analysis. Iranian J Public Health (2019) 48(1):9–19.
doi: 10.18502/ijph.v48i1.778

33. Lim CC, Thurston GD. Air pollution, oxidative stress, and diabetes: A life
course epidemiologic perspective. Curr Diabetes Rep (2019) 19(8):58. doi: 10.1007/
s11892-019-1181-y
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2022.1060309/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2022.1060309/full#supplementary-material
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/S0140-6736(17)32345-0
https://doi.org/10.1016/S2542-5196(20)30161-3
https://doi.org/10.1164/rccm.201006-0937OC
https://doi.org/10.1016/j.envpol.2019.06.033
https://www.ncbi.nlm.nih.gov/pubmed/25635985
https://www.ncbi.nlm.nih.gov/pubmed/25635985
https://doi.org/10.1016/S1470-2045(13)70279-1
https://doi.org/10.1161/CIRCULATIONAHA.108.799015
https://doi.org/10.1289/ehp.1307204
https://www.rcog.org.uk/en/guidelines-research-services/guidelines/sip37/
https://www.rcog.org.uk/en/guidelines-research-services/guidelines/sip37/
https://doi.org/10.1159/000514884
https://doi.org/10.1007/s11906-020-01088-4
https://doi.org/10.1016/j.envres.2021.111317
https://doi.org/10.1016/S0140-6736(21)00682-6
https://doi.org/10.1016/j.placenta.2020.12.009
https://doi.org/10.1186/s12889-020-09719-w
https://doi.org/10.1016/j.envres.2021.110965
https://doi.org/10.1016/j.cell.2020.05.002
https://doi.org/10.1097/GRF.0b013e31815a5494
https://doi.org/10.4103/0366-6999.204930
https://doi.org/10.1016/S0140-6736(09)60515-8
https://doi.org/10.1016/S0140-6736(09)60515-8
https://doi.org/10.1136/bmj.m1361
https://doi.org/10.2337/dc21-S002
https://doi.org/10.1046/j.1464-5491.2003.00985.x
https://doi.org/10.1016/j.envint.2018.07.034
https://doi.org/10.1007/s11892-015-0603-8
https://doi.org/10.2337/db12-0190
https://doi.org/10.2337/db14-0877
https://doi.org/10.1093/humupd/dmt013
https://doi.org/10.1136/bmjdrc-2019-000937
https://doi.org/10.1016/j.scitotenv.2020.137349
https://doi.org/10.18502/ijph.v48i1.778
https://doi.org/10.1007/s11892-019-1181-y
https://doi.org/10.1007/s11892-019-1181-y
https://doi.org/10.3389/fendo.2022.1060309
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2022.1060309
34. Zhang H, Zhao Y. Ambient air pollution exposure during pregnancy and
gestational diabetes mellitus in shenyang, China: A prospective cohort study.
Environ Sci Pollut Res Int (2021) 28(7):7806–14. doi: 10.1007/s11356-020-11143-x

35. Zheng Y, Wen X, Bian J, Lipkind H, Hu H. Associations between the
chemical composition of Pm2.5 and gestational diabetes mellitus. Environ Res
(2021) 198:110470. doi: 10.1016/j.envres.2020.110470

36. Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and
disease. Cell (2008) 134(5):714–7. doi: 10.1016/j.cell.2008.08.026

37. Clish CB. Metabolomics: An emerging but powerful tool for precision medicine.
Cold Spring Harbor Mol Case Stud (2015) 1(1):a000588. doi: 10.1101/mcs.a000588

38. Saravanan Dayalan JX, Rachel A, Spicer, Salek R, Roessner U. Metabolome
analysis. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C, editors.
Encyclopedia of bioinformatics and computational biology. 2. Amsterdam,
Netherlands: Academic Press (2019). p. 396–409.

39. Pellis L, van Erk MJ, van Ommen B, Bakker GC, Hendriks HF, Cnubben
NH, et al. Plasma metabolomics and proteomics profiling after a postprandial
challenge reveal subtle diet effects on human metabolic status. Metabolomics Off J
Metabol Soc (2012) 8(2):347–59. doi: 10.1007/s11306-011-0320-5

40. DunnWB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson
N, et al. Procedures for Large-scale metabolic profiling of serum and plasma using
gas chromatography and liquid chromatography coupled to mass spectrometry.
Nat Protoc (2011) 6(7):1060–83. doi: 10.1038/nprot.2011.335

41. Eastman RR, Jursa TP, Benedetti C, Lucchini RG, Smith DR. Hair as a
biomarker of environmental manganese exposure. Environ Sci Technol (2013) 47
(3):1629–37. doi: 10.1021/es3035297

42. Sulek K, Han TL, Villas-Boas SG, Wishart DS, Soh SE, Kwek K, et al. Hair
metabolomics: Identification of fetal compromise provides proof of concept for
biomarker discovery. Theranostics (2014) 4(9):953–9. doi: 10.7150/thno.9265

43. He X, de Seymour JV, Sulek K, Qi H, Zhang H, Han TL, et al. Maternal hair
metabolome analysis identifies a potential marker of lipid peroxidation in
gestational diabetes mellitus. Acta Diabetol (2016) 53(1):119–22. doi: 10.1007/
s00592-015-0737-9

44. Chen X, de Seymour JV, Han TL, Xia Y, Chen C, Zhang T, et al. Metabolomic
biomarkers and novel dietary factors associated with gestational diabetes in China.
Metabolomics (2018) 14(11):149. doi: 10.1007/s11306-018-1445-6

45. Huang S, Mo TT, Norris T, Sun S, Zhang T, Han TL, et al. The climb
(Complex lipids in mothers and babies) study: Protocol for a multicentre, three-
group, parallel randomised controlled trial to investigate the effect of
supplementation of complex lipids in pregnancy, on maternal ganglioside status
and subsequent cognitive outcomes in the offspring. BMJ Open (2017) 7(10):
e016637. doi: 10.1136/bmjopen-2017-016637

46. Norris T, Souza R, Xia Y, Zhang T, Rowan A, Gallier S, et al. Effect of
supplementation of complex milk lipids in pregnancy on fetal growth: Results from
the complex lipids in mothers and babies (Climb) randomized controlled trial. J
Matern Fetal Neonatal Med (2021) 34(20):3313–22. doi: 10.1080/
14767058.2019.1683539

47. Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P,
et al. International association of diabetes and pregnancy study groups
recommendations on the diagnosis and classification of hyperglycemia in
pregnancy. Diabetes Care (2010) 33(3):676–82. doi: 10.2337/dc09-1848

48. Delplancke TDJ, de Seymour JV, Tong C, Sulek K, Xia Y, Zhang H, et al.
Analysis of sequential hair segments reflects changes in the metabolome across the
trimesters of pregnancy. Sci Rep (2018) 8(1):36. doi: 10.1038/s41598-017-18317-7

49. Smart KF, Aggio RB, Van Houtte JR, Villas-Boas SG. Analytical platform for
metabolome analysis of microbial cells using methyl chloroformate derivatization
followed by gas chromatography-mass spectrometry. Nat Protoc (2010) 5
(10):1709–29. doi: 10.1038/nprot.2010.108

50. Han TL, Cannon RD, Gallo SM, Villas-Boas SG. A metabolomic study of the
effect of candida albicans glutamate dehydrogenase deletion on growth and
morphogenesis. NPJ Biofilms Microbiomes (2019) 5(1):13. doi: 10.1038/s41522-
019-0086-5

51. Yang Y, Yin Y, Chen X, Chen C, Xia Y, Qi H, et al. Evaluating different
extraction solvents for gc-Ms based metabolomic analysis of the fecal metabolome
of adult and baby giant pandas. Sci Rep (2019) 9(1):12017. doi: 10.1038/s41598-
019-48453-1

52. George GUO, Elizabeth J. McKenzie M, Jones B, Zarate E, de Seymour J,
Baker PN, et al. Massomics: An r package of a cross-platform data processing
pipeline for Large-scale gc-Ms untargeted metabolomics datasets. Geneva,
Switzerland (2021). doi: 10.5281/zenodo.4961895.

53. Chongqing Ecological Protection Bureau. Atmospheric environmental
quality (2020). Available at: http://sthjj.cq.gov.cn/hjzl_249/.

54. Harper A, Baker PN, Xia YY, Kuang T, Zhang H, Chen YX, et al.
Development of spatiotemporal land use regression models for Pm2.5 and No2
Frontiers in Endocrinology 15
in chongqing, China, and exposure assessment for the climb study. Atmospheric
pollut Res (2021) 12(7):101096. doi: 10.1016/j.apr.2021.101096

55. Konopka T. Umap: Uniform manifold approximation and projection (2022).
Available at: http://CRAN.R-project.org/package=umap.

56. Bates D, Machler M, Bolker BM, Walker SC. Fitting linear mixed-effects
models using Lme4. J Stat Softw (2015) 67(1):1–48. doi: 10.18637/Jss.V067.I01

57. Storey JD, Bass AJ, Dabney A, Robinson D. Qvalue: Q-value estimation for
false discovery rate control (2020). Available at: http://github.com/jdstorey/qvalue.

58. Juan J, Yang H. Prevalence, prevention, and lifestyle intervention of
gestational diabetes mellitus in China. Int J Environ Res Public Health (2020) 17
(24):9517. doi: 10.3390/ijerph17249517

59. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P.
Gestational diabetes mellitus. Nat Rev Dis Primers (2019) 5(1):47. doi: 10.1038/
s41572-019-0098-8

60. Yao L, Yang L, Yuan Q, Yan C, Dong C, Meng C, et al. Sources
apportionment of Pm2.5 in a background site in the north China plain. Sci Total
Environ (2016) 541:590–8. doi: 10.1016/j.scitotenv.2015.09.123

61. Zhang M, Wang X, Yang X, Dong T, Hu W, Guan Q, et al. Increased risk of
gestational diabetes mellitus in women with higher prepregnancy ambient Pm2.5
exposure. Sci Total Environ (2020) 730:138982. doi: 10.1016/j.scitotenv.2020.138982

62. Yao MN, Liu Y, Jin D, Yin WJ, Ma SS, Tao RX, et al. Relationship
betweentemporal distribution of air pollution exposure and glucose homeostasis
during pregnancy. Environ Res (2020) 185:109456. doi : 10.1016/
j.envres.2020.109456

63. Shen HN, Hua SY, Chiu CT, Li CY. Maternal exposure to air pollutants and
risk of gestational diabetes mellitus in Taiwan. Int J Environ Res Public Health
(2017) 14(12):1604. doi: 10.3390/ijerph14121604

64. Yu G, Ao J, Cai J, Luo Z, Martin R, Donkelaar AV, et al. Fine particular
matter and its constituents in air pollution and gestational diabetes mellitus.
Environ Int (2020) 142:105880. doi: 10.1016/j.envint.2020.105880

65. Jo H, Eckel SP, Chen JC, Cockburn M, Martinez MP, Chow T, et al.
Associations of gestational diabetes mellitus with residential air pollution exposure
in a Large southern California pregnancy cohort. Environ Int (2019) 130:104933.
doi: 10.1016/j.envint.2019.104933

66. Bai W, Li Y, Niu Y, Ding Y, Yu X, Zhu B, et al. Association between ambient
air pollution and pregnancy complications: A systematic review and meta-analysis
of cohort studies . Environ Res (2020) 185:109471. doi : 10.1016/
j.envres.2020.109471

67. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role
in multiple forms of insulin resistance. Nature (2006) 440(7086):944–8.
doi: 10.1038/nature04634

68. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ,
et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad
Sci USA (2009) 106(42):17787–92. doi: 10.1073/pnas.0902380106

69. Styskal J, Van Remmen H, Richardson A, Salmon AB. Oxidative stress and
diabetes: What can we learn about insulin resistance from antioxidant mutant
mouse models? Free Radical Bio Med (2012) 52(1):46–58. doi: 10.1016/
j.freeradbiomed.2011.10.441

70. Nagiah S, Phulukdaree A, Naidoo D, Ramcharan K, Naidoo RN, Moodley
D, et al. Oxidative stress and air pollution exposure during pregnancy: A molecular
assessment. Hum Exp Toxicol (2015) 34(8):838–47. doi : 10.1177/
0960327114559992

71. Nel A. Atmosphere. air pollution-related illness: Effects of particles. Science
(2005) 308(5723):804–6. doi: 10.1126/science.1108752

72. Lui KH, Jones T, BeruBe K, Ho SSH, Yim SHL, Cao JJ, et al. The effects of
particle-induced oxidative damage from exposure to airborne fine particulate
matter components in the vicinity of landfill sites on Hong Kong. Chemosphere
(2019) 230:578–86. doi: 10.1016/j.chemosphere.2019.05.079

73. Araujo JA, Barajas B, Kleinman M, Wang X, Bennett BJ, Gong KW, et al.
Ambient particulate pollutants in the ultrafine range promote early atherosclerosis
and systemic oxidative stress. Circ Res (2008) 102(5):589–96. doi: 10.1161/
CIRCRESAHA.107.164970

74. Kelly FJ. Oxidative stress: Its role in air pollution and adverse health effects.
Occup Environ Med (2003) 60(8):612–6. doi: 10.1136/oem.60.8.612

75. Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S,
Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational
diabetes mellitus. Antioxid Redox Signal (2011) 15(12):3061–100. doi: 10.1089/
ars.2010.3765

76. Shukla A, Timblin C, BeruBe K, Gordon T, McKinney W, Driscoll K, et al.
Inhaled particulate matter causes expression of nuclear factor (Nf)-Kappab-Related
genes and oxidant-dependent nf-kappab activation in vitro. Am J Respir Cell Mol
Biol (2000) 23(2):182–7. doi: 10.1165/ajrcmb.23.2.4035
frontiersin.org

https://doi.org/10.1007/s11356-020-11143-x
https://doi.org/10.1016/j.envres.2020.110470
https://doi.org/10.1016/j.cell.2008.08.026
https://doi.org/10.1101/mcs.a000588
https://doi.org/10.1007/s11306-011-0320-5
https://doi.org/10.1038/nprot.2011.335
https://doi.org/10.1021/es3035297
https://doi.org/10.7150/thno.9265
https://doi.org/10.1007/s00592-015-0737-9
https://doi.org/10.1007/s00592-015-0737-9
https://doi.org/10.1007/s11306-018-1445-6
https://doi.org/10.1136/bmjopen-2017-016637
https://doi.org/10.1080/14767058.2019.1683539
https://doi.org/10.1080/14767058.2019.1683539
https://doi.org/10.2337/dc09-1848
https://doi.org/10.1038/s41598-017-18317-7
https://doi.org/10.1038/nprot.2010.108
https://doi.org/10.1038/s41522-019-0086-5
https://doi.org/10.1038/s41522-019-0086-5
https://doi.org/10.1038/s41598-019-48453-1
https://doi.org/10.1038/s41598-019-48453-1
https://doi.org/10.5281/zenodo.4961895
http://sthjj.cq.gov.cn/hjzl_249/
https://doi.org/10.1016/j.apr.2021.101096
http://CRAN.R-project.org/package=umap
https://doi.org/10.18637/Jss.V067.I01
http://github.com/jdstorey/qvalue
https://doi.org/10.3390/ijerph17249517
https://doi.org/10.1038/s41572-019-0098-8
https://doi.org/10.1038/s41572-019-0098-8
https://doi.org/10.1016/j.scitotenv.2015.09.123
https://doi.org/10.1016/j.scitotenv.2020.138982
https://doi.org/10.1016/j.envres.2020.109456
https://doi.org/10.1016/j.envres.2020.109456
https://doi.org/10.3390/ijerph14121604
https://doi.org/10.1016/j.envint.2020.105880
https://doi.org/10.1016/j.envint.2019.104933
https://doi.org/10.1016/j.envres.2020.109471
https://doi.org/10.1016/j.envres.2020.109471
https://doi.org/10.1038/nature04634
https://doi.org/10.1073/pnas.0902380106
https://doi.org/10.1016/j.freeradbiomed.2011.10.441
https://doi.org/10.1016/j.freeradbiomed.2011.10.441
https://doi.org/10.1177/0960327114559992
https://doi.org/10.1177/0960327114559992
https://doi.org/10.1126/science.1108752
https://doi.org/10.1016/j.chemosphere.2019.05.079
https://doi.org/10.1161/CIRCRESAHA.107.164970
https://doi.org/10.1161/CIRCRESAHA.107.164970
https://doi.org/10.1136/oem.60.8.612
https://doi.org/10.1089/ars.2010.3765
https://doi.org/10.1089/ars.2010.3765
https://doi.org/10.1165/ajrcmb.23.2.4035
https://doi.org/10.3389/fendo.2022.1060309
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2022.1060309
77. Gorini F, Sabatino L, Gaggini M, Chatzianagnostou K, Vassalle C. Oxidative
stress biomarkers in the relationship between type 2 diabetes and air pollution.
Antioxidants-Basel (2021) 10(8):1234. doi: 10.3390/Antiox10081234

78. Guan L, GengX, Stone C, Cosky EEP, Ji Y, DuH, et al. Pm2.5 exposure induces
systemic inflammation and oxidative stress in an intracranial atherosclerosis rat
model. Environ Toxicol (2019) 34(4):530–8. doi: 10.1002/tox.22707

79. Pope CA, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O'Toole
T. Exposure to fine particulate air pollution is associated with endothelial injury
and systemic inflammation. Circ Res (2016) 119(11):1204–+. doi: 10.1161/
Circresaha.116.309279

80. Abell SK, De Courten B, Boyle JA, Teede HJ. Inflammatory and other
biomarkers: Role in pathophysiology and prediction of gestational diabetes
mellitus. Int J Mol Sci (2015) 16(6):13442–73. doi: 10.3390/ijms160613442

81. Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg
PA. Critical review of the human data on short-term nitrogen dioxide (No2)
exposures: Evidence for No2 no-effect levels. Crit Rev Toxicol (2009) 39(9):743–81.
doi: 10.3109/10408440903294945

82. Riserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2
diabetes. Prog Lipid Res (2009) 48(1):44–51. doi: 10.1016/j.plipres.2008.10.002

83. Holzer RG, Park EJ, Li N, Tran H, Chen M, Choi C, et al. Saturated fatty
acids induce c-src clustering within membrane subdomains, leading to jnk
activation. Cell (2011) 147(1):173–84. doi: 10.1016/j.cell.2011.08.034

84. Tong X, Dong JY, Wu ZW, Li W, Qin LQ. Dairy consumption and risk of
type 2 diabetes mellitus: A meta-analysis of cohort studies. Eur J Clin Nutr (2011)
65(9):1027–31. doi: 10.1038/ejcn.2011.62

85. Aune D, Norat T, Romundstad P, Vatten LJ. Dairy products and the risk of
type 2 diabetes: A systematic review and dose-response meta-analysis of cohort
studies. Am J Clin Nutr (2013) 98(4):1066–83. doi: 10.3945/ajcn.113.059030

86. Ericson U, Hellstrand S, Brunkwall L, Schulz CA, Sonestedt E, Wallstrom P,
et al. Food sources of fat may clarify the inconsistent role of dietary fat intake for
incidence of type 2 diabetes. Am J Clin Nutr (2015) 101(5):1065–80. doi: 10.3945/
ajcn.114.103010

87. Drehmer M, Pereira MA, Schmidt MI, Del Carmen BMM, Alvim S, Lotufo
PA, et al. Associations of dairy intake with glycemia and insulinemia, independent
of obesity, in Brazilian adults: The Brazilian longitudinal study of adult health
(Elsa-brasil). Am J Clin Nutr (2015) 101(4):775–82. doi: 10.3945/ajcn.114.102152

88. Sakiyama S, Usuki T, Sakai H, Sakane F. Regulation of diacylglycerol kinase
Delta2 expression in C2c12 skeletal muscle cells by free fatty acids. Lipids (2014) 49
(7):633–40. doi: 10.1007/s11745-014-3912-9

89. Wada Y, Sakiyama S, Sakai H, Sakane F. Myristic acid enhances
diacylglycerol kinase delta-dependent glucose uptake in myotubes. Lipids (2016)
51(8):897–903. doi: 10.1007/s11745-016-4162-9

90. Takato T, Iwata K, Murakami C, Wada Y, Sakane F. Chronic administration
of myristic acid improves hyperglycaemia in the Nagoya-Shibata-Yasuda mouse
Frontiers in Endocrinology 16
model of congenital type 2 diabetes. Diabetologia (2017) 60(10):2076–83.
doi: 10.1007/s00125-017-4366-4

91. Jan S, Guillou H, D'Andrea S, Daval S, Bouriel M, Rioux V, et al. Myristic
acid increases Delta6-desaturase activity in cultured rat hepatocytes. Reprod
nutrition Dev (2004) 44(2):131–40. doi: 10.1051/rnd:2004020

92. Tosi F, Sartori F, Guarini P, Olivieri O, Martinelli N. Delta-5 and delta-6
desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with
pleiotropic influences in health and disease. Adv Exp Med Biol (2014) 824:61–81.
doi: 10.1007/978-3-319-07320-0_7

93. Rioux V, Catheline D, Bouriel M, Legrand P. Dietary myristic acid at
physiologically relevant levels increases the tissue content of C20 : 5 n-3 and C20 : 3
n-6 in the rat. Reprod Nutr Dev (2005) 45(5):599–612. doi: 10.1051/rnd:2005048

94. Dabadie H, Peuchant E, Bernard M, LeRuyet P, Mendy F. Moderate intake
of myristic acid in Sn-2 position has beneficial lipidic effects and enhances dha of
cholesteryl esters in an interventional study. J Nutr Biochem (2005) 16(6):375–82.
doi: 10.1016/j.jnutbio.2005.01.010

95. Dabadie H, Motta C, Peuchant E, LeRuyet P, Mendy F. Variations in daily
intakes of myristic and alpha-linolenic acids in Sn-2 position modify lipid profile
and red blood cell membrane fluidity. Br J Nutr (2006) 96(2):283–9. doi: 10.1079/
bjn20061813

96. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, et al.
Relationship of plasma polyunsaturated fatty acids to circulating inflammatory
markers. J Clin Endocrinol Metab (2006) 91(2):439–46. doi: 10.1210/jc.2005-1303

97. Robledo CA, Mendola P, Yeung E, Mannisto T, Sundaram R, Liu D, et al.
Preconception and early pregnancy air pollution exposures and risk of gestational
diabetes mellitus. Environ Res (2015) 137:316–22. doi: 10.1016/j.envres.2014.12.020

98. Zhang H, Dong H, Ren M, Liang Q, Shen X, Wang Q, et al. Ambient air
pollution exposure and gestational diabetes mellitus in guangzhou, China: A
prospective cohort study. Sci total Environ (2020) 699:134390. doi: 10.1016/
j.scitotenv.2019.134390

99. Gall WE, Beebe K, Lawton KA, Adam KP, Mitchell MW, Nakhle PJ, et al.
Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose
intolerance in a nondiabetic population. PloS One (2010) 5(5):e10883. doi: 10.1371/
journal.pone.0010883

100. Cobb J, Eckhart A, Motsinger-Reif A, Carr B, Groop L, Ferrannini E.
Alpha-hydroxybutyric acid is a selective metabolite biomarker of impaired glucose
tolerance. Diabetes Care (2016) 39(6):988–95. doi: 10.2337/dc15-2752

101. Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam KP, et al.
Early metabolic markers of the development of dysglycemia and type 2 diabetes
and their physiological significance. Diabetes (2013) 62(5):1730–7. doi: 10.2337/
db12-0707

102. Banerjee R, Zou CG. Redox regulation and reaction mechanism of human
cystathionine-Beta-Synthase: A plp-dependent hemesensor protein. Arch Biochem
biophys (2005) 433(1):144–56. doi: 10.1016/j.abb.2004.08.037
frontiersin.org

https://doi.org/10.3390/Antiox10081234
https://doi.org/10.1002/tox.22707
https://doi.org/10.1161/Circresaha.116.309279
https://doi.org/10.1161/Circresaha.116.309279
https://doi.org/10.3390/ijms160613442
https://doi.org/10.3109/10408440903294945
https://doi.org/10.1016/j.plipres.2008.10.002
https://doi.org/10.1016/j.cell.2011.08.034
https://doi.org/10.1038/ejcn.2011.62
https://doi.org/10.3945/ajcn.113.059030
https://doi.org/10.3945/ajcn.114.103010
https://doi.org/10.3945/ajcn.114.103010
https://doi.org/10.3945/ajcn.114.102152
https://doi.org/10.1007/s11745-014-3912-9
https://doi.org/10.1007/s11745-016-4162-9
https://doi.org/10.1007/s00125-017-4366-4
https://doi.org/10.1051/rnd:2004020
https://doi.org/10.1007/978-3-319-07320-0_7
https://doi.org/10.1051/rnd:2005048
https://doi.org/10.1016/j.jnutbio.2005.01.010
https://doi.org/10.1079/bjn20061813
https://doi.org/10.1079/bjn20061813
https://doi.org/10.1210/jc.2005-1303
https://doi.org/10.1016/j.envres.2014.12.020
https://doi.org/10.1016/j.scitotenv.2019.134390
https://doi.org/10.1016/j.scitotenv.2019.134390
https://doi.org/10.1371/journal.pone.0010883
https://doi.org/10.1371/journal.pone.0010883
https://doi.org/10.2337/dc15-2752
https://doi.org/10.2337/db12-0707
https://doi.org/10.2337/db12-0707
https://doi.org/10.1016/j.abb.2004.08.037
https://doi.org/10.3389/fendo.2022.1060309
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	The relationship between hair metabolites, air pollution exposure and gestational diabetes mellitus: A longitudinal study from pre-conception to third trimester
	Introduction
	Methods
	Study participants
	Hair sample collection and preparation
	Methyl chloroformate derivatization
	Gas chromatography-mass spectrometry analysis
	Data extraction and normalization
	Data on air pollution exposure
	Statistical analysis

	Results
	Participant characteristics
	Hair metabolites and GDM status
	Air pollutions and GDM
	Air pollutions and hair metabolites

	Discussion
	Pre-conception exposure to air pollution may increase the risk of GDM
	The potential relationship between air pollution and GDM
	The association of air pollutants and hair metabolites in GDM
	Limitations

	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


