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Heart failure with preserved ejection fraction (HFpEF) is one of the most

complex and most prevalent cardiometabolic diseases in aging population.

Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF.

Microvascular dysfunction and vascular remodeling play a major role in its

development. Among the many mechanisms involved in this process, vascular

stiffening has been described as one the most prevalent during HFpEF, leading

to ventricular-vascular uncoupling and mismatches in aged HFpEF patients.

Aged blood vessels display an increased number of senescent endothelial cells

(ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact

that EC and cardiomyocyte cell senescence has been reported during HFpEF.

Autophagy plays a major role in VSMCs physiology, regulating phenotypic

switch between contractile and synthetic phenotypes. It has also been

described that autophagy can regulate arterial stiffening and EC and VSMC

senescence. Many studies now support the notion that targeting autophagy

would help with the treatment of many cardiovascular and metabolic diseases.

In this review, we discuss the mechanisms involved in autophagy-mediated

vascular senescence and whether this could be a driver in the development and

progression of HFpEF.

KEYWORDS
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Cardiovascular diseases and HFpEF

Cardiovascular diseases (CVDs) are the leading cause of

death worldwide, resulting in 17.9 million deaths in 2019 (1). On

top of the list of most prevalent CVDs is heart failure (HF), a

progressive condition in which the heart is unable to pump

enough blood to the body and provide the required oxygen levels

to fulfill its metabolic demands (2). HF represents the end-stage

of multiple cardiac injuries linked to cardiovascular diseases and

risk factors; therefore, its prevalence has steadily increased

during the last decade affecting approximately 1-3% of the

total adult population (3). In the USA, HF affects 5.8 million

individuals (2.4% of the population) and is the first cause of

hospital admission in adult patients, with a readmission rate

during the first six months after discharge of 50% (4). According

to the ejection fraction (EF), HF can be classified as HF with

reduced EF (<40%, HFrEF), HF with mid-range EF (40-50%,

HFmrEF) and HF with preserved EF (>50%, HFpEF).

Approximately half of the patients with signs and symptoms

of HF have HFpEF. Predisposing risk factors for HFpEF include

older age, diabetes, obesity, and arterial hypertension (5). Even

though these syndromes show similar symptoms (edema,

dyspnea, fatigue, exercise intolerance), it is well described in

the literature that they are quite different syndromes: HFpEF is

characterized by diastolic dysfunction, altered ventricular

relaxation and filling, increased stiffness, and concentric

remodeling of the ventricular wall, resulting in an important

pressure overload. On the other hand, HFrEF is characterized by

systolic dysfunction, altered ventricular contraction, which

reduces ejection fraction, and an eccentric myocardial

remodeling followed by ventricular dilation, resulting in

ventricular volume overload (2). Compared to HFrEF, HFpEF

presents with increased cardiac perivascular fibrosis, less nitric

oxide (NO) bioavailability, earlier endothelial dysfunction and

higher level of pro-inflammatory cytokines (6). Additionally,

HFpEF patients present a higher load of comorbidities, mainly

advanced age, obesity, diabetes and hypertension (7, 8). Dunlay

et al., (3) reported a summary of an important number of clinical

trials using interventions well described for HFrEF that have

shown little or no effect on mortality rates in patients with

HFpEF, underlying the importance of the study and

development of new therapeutic strategies to treat HFpEF.

HFpEF is associated with a poor quality of life, crucial

healthcare resource utilization, high rates of hospitalization,

and mortality that are similar to patients with HFrEF (9).

Incidences of obesity and diabetes mellitus are projected to

grow, leading to an increased prevalence of risk factors for

HFpEF (10, 11). HF prevalence of both types increases with

age, but the prevalence of HFpEF at any given age increases

more rapidly than HFrEF prevalence (12). One of the main

limitations of early studies in HFpEF was the lack of established

diagnostic criteria (13). In many registries, patients diagnosed
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with HFpEF also had other comorbidities that could account for

their symptoms, such as extreme obesity, lung disease, and

myocardial ischemia (13). It was only recently that The

European Society of Cardiology proposed a comprehensive set

of diagnostic criteria. These criteria allowed for identifying

patients with HFpEF, ruling out confounding comorbidities,

and reaffirming the existence of the clinical problem (14).

HFpEF is considered a clinical syndrome rather than a

discrete disease (9). Therefore, multiple pathophysiological

mechanisms, including diastolic dysfunction, are responsible

for its generation (9, 15). In recent years, chronic systemic

microvascular inflammation has been highlighted as one of the

main pathophysiological mechanisms of HFpEF, and the

importance of the different comorbidities that induce this

response, mainly age, obesity, diabetes, and hypertension, has

been emphasized (7, 16, 17). Patients with HFpEF show elevated

inflammatory markers such as Interleukin-1 type I receptor (IL-

1R), tumor necrosis factor a (TNFa), C-reactive protein (CRP),

vascular cell adhesion molecule-1 (VCAM-1) and IL-6 (7, 15).

This leads to increased endothelial reactive oxygen species (ROS)

production, less NO bioavailability, and nitrosative stress due to

the accumulation of nitrogen reactive species (RNS) (7, 18).

In this review, we go through available data regarding

vascular and microvascular dysfunction related to autophagy

and cell senescence, to propose a potential role of these processes

in the development and progression of HFpEF.
Vascular contribution to HFpEF

Microvascular dysfunction

The microvasculature is comprised of arterioles, capillaries

and venules; microcirculation through these vessels allows the

delivery of oxygen and nutrients to meet the energetic demands

of local tissues, mainly through regulation of vascular tone,

structural microvascular adaptations such as angiogenesis, and

the regulation of hemostasis, inflammation and vascular

permeability (19, 20). The role of microvascular dysfunction,

usually described as an impaired regulation of blood flow in

response to oxygen requirements (21), has been widely described

in several chronic conditions, such as hypertension, diabetes,

obesity, and HF (22). As previously mentioned, Paulus and

Tschope (7) proposed a new paradigm for HFpEF in which

myocardial dysfunction is, in part, due to coronary

microvascular inflammation. They proposed that low-grade

chronic systemic inflammation, mainly because of the presence

of multiple comorbidities, initiates detrimental microvascular

changes that result in the HFpEF-associated myocardial

dysfunction. Accordingly, inflammatory markers such as IL-6,

CRP and TNFa showed a stronger association in HFpEF

patients when compared with HFrEF patients (23). In
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summary, it is proposed that inflammation induces ROS

production in the endothelium, which decreases NO

bioavailability and increases peroxynitrite levels, impairing the

guanylate cyclase/cyclic guanylate monophosphate (cGMP)/

protein kinase G (PKG) pathway in cardiomyocytes (24). This

was further described in cardiomyocytes of a mice model of

HFpEF treated with high fat diet (HFD) and N(w)-nitro-L-
arginine methyl ester (L-NAME), a nitric oxide synthase (NOS)

inhibitor (18). Whether the same effects occur in VSMCs is yet

to be determined. Additionally, HFpEF patients show systemic

peripheral impaired microvascular reactivity evaluated by

endoPAT, a non-invasive endothelial dysfunction test (25),

and capillary rarefaction in skeletal muscle associated with

poor exercise tolerance (26). Moreover, a decrease in coronary

microvascular function, an increased prevalence in coronary

rarefaction, and an impaired maximal hyperemia, compared to

age-matched controls, were also reported in HFpEF patients

(25–28). For a more comprehensive review on this subject, see

Weerts et al., (29).

Recently, using cell therapy, de Couto et al., (30)

administered intracoronary cardiosphere-derived cells (CDCs)

during two weeks to HFpEF rats, developed by feeding Dahl salt-

sensitive rats with a high salt diet. CDCs treatment improved

EC-dependent vasodilation, reduced oxidative stress, restored

endothelial NOS (eNOS) expression, previously shown to be

decreased in the HFpEF endothelium (31), inflammatory

response and VCAM-1 expression. It also improved diastolic

dysfunction and restored vascular reactivity (30). These results

uncover the importance of microvascular dysfunction in HFpEF.

Another approach to evaluate microvascular function is the

study of the retinal arterioles, which can be evaluated using

non-invasive optic cameras (32). Retinal arterioles wall-to-

lumen ratio (rWLR) was significantly higher in HFpEF group,

consistent with a previously proposed correlation between
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retinal arteriole structural alterations and HF (33).

Interestingly, this increase was also significant when compared

to hypertensive controls (32). Finally, a recent study performed

by Yuksel et al., (34), evaluated microvasculature using nailfold

videocapillaroscopy in HFpEF patients and found abnormal

results regarding microvascular morphology, architecture and

density compared not also with control patients but also with

patients with HFrEF.

Taken together, the evidence presented above strengthens

the previously proposed role of microvascular dysfunction in

HFpEF pathogenesis (Figure 1). However, remains to be

elucidated whether this microvascular dysfunction is cause or

consequence of HFpEF.
Macrovascular dysfunction

Arterial intima-media thickness and stiffness have been

identified as important risk factors for HF (35). The

assessment of major vessel function in HFpEF started with

aorta analyses from HFpEF patients. These aortas present a

diminished aortic distensibility (36), a decreased vasorelaxation

response induced by nitroglycerine (37) and exercise (38, 39),

increased resting vasoconstriction and less NO sensibility (17).

Furthermore, an increased aortic stiffness has been widely

reported in these patients (17, 40–42). Schwartzenberg et al.,

(43) reported that HFpEF patients responded better to treatment

with sodium nitroprusside (a vasodilator drug), as compared

with HFrEF patients, underlying the importance of the vascular

component to HFpEF. Among the mechanisms that relate

arterial stiffening to myocardial dysfunctions are an impaired

myocardial oxygen supply, reduced arterial compliance and a

decrease in diastolic blood pressure, that compromise coronary

artery flow (44).
FIGURE 1

Contribution of macrovascular and microvascular dysfunctions to the development of HFpEF. Using non-invasive techniques, several macro and
microvascular alterations have been described in the resistance and conduit arteries from HFpEF patients. These alterations are suggestive for a
main role of vascular dysfunction in the pathogenesis of HFpEF.
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An association between HFpEF carotid arteries

morphological and functional alterations has been recently

described (32, 45, 46). Using ultrasound and magnetic

resonance imaging (MRI) on patients from the multi-Ethnic

study of atherosclerosis (MESA), Fernandes et al., (44) found a

relation between carotid distensibility and enhanced left

ventricle diastolic function, even after adjustment for risk

factors and blood pressure control therapies. In another study

that analyzed MESA patients, no difference in the association of

carotid intima-media thickness (IMT) was reported when

comparing HFpEF with HFrEF patients (46). Additionally,

after adjustment with traditional risk factors, the observed

association of internal and common carotid IMT and HF lost

its statistical significance. Moreover, it was recently described

that common carotid arteries of HFpEF patients had a higher

diameter IMT and a significantly higher IMT to lumen ratio

compared to controls (32). Interestingly, blood pressure control

decreases carotid IMT but did not stop its progression in

hypertensive subjects (47). Engstrom et al., (48), reported that

there was a significant association of carotid IMT and HF

hospitalization. Through the evaluation of brachial-ankle pulse

wave velocity (baPWV), a method to estimate arterial stiffness,

which reflects the stiffness of both the aorta and peripheral

artery, Hu et al., (49), described a positive correlation between

baPWV and left ventricular hypertrophy and diastolic function.

Similarly, using brachial artery flow-mediated dilation (FMD)

and microvascular function via reactive hyperemia (RH), it was

reported that HFpEF patients had a reduction in brachial artery

diameter in response to RH, compared to aged-matched controls

(16). Nevertheless, this difference was lost when normalizing for

shear stress rate differences. In accordance with the latter, no

differences were found between HFpEF patients’ femoral artery

FMD and those of the controls (50). On the other hand, a totally

different result was described by Farrero et al., (51), in which a

significant reduction in brachial artery FMD was observed in

HFpEF patients compared with hypertensive controls. To

further support the importance of the vasculature to HFpEF

pathophysiology, several biomarkers related with vascular

function are altered during HFpEF: reduced NO bioavailability

(potent vasodilator), higher levels of endotelin-1 (a potent

vasoconstrictor) and increased levels of plasminogen activator

inhibitor-1 (PAI-1), a described risk factor for atherosclerosis,

among others (52).

It is important to note that most of the studies discussed in

this section have been performed using non-invasive methods,

such as MRI, FMD, and ultrasound. Additionally, human studies

are usually performed with patients taking medication for

HFpEF comorbidities, mainly anti-hypertensive drugs, which

limits the data obtained about the natural history of the disease.

Very little research focusing on molecular alterations have been

performed, especially in relation to macrovascular circulation.

This may be due to the, until recently, lack of animal models that

properly emulate HFpEF characteristics. In the past few years, an
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important number of animal models have been developed, so

further investigation will hopefully reveal more detailed

information about vascular dysfunction and remodeling

during HFpEF onset and progression. Even though there is a

long way to go to fully elucidate the molecular mechanisms

behind vascular alterations in HFpEF, it is now clear that micro

and macrovascular dysfunctions could play a major role in

HFpEF (Figure 1).
Vascular aging and senescence

The mechanisms of aging and age-associated disorders are

complex and involve cellular senescence (53). Aging is

characterized by an accumulation of senescent cells, as a result

of aged organisms being unable to repair damage at the same

rate as cells become damaged (54). Senescent cells can be

identified by a permanent cell growth arrest (55, 56).

Senescent cells become enlarged and flattened, with

proliferative arrest, that secretes pro-inflammatory molecules,

a phenotype known as senescence-associated secretory

phenotype (SASP), triggering chronic sterile inflammation that

induces tissue remodeling (53). Several markers are used to

indirectly detect senescent cells, being senescence-associated b-
galactosidase (SA b-gal) activity the most common. Lysosomal

b-gal activity is detected at a low pH (around pH 4) but becomes

detectable at a higher pH (pH 6) in senescent cells due to marked

expansion of the lysosomal compartment (57). Other markers of

cellular senescence include high expression of p53, p16, p21,

p38-mitogen activated protein kinase (MAPK), and

phosphorylated histone H2AX (gH2AX), an early marker of

cellular response to the induction of DNA double-strand breaks

(58–62). Moreover, high mobility group A (HMGA) proteins

and heterochromatin markers, including heterochromatin

protein-1 and tri-methylated lysine 9 histone H3, are

molecular markers of senescence-associated heterochromatin

foci and are considered to reveal cellular senescence (61).

Arterial remodeling occurs with aging, even in the absence of

cardiovascular disease and cardiovascular risk factors. Aging is

frequently associated with vascular dysfunction (63, 64). In fact,

people with progeria syndrome, that present a premature aging

in early childhood, developed premature atherosclerosis disease

(65). Aged arteries have increased intima/media thickness ratio,

with an increase of 2- to 3-fold from 20 to 90 years of age (66,

67). The arterial media also becomes thicker with aging, and its

cellularity decreases simultaneously (68). Furthermore, the

length and circumference of the aorta increase with aging (69),

with an accumulation of collagen and elastin decline (70). These

structural changes are associated with a reduction in compliance,

reduction of elasticity/distensibility, and increase of stiffness,

resulting in higher systolic blood pressure and lower diastolic

pressure (71). ROS and chronic low-grade sterile inflammation

are two significant contributors to the progression of age-related
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vascular dysfunction. Senescent cells accumulate in the arteries

with aging irrespective of whether a person has or not age-

related vascular disorders (72–75). Along with aging, vascular

tissues of rodents and humans show elevation of the levels of

p16, p21, phosphorylated p38-MAPK, and double-stranded

DNA breaks, in association with high SA b-gal activity (76–

79). Expression of p53 and p21 is increased in the arteries of

elderly persons, together with a structural breakdown of

telomeres (75). Interestingly, senescent cells are increased in

the coronary arteries of patients with ischemic heart disease but

not in the internal mammary arteries (72).

Blood vessel walls are comprised primarily of ECs, VSMCs

and extracellular matrix (ECM). Because in both cells are

described the occurrence of phenotypic features commonly

observed in senescent cells (74), and changes in vascular ECM

structure is associated with aging (80), the association of these 3

vascular components with senescence and CVDs is

next described.
Vascular smooth muscle cells

VSMCs are the key component of the medial layer in

arteries, with an important role in contraction and regulation

of blood pressure and vascular tone (81). Aging-dependent

functional changes of VSMCs are partly due to deregulation of

TGF-b signaling, and these cells undergo a transformation from

“contractile” to “synthetic” phenotype (82, 83). The VSMC

synthetic phenotype is responsible for the aging-dependent

intimal thickening because of the increased proliferation,

migration and production of collagen (70). Moreover, upon

metabolic alterations, the shift from a contractile to a synthetic

phenotype has been associated with progression of hypertension

and atherosclerosis (84).

Intimal thickening is also associated with the formation of

atherosclerotic lesions (85). Interestingly, senescent VSMC have

been identified in atherosclerotic lesions of patients with

coronary artery disease and peripheral artery disease (72).

Those VSMC present shorter telomeres, are positive for SA b-
gal, and have elevated p16 and p21 expression (74, 86).

Senescent VSMC in atherosclerotic plaque display loss of

t e lomer i c repea t -b ind ing f ac to r -2 (TRF2) . TRF2

overexpression reduces DNA damage, accelerates DNA repair,

and suppresses cellular senescence (87). VSMC specific

knockout (KO) of TRF2 increases atherosclerosis and necrotic

core formation. These pathological changes are inhibited in mice

with VSMC-specific overexpression of TRF2 (87). Hypertension,

an established risk factor for HFpEF, increases the activity of p53

and p21 in the arteries of hypertensive patients. While telomere

length is comparable between patients with hypertension and

controls, telomere uncapping is 2-fold higher in hypertensive

patients (88). A murine model of genomic instability showed

senescence of ECs and VSMC in the aorta, along with impaired
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vasodilation, increased vascular stiffness, and hypertension (89).

In a hypertensive rat model, produced by treating with

deoxycorticosterone acetate and salt, overexpression of p16

was detected in the coronary arteries, indicating the existence

of a vicious circle between cellular senescence and hypertension

(90). Another vicious circle is produced because senescent

VSMCs trigger low grade sterile inflammation through the

secretion in the SASP of several cytokines, including IL-1a
(91). Moreover, SA b-gal positive VSMC in carotid plaques

express IL-6, suggesting that senescent VSMCs have a SASP

involved in the progression of atherosclerotic disorders (91).

Taken together, these studies show that senescent cells

accumulate in the vessels of patients with atherosclerosis,

hypertension, aneurysms, and intimal hyperplasia, some of

them common risk factors for the development of HFpEF.

ROS and angiotensin (Ang) II are well-known inducers of

senescence in VSMC (92, 93). Ang II administration also induces

senescence of VSMCs in apolipoprotein E null mice (94). Ang II

promotes VSMC senescence by suppressing Mdm-2-mediated

degradation of p53 and promoting the expression of smooth

muscle 22a (SM22a) (95). Similarly, we described that Ang II

increases contractile proteins calponin and a-smooth muscle

actin (a-SMA) (96). ROS induces DNA damage in VSMC and

suppresses telomerase activity, leading to telomere shortening

and cellular senescence in the atherosclerotic lesion (86). On the

other hand, hypoxia inhibits senescence by promoting

telomerase activity (97).

As reviewed by Chi et al., (98), epigenetics can accelerate or

prevent VSMC senescence. Autophagy, the mechanism by which

cells removes damaged components (99) could also prevent

VSMC senescence as vascular aging is associated with

impaired autophagy (100) and induced moderate autophagy

can increase proliferation in VSMCs (101). Although it is

possible to detect senescence in VSMCs using common

senescence criteria, such as changes in levels of p16, p21, p38-

MAPK, p53 and H2A.X and SA b-gal activity (102), in a study

aimed to characterize human coronary VSMC senescence it was

concluded that classical senescence markers show a mild

deregulation as to warrant consistent senescence detection in

vitro, and that altered RNA metabolism could be a key feature to

ensure VSMC senescence detection (103).
Endothelial cells

The endothelium is a semipermeable barrier composed by a

monolayer of cells that controls the exchange of nutrients and

metabolites, regulates vascular tone, permeability, inflammation

and blood fluidity and, thereby, is of paramount importance for

maintaining vascular homeostasis (104, 105). ECs are a constant

target for different damage-inducing factors present in the

bloodstream that may impair cellular function. EC senescence

can occur as a result of this cell damage, thereby precluding
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uninhibited proliferation of damaged cells, but this process can

also be harmful and contribute to the pathophysiology of

cardiovascular diseases (106). During aging, ECs display the

classic markers of cell senescence (64). Additionally, alterations

in mitochondrial biogenesis (107), NFkB activation (108),

increased matrix metalloproteinase (MMP) secretion (109) and

reduced eNOS activity (110) have also been described. In human

umbilical vein ECs (HUVECs), knockdown of the transcription

factor E2F2 induced senescence in these cells and its

overexpression decreased senescence markers; interestingly, a

lower expression of E2F2 was seen in aortas of aged mice (111).

These experiments suggest that E2F2 can be a potential target to

modulate senescence in vivo, yet its participation in HFpEF

remains unknown. Finally, during aging, Sirtuins dysregulation

occurs in the endothelium, particularly a decrease in SIRT1,

which induces cell senescence and has been linked to the

development of CVDs, as reviewed by Kida and Goligorsky

(112). Nevertheless, Conti et al., (113) found no significance

differences in SIRT1 levels in peripheral blood mononuclear cells

of HFpEF patients compared to controls. Whether these

differences are due to the different cell type studied or not

requires to be studied.
Vascular extracellular matrix

The ECM is composed of several structural proteins, including

elastin and collagens, that not only provides structural support to

the VSMCs and ECs, but also regulates the mechanical function of

the vessel (80). Arteries stiffen with age, suggesting that age-related

arterial stiffening may contribute to CVDs (114). In fact, elastin

fibers lose functionality with age mainly by fragmentation,

calcification and MMP degradation. These changes induce the

formation of stiffer fibrils, which directly contributes to age-

dependent increases in arterial stiffness (114). In contrast, the

arterial collagen content and collagen crosslinking increases with

age (80). Increased fibrosis has been described in the intima (115),

media (116, 117), and adventitia (118).

Age-related changes in elastin and collagen composition and

function are due to the action of MMPs (80). MMPs and its

tissue inhibitors (TIMPs) changed as a function of age in the

absence of clinically significant CVD (119). In the blood vessels,

age-related MMP-2 upregulation occurs in the human aorta but

not in the internal mammary artery (120), and this upregulation

is associated to arterial stiffness (121). Moreover, MMP-3

polymorphisms have been associated with vascular remodeling

and age-related arterial stiffening (122). Several factors that are

dysregulated during vascular senescence, such as NO, IL-1 and

TNFa, trigger MMPs synthesis and activation (80). Moreover,

MMP activation, which disrupts arterial integrity, can be

induced by oxidative stress (123). An interesting study showed

a ROS-dependent activation of MMPs in cerebral arteries of

aged, but not young, hypertensive mice (109). This finding
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supports the notion that multiple comorbidities, i.e. age and

hypertension, are required for some of the pathological

alterations observed in these arteries.

ECM alterations create a pro-inflammatory environment

that induce phenotypic alterations in both ECs and VSMCs,

such as those observed during vascular aging and senescence

(124). Since low-grade chronic inflammation has been proposed

as one of the key features of HFpEF, it could be assumed that

these ECM alterations play an important role in this disease.

Although no studies have been performed that evaluate vascular

MMP levels and activity in HFpEF, a cardiome-directed network

analysis performed in a rat model of HFpEF showed that ECM

alterations occur in the heart of these animals (125).

Additionally, a correlation between MMP-2 levels and left

ventricle EF was found in HF patients (126). In fact, MMP-2

has been proposed as a target for HF treatment (127).

Furthermore, human primary fibroblast from patients with

both hypertension and HFpEF showed a significant decrease

in membrane type 1-MMP, compared with hypertensive only

and healthy patients (128). Whether similar alterations occur in

vascular tissue remains to be determined.
Autophagy, cell senescence and
vascular aging

Autophagy is a physiological process that seeks to maintain

cellular homeostasis by controlling the degradation of components

such as proteins and damaged organelles (129). ECs and VSMCs

are no strangers to this process, and multiple diseases have been

associated with an imbalance in the autophagic flux (130). Among

the most described autophagy hallmarks to evaluate this process are

the accumulation of p62, LC3-II levels, LC3-II/LC3-I ratio, the

analysis of autophagy related protein (Atg) levels and some of the

main regulatory proteins such as Beclin-1, ULK1 and mTOR (131).

The relationship between senescence and autophagy has been

explored in both VSMCs and ECs.
Vascular smooth muscle cells

An increase in autophagy has been related to phenotypic

changes in VSCMs from a differentiated to a dedifferentiated one,

which favors the appearance of different CVDs (130). On the

other hand, autophagic flux blockage has also been related to a

phenotype change in diseases such as aneurysms and

atherosclerosis (132). A direct link between VSMC autophagy

and arterial stiffness is demonstrated using a VSMC-specific

Atg7-KO mice (Atg7F/F SM22a-Cre+ mice) (133). Moreover,

specific deletion of Atg7 in VSMC induces p62 accumulation and

accelerates the development of stress-induced premature

senescence (134). During aging, an impaired autophagy is

triggered due to direct oxidation of Atg3 and Atg7 that inhibits
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LC3 lipidation (135) and due to mTOR activation (136). Also, an

increase of IL-6 and impairment ofmitochondrial functionwithin

the aorta, associated with enhanced mitophagy and increased

PARKIN levels are observed (137). Furthermore, during aging,

the expression of Krüppel-like family of transcription factor 4

(KLF4) decreases in vascular tissues in C. elegans, mice and

humans (138). Overexpression of KLF4 increases autophagy

flux and improves vessel function in aged mice, suggesting an

evolutionary transcriptional regulation of autophagy during aging

(138). Accordingly, activation of autophagy by the upregulation of

the peroxisome proliferator activated receptor gamma coactivator

1 alpha (PPARGC1A) (139), celastrol (a quinone methide

triterpenoid isolated from the Celastraceae family) (140),

genistein (141) or nifedipine (142) suppresses VSMC

senescence by upregulating autophagic flux.

In both replicative and stimulus-induced in vitro senescence

models, it has been demonstrated that autophagy is required for

VSMC senescence development. In rat VSMC treated with Ang

II, an increase in SA b-gal activity, p16, p21, and p53 levels are

observed (143, 144). Treatment with Ang II also decreased

VSMC proliferation (140). Interestingly, these studies show a

decrease in autophagic flux, so using an autophagy inducer such

as rapamycin, Ang II-induced senescence is prevented (140,

143). Doxorubicin was also shown to induce VSMC senescence

through an autophagy-dependent mechanism. A decreased

autophagic flux through act ivat ion of mTOR and

downregulation of essential autophagy proteins such as

Beclin-1 and LC3 were described in these cells (136, 141).

Other VSMC senescence inducers have been shown to have a

slightly different mechanism. For example, hydrogen peroxide

has been shown to induce senescence by blocking autophagic

flux, causing LC3 accumulation (142). On the other hand,

oxLDL induces senescence but does not produce modification

of LC3 levels or ULK1/mTOR phosphorylation. Despite this,

rapamycin prevents oxLDL-induced VSMC senescence (101).

This proves that even when autophagy is not involved directly in

the induction of cell senescence, it can be a rescue mechanism.

In both human and rat VSMC replicative senescence models,

increased mTOR signaling is observed, but upon treatment of

these cells with rapamycin, all senescence markers are decreased

(145). In aged cells, a decrease in Beclin-1 and LC3 levels and an

increase in mTOR phosphorylation are also observed.

Remarkably, upon increasing autophagic flux, senescence is

reversed (146). Finally, Grootaert et al., (134) showed that

Atg7-KO VSMC displayed lower proliferation rate and

increased senescence markers, consistent with an acceleration

of senescence. Although there are some differences in the

molecular mechanisms of the different treatments and the time

of treatment to induce senescence, the same pattern is observed

in all of them; autophagy inhibition is an essential step in the
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induction of senescence in VSMCs. Therefore, current evidence

supports the idea that autophagy activation in VSMC could have

protective effects in the aging-associated development of CVDs.
Endothelial cells

In general terms, autophagy is crucial to maintain the

homeostasis of ECs, while impaired autophagic flux can lead to

endothelial inflammation and thereby, favor the development of

atherosclerosis (147). Recent studies have delved into the role of

endothelial autophagy in CVDs. Gogiraju et al., (148) reported that

mice lacking the endothelial leptin receptor and subjected to

transverse aortic constriction showed improved left ventricular

function and reduced hypertrophy. Moreover, deletion of the

leptin receptor was associated with increased autophagy and

impairment of the Akt/mTOR pathway, suggesting a protective

role for autophagy in a pressure overload setting, which is

suppressed by leptin signaling (148). Another study reported that

mice with EC-specific deletion of autophagy-related protein 7

(Atg7) show increased susceptibility of doxorubicin-induced

cardiotoxicity (149). These data further support a protective role

for autophagy in CVDs.

The link between endothelial autophagy and senescence has

also been explored. Rhynchophylline has been found to reduce

Ang II-induced senescence via AMPK-dependent activation of

autophagy in endothelial progenitor cells (150). In addition,

C1q/tumor necrosis factor-related protein 9 (CTRP9), which

wields anti-aging and anti-atherogenic effects, was recently

found to reduce endothelial senescence induced by palmitic

acid in HUVECs, an effect also achieved through AMPK-

mediated activation of autophagy (151). Pan et al., (152)

showed that the overexpression of Yes-associated protein

(YAP) in HUVECs and in rat aortas increased the activity of

SA b-gal staining and protein markers such as p16, p21 and p53,

along with an activation of mTOR pathway and a blockage of

autophagic flux. They also demonstrated that the knockdown of

YAP and the inhibition of mTOR could relieve both cellular and

vascular senescence (152). Advanced oxidation protein products

(AOPPs) result from cell oxidative stress and are accumulated

and increased in patients with vascular disease and aging (153).

In HUVECs, AOPPs induced senescence, increasing the

expression of p21, p16 and SA b-gal activity, along with an

impairment in autophagic flux (154). The effects of AOPPs were

also evaluated in a model of ApoE-/- mice fed with a HFD, which

showed an increase in senescence molecular markers in aortic

tissue (154). Interestingly, it has been reported that autophagy

reduces apoptosis and senescence induced by high glucose

concentrations in human coronary artery ECs (155).

Nonetheless, a protective role for endothelial autophagy and
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its potential effect in cellular senescence in the context of HFpEF

remains to be elucidated.
Autophagy and HFpEF

The role of autophagy is well described in HFrEF (156).

Although its role in HFpEF is poorly described, there is evidence

that autophagy could play an important role in the development of

HFpEF. cDNA analysis in a rat model showed that five processes

are mainly involved in the development of HFpEF: endothelial

function, inflammation, sarcomere/cytoskeleton, extracellular

matrix and apoptosis/autophagy (125). RNAseq analysis

performed in patients with HFpEF also revealed that genes

related to endoplasmic reticulum stress, angiogenesis, and

autophagy, are related to the development of HFpEF (157).

Similarly, in a model of aged HFpEF mice, through a RNAseq

analysis, it was found that the most upregulated pathways were

those related to cell cycle andmitotic cell cycle processes in the heart

of aged mice (158). Animal studies show that both autophagy and

mitophagy decrease in the heart with age (159, 160). LC3-II

expression and the LC3-II/LC3-I ratio decrease in the heart of

aged mice with diastolic dysfunction, compared to young controls

(159). On the other hand, myeloid differentiation protein 1 (MD1)

is decreased in the heart of HFpEF mice and its down regulation

promotes autophagy through a ROS/MAPK pathway (161).

Mitochondrial dysfunction is one of the central mechanisms in

the development and progression of HF (162). In this line,

mitophagy was found to be decreased in aged mice. Interestingly,

p53 was found to inhibit PARKIN translocation into the

mitochondria, decreasing mitophagy and thus contributing to

mitochondrial dysfunction. In addition, p53-KO mice improved

mitochondrial integrity and cardiac functional reserve in both aged

and doxorubicin-treated mice. PARKIN overexpression also

improved cardiac function and decreased SA b-gal activity (160).

These data highlight the importance of autophagy to be recognized

as a target to be studied in development and treatment of HFpEF.
Senescence and HFpEF

EC senescence has been described to play an important role

in aging mice with HF (163). The presence of comorbidities

associated with age such as hypertension, diabetes or obesity

contribute to endothelial inflammation and the consequent

reduction of its ability to induce vasodilation, which in turn

elicits cardiac hypertrophy, stiffness and ultimately, HF (7, 106).

Chronic sterile inflammation, probably due to a SASP, is present

in the myocardium of HF patients (164), and is involved in the

induction of cardiac remodeling (165). In a murine model of left

ventricular pressure overload, cardiac and endothelial p53 levels

are increased, leading to cardiac inflammation associated with
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suppression of myocardial angiogenesis, tissue hypoxia, and

cardiac dysfunction (166, 167). These studies suggest the

involvement of cardiac senescence in the pathophysiology of HF.

One of the major risk factors for HFpEF is age (5, 9).

Moreover, it was recently suggested that EC senescence also

contributes to the development of HFpEF: when mice with

accelerated senescence were fed a high-fat, high-salt diet, both

EC senescence and inflammation increased, along with the

typical hemodynamic and structural changes of HFpEF and an

impaired endothelial-dependent vasodilation of the aorta (163).

Furthermore, the histological analysis of thoracic aorta revealed

that the pro-inflammatory protein ICAM-1 and the senescence

marker acetyl-p53 were increased in ECs of senescence

accelerated mice (SAM) fed with Western diet, as compared

with the SAM fed with control diet, suggesting that the potential

therapeutic targeting of EC senescence may be a valuable

strategy for the treatment of HFpEF (163). Using an aged mice

model of diastolic dysfunction, Shinmura et al., (159), showed

increased levels of SA b-gal of aged mice. An interesting model

of telomerase RNA KO plus diet-induced HFpEF (HFD and L-

NAME supplemented-water), showed increased p53 expression

in the heart, associated with impaired mitochondrial respiration,

and that myocardial-specific p53 KO mice show a delay in the

development of HFpEF, although the pathology still developed

(168). Patients from the multicenter PROMIS-HFpEF study

with a pan-inflammatory phenotype had increased levels of

insulin-like growth factor-binding protein 7 (IGFBP7), a

protein that stimulates inflammation and cell senescence

(169). Accordingly, HFpEF patients from the RELAX trial

showed a higher baseline IGFBP7 that was correlated with

impaired diastolic function (170). Nevertheless, while the use

of senolytics is a promising therapeutic approach (171), the

evidence linking senescence to HFpEF is still scarce and more

studies are required to confirm these findings.

Considering that cellular senescence induces vascular

dysfunction and inflammation, it seems reasonable that it would

also promote pathologic changes observed in HFpEF. Moreover, as

stated above, chronic microvascular inflammation, a senescence-

like phenotype, is one of the hallmarks of HFpEF development (7).
A possible role of vascular
autophagy-mediated senescence
in HFpEF

So far, we have presented evidence that: 1) microvascular

and macrovascular dysfunction are present in HFpEF and play

an important role in its pathophysiology, 2) aging, one of the

most prevalent comorbidities of HFpEF involves both vascular

senescence and vascular autophagy impairment, 3) autophagy

modulates cells senescence in both VSMC and ECs and 4) both

autophagy and cell senescence in the heart muscle and
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endothelium are most likely to be participating in the

development and progression of HFpEF.

It is currently believed that chronic low-grade inflammation is

one of the main drivers of HFpEF, resulting in a decreased NO

bioavailability, an increase in proinflammatory cytokine levels and

oxidative stress (7). ROS and inflammation have also been

described as characteristic features of vascular aging, and the

resulting vascular remodeling and dysfunction (172). It has been

shown that ROS induces senescence in both VSMCs and ECs (92,

93, 154), and that this leads to unpaired vasodilation and vascular

stiffness, both of which have been observed in HFpEF patients (17,

37–42). As with aging, during hypertension, another important

comorbidity of HFpEF, vascular senescence is observed (88). Taken

together, this data supports the idea that vascular senescence could

be an important component of HFpEF physiopathology. IGFBP7, a

protein involved in the regulation of cell senescence, was found to

be increased in HFpEF patients (169, 170). So far, only one study
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has been performed that evaluates senescence markers in a diastolic

dysfunctionmousemodel and shows that there is an increase in p53

levels and SA b-gal activity in aortic ECs of these mice (163).

The inhibition of autophagy leads to cell senescence in both

VSMCs and ECs (134, 149). On the same line, autophagy

induction can prevent the appearance of cell senescence (101).

It has also been described that vascular aging is accompanied by

an impaired autophagy, which results in vascular stiffness (135).

Oxidative stress, mentioned as an important component of

HFpEF, induces VSMC senescence through blockage of

autophagy (142). Since autophagy is starting to appear as an

emerging pathway involved in HFpEF, mainly through genetic

analyses, its relationship with vascular senescence is a promising

field of study. Hearts of aged mice with diastolic dysfunction

show impaired autophagy (159). Nevertheless, no studies have

been performed that evaluate autophagy in vascular tissue

during HFpEF, nor its relationship with cell senescence.
FIGURE 2

Potential role for vascular autophagy and senescence in the development and progression of HFpEF. Predisposing risk factors for HFpEF include
older age, diabetes, obesity, and arterial hypertension. All these conditions trigger chronic inflammation and oxidative stress that could impair
autophagy and induce cell senescence in both vascular smooth muscle cells and endothelial cells. Vascular senescence could be the
responsible for the micro and macrovascular dysfunctions that are described in HFpEF patients and animal models.
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Concluding remarks

In this review, we propose a potential role for vascular

autophagy and senescence in the development and progression of

HFpEF, focusing on both VSMCs and ECs. Diabetes, obesity, aging

and hypertension, main risk factors for HFpEF, triggers chronic

inflammation and ROS, that impairs autophagy and triggers cell

senescence. The presented data support the idea that both

autophagy and cell senescence, processes that are strongly related

to one another, might be important components of HFpEF

pathophysiology (Figure 2). As mentioned, HFpEF is an

increasing healthcare burden worldwide, with no effective

treatment. So, it is highly important to open new fields of

research that could lead to a better understanding of this disease

and the development of new therapeutic targets for its treatment.
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