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Background: Uveal melanoma (UVM) is the most common primary intraocular

malignancy in adults and is highly metastatic, resulting in a poor patient

prognosis. Sphingolipid metabolism plays an important role in tumor

development, diagnosis, and prognosis. This study aimed to establish a

reliable signature based on sphingolipid metabolism genes (SMGs), thus

providing a new perspective for assessing immunotherapy response and

prognosis in patients with UVM.

Methods: In this study, SMGs were used to classify UVM from the TCGA-UVM

and GEO cohorts. Genes significantly associated with prognosis in UVM

patients were screened using univariate cox regression analysis. The most

significantly characterized genes were obtained by machine learning, and 4-

SMGs prognosis signature was constructed by stepwise multifactorial cox.

External validation was performed in the GSE84976 cohort. The level of

immune infiltration of 4-SMGs in high- and low-risk patients was analyzed by

platforms such as CIBERSORT. The prediction of 4-SMGs on immunotherapy

and immune checkpoint blockade (ICB) response in UVM patients was assessed

by ImmuCellAI and TIP portals.

Results: 4-SMGs were considered to be strongly associated with the prognosis

of UVM and were good predictors of UVM prognosis. Multivariate analysis

found that the model was an independent predictor of UVM, with patients in
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the low-risk group having higher overall survival than those in the high-risk

group. The nomogram constructed from clinical characteristics and risk scores

had good prognostic power. The high-risk group showed better results when

receiving immunotherapy.

Conclusions: 4-SMGs signature and nomogram showed excellent predictive

performance and provided a new perspective for assessing pre-immune

efficacy, which will facilitate future precision immuno-oncology studies.
KEYWORDS

sphingolipid metabolism, UVM, tumor microenvironment, immunotherapy,
predictive signature
Introduction

UVM accounts for 85% of all ocular melanomas and is the

most common primary intraocular malignancy in adults (1).

Approximately 85% of tumor cases arise from the choroid, with

the remaining cases arising from the iris (3-5%) and ciliary body

(5-8%) (2, 3). More than 50% of patients with UVM develop

systemic metastatic disease, with the liver being the most

common site of metastasis in UVM (4). In addition, patients

rarely achieve a good cure with surgery (5). As a result, patients

with UVM have a very poor prognosis, with a 5-year mortality

rate of 31% and a 15-year mortality rate of 45% (6). ICBhe

diameter of the basal tumor, ciliary involvement and scleral

expansion, non-random chromosomal aberrations and genetic

mutations (e.g., BAP1 and SF3B1 mutations) are closely related

to the prognosis of UVM (7–9) and are the main basis and

foundation for prognostic grading, immunotherapy,

radiotherapy and other treatment options. However, patients

wi th the same c l in ica l s tage may have d i ff e rent

clinicopathological features, suggesting that the prognosis of

tumor patients based on traditional clinicopathological staging

is not completely accurate (10, 11). Therefore, to improve the

quality of life of UVM patients, new prognostic biomarkers and

molecular targets are needed to predict the prognosis of UVM

patients and guide individualized treatment.

Sphingolipids are important components of biological

membrane structure, maintaining the barrier function and

fluidity of cell membranes (12). With the intensive study of

sphingolipids in animals and yeast, sphingolipids and their

metabolites have been found to be an important class of

bioactive molecules, which are involved in regulating many

important signaling processes such as cell growth,

differentiation, senescence and programmed cell death (13).

There is increasing evidence that sphingolipid metabolism is

extensively involved in tumor proliferation, metastasis,
02
angiogenesis and drug resistance, and plays a key role in the

tumor immune microenvironment (14–18). In addition, it has

been suggested that sphingolipids may be a potential tumor-

associated antigen and are closely associated with tumor

evolution and liver metastasis in UVM (19). Pelletier et al.

found that UVM contains sphingolipids, which may be a

target for monoclonal antibody therapy (20). With the

continuous development of bioinformatics, biomarkers have

been defined in various ways. Due to the unique role of

sphingolipid metabolism in the tumor microenvironment,

several studies have identified the potential of sphingolipid-

related genes or SMGs in the prognosis prediction of tumor

tumors with a high degree of accuracy (21–24). Currently, the

prognostic value of SMGs in UVM and the role of tumor

immune microenvironment are unclear. Therefore, this study

aimed to develop a novel SMGs-based approach to accurately

predict prognosis and characterize the immune landscape of

UVM patients.

In our study, we screened 4 reliable SMGs by machine

learning, constructed a prognostic model based on the

TCGA-UVM cohort, and went on to establish a risk score

and comprehensively analyze the relationship between SMGs

and immune microenvironment, immunotherapy, and

chemotherapy sensitivity. We aimed to demonstrate the

value of 4-SMGs for assessing the prognosis of UVM

patients through a comprehensive analysis of genomic data,

and to develop new tools to improve treatment options.
Method

Patient data sources

We downloaded gene expression profiles and clinical data of

TCGA-UVM cohort including 80 tumor patients from TCGA
frontiersin.org
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database (https://portal.gdc.cancer.gov/). The level 3 HTSeq-

Fragments per kilobase million (FPKM) data of TCGA-UVM

was converted to TPM (transcripts per million reads) according

to the following formula: TPMn = FPKMn * 106/(FPKM0 +… +

FPKMm), where n represented gene n and m represented the

total number of all genes, respectively. Then, we performed log2-

based transformation of TPM. The sample size of UVM patients

at the M stage and N stage varied greatly. These stages were

consequently excluded from the analysis. The gene profiles and

clinical data of 28 UVM patients in GSE84976 dataset were

downloaded from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/). The GSE84976 was considered as an external

validation dataset.
Consensus clustering analysis

To further elucidate the SMGs signature in UVM, all

samples were divided into different clusters using

“ConensusClusterPlus” R package (25). The “pheatmap” R

package was used to show the differential expression and

clinicopathological parameters of SMGs in different clusters.

Gene set variation analysis (GSVA) analysis was performed

using “c2.cp.kegg.v7.5.1.symbols.gmt” from the MSigDB

database. Analysis of pathway differences across clusters using

the “GSVA” R package (26). The single sample gene set

enrichment analysis (ssGSEA) algorithm (27) was used to

analyze the level of immune cell infiltration and the level of

immune checkpoint expression between different clusters.
Model construction and validation

We obtained 97 SMGs (Supplementary Table 1) through the

InnateDB portal (http://www.innatedb.com) (28). By performing

univariate Cox regression analysis, we identified 27 genes associated

with survival, followed by Least absolute shrinkage and selection

operator (LASSO) regression analysis using ‘glmnet’ in R, with

tenfold cross-validation to determine the optimal penalty

parameter lambda.min=9. Nine genes were obtained. Support

vector machine recursive feature elimination (SVM-RFE) is

another machine learning method that uses the structural risk

minimization principle while minimizing the empirical error as a

way to improve learning performance (29). We used the SVM-RFE

algorithm from the ‘e1071’ R package, with ten-fold cross-validation

to obtain 13 valuable variables. Five public genes were extracted by

Wayne diagram analysis, followed by using a stepwise multifactor

COX regressionmodel to identify and calculate the coefficients of the

core genes. Finally, the risk signature of 4-SMGs was constructed.

For each patient, the SMGs risk score was calculated as follows, risk

score = ExpressionmRNA1 × CoefmRNA1 + ExpressionmRNA2 ×

CoefmRNA2 +… ExpressionmRNAn × CoefmRNAn.
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Model formula

All UVM patients were given risk scores based on output

model equations, and median value were calculated using the R

package “survminer”, classifying all UVM patients into low-risk

and high-risk groups, and plotting survival curves for the two

subgroups. The R package “pec” was adopted to calculate the C-

index. For assessing genetic traits’ predictive power, receiver

operating characteristic curve (ROC) curve analysis using the

“time-ROC” R package was conducted. Decision curve analysis

(DCA) of a multi-factor Cox regression model was plotted using

the “ggDCA” R package.
Independent prognostic analysis and
nomogram construction

We conducted univariate and multivariate Cox regression

analyses to assess risk score as an independent prognostic factor.

Using the “rms” R package, histograms were constructed using

risk scores versus clinicopathologic characteristics to predict

survival for patients in TCGA-UVM cohort.
Functional enrichment analysis

Through functional enrichment analysis of differentially

expressed genes in UVM associated with SMGs, functional

annotation and enrichment pathways have been explored.

The analysis of Gene Ontology (GO) pathways was done

using the “ClusterProfiler” R package, where P-value < 0.05

represents a statistically significant difference. GSVA was

performed using “c2.cp.kegg.v7.5.1.symbols.gmt” from the

MSigDB. Using “GSVA” R package to perform GSVA

enrichment analysis. The “heatmap” R package was used to

create heat maps. According to the “limma” R package, an

adjusted P-value < 0.05 indicates statistical significance for

subgroup differences.
Immunity analysis of the risk signature

Currently accepted methods, including XCELL (30, 31),

TIMER (32, 33), QUANTISEQ (32, 33), MCPCOUNT (34),

EPIC (35), CIBERSORT (36) and CIBERSORT-ABS (37) were

used to measure immune infiltration scores. Spearman

correlation analysis was used to examine the correlation

between immune cells and risk scores. Based on the immune

cell characteristics of UVM patients, the ssGSEA method was

adopted to differentiate patients at low-risk from those at high-

risk. Using a list of 20 suppressive immune checkpoints derived

from Auslander’s study, we assessed the suppression of immune

checkpoints between high-risk and low-risk groups (38). The
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“estimate” R package was used to calculate the immunological

and mechanistic scores of the specimens from the RNA-seq data

to assess the purity of the tumors. Evaluation and visualization of

immunotherapy efficacy in UVM patients by “limma” and

“ggpubr” R package.

Xu et al. developed a website that provided us with gene sets

related to cancer and immunity (39) (http://biocc.hrbmu.edu.cn/

TIP/) and a set of genes positively associated with anti-PD-L1

drug response was obtained from Mariathasan’s study features

(40). The R package “ggcor” for the analysis of correlations

between risk scores and the two genetic traits mentioned above

was used. ImmuCellAI (http://bioinfo.life.hust.edu.cn/

ImmuCellAI) (41) is a portal that predicts tumor immune

infiltration estimates and immunotherapy response, and we

obtained corresponding data on immunotherapy in

UVM patients.
Drug sensitivity

The “pRRophetic” R package was used to assess treatment

response in high-risk and low-risk groups of patients, as determined

by the half-maximal inhibitory concentration (IC50) of each UVM

patient on the Genomics of Drug Sensitivity in Cancer (GDSC)

(https://www.cancerrxgene.org/) (42).
TISCH analysis

A single-cell RNA sequencing database focused on TME is

housed at the Tumor Immunization Single Cell Center (TISCH).

Detailed cell type annotations are provided at the single cell level

for further analysis of specific gene expression in different cell

types. The specific gene expression in different cell types further

reveals the variation of TME in patients with different UVM,

thus explaining to some extent the heterogeneity of UVM.
Statistical analysis

Statistical analyses were performed using R software v4.1.3.

Kaplan-Meier (KM) survival curves and log-rank test were used

to compare Overall Survival (OS) between high- and low-risk

groups. LASSO regression analysis and SVM-RFE for screening

candidate SMGs. Stepwise multi-factor cox regression analysis

was used to construct SMGs signature. Time-dependent ROC

was used to evaluate the predictive performance of the model.

Spearman correlation analysis was used to evaluate the

correlation between risk score and immune cell infiltration.

Wilcox test was used to compare the proportion of TIICs,

immune checkpoints, and immune function between the two

groups. P-values <0.05 were considered statistically significant
Frontiers in Endocrinology 04
and false discovery rate (FDR)<0.05 was considered

statistically significant.
Result

Consensus clustering identified the
molecular subtypes of SMGs

The graphical flow chart outlines the main design of this

study (Figure 1). We considered that the increasing trend of the

cumulative distribution function (CDF) values relative to the

consensus index indicated the presence of appropriate

classification, and based on the CDF curve and the Delta area,

k = 2 proved to be the best point to obtain the maximum

difference between clusters when the clustering index “k”

increased from 2 to 9, so we divided the UVM patients into

two subgroups (Figures 2A, B). In addition, the consensus

matrix is naturally a better visualization tool that can help to

assess the composition and number of clusters. We plotted the

color-coded heat map corresponding to the consensus matrix

and found that it exhibited high intra-group correlation and low

inter-group correlation when k=2, which strongly suggests that

it is very appropriate to classify UVM patients into two subtypes

(Cluster A and Cluster B) (Figure 2C).

To determine the difference in survival prognosis of patients

in different clusters, the difference in OS between clusters was

calculated according to the ClusterSurvival R package. We found

an improved survival prognosis in cluster A compared to

patients in cluster B (P<0.001) (Figure 2D). Principal

component analysis (PCA) is often used to visualize the

distribution of risk in different populations. Cluster A and

Cluster B patients showed significant differences when based

on different clusters (Figure 2E). In addition to this, we further

explored the metabolic differences between Cluster A, B and

SMGs, and the heat map showed that Cluster B had higher

expression differences and clinical characteristics in SMGs

(Figure 2F). To elucidate potential biological pathways, we

performed enrichment analysis of different cluster samples

using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway database and identified relationships with various

cancer-related pathways, such as apoptosis, transporters, cell

adhesion molecules and hematopoietic cell lineages (Figure 2G).

Based on the fact that immunotherapy plays an important role in

the treatment of tumors, to understand the distribution and

correlation of the relative content of 23 TIICs (tumor-infiltrating

immune cells) in this cohort, we calculated the level of immune

cell infiltration in both clusters by the ssGSEA algorithm. It was

found that there was a higher level of infiltration in most

immune cells in Cluster B compared to Cluster A (Figure 2H).

According to the results, the SMGs risk score model can classify

different immune subtypes and thus influence the response to
frontiersin.org
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immunotherapy. Furthermore, due to the importance of

immune checkpoints for the effectiveness of tumor

immunotherapy and the fact that immune checkpoints are one

of the important features of tumor microenvironment (TME).

We explored the differences in immune checkpoint expression

between the two groups and ultimately found that immune

checkpoint gene expression was significantly upregulated in

patients with Cluster B. Based on the above analysis, we

concluded that Cluster B has higher effectiveness and

sensitivity for immunotherapy (Figure 2I).
Construction and validation of 4-SMGs
signature.

By univariate cox regression analysis, we obtained a total of

27 SMGs significantly associated with OS in UVM patients

(Supplementary Table 2). We used two machine learning

methods to identify candidate SMGs. For the LASSO

regression analysis, 9 candidate genes were screened from the

27 SMGs with significant prognostic features (Figures 3A, B).

For the SVM-RFE algorithm, the error was minimized when the

number of features was 13 (Figures 3C, D). Five intersecting
Frontiers in Endocrinology 05
genes were obtained by Wayne diagrams for the above two

methods (Figure 3E). Finally, 4 SMGs were identified as

independent prognostic factors by the stepwise multivariate

Cox analysis, including ARSH, GBA2, GLA and GLB1.

Prognostic index (PI) = (-0.701*ARSH exp) + (-3.988*GBA2

exp) + (5.464*GLA exp) + (-2.985*GLB1 exp). We further

explored the correlation between the expression of these 4-

SMGs and risk scores and found that all 4-SMGs were closely

associated with risk scores. Among them, ARSH, GBA2 and

GLB1 had a significant negative correlation with the risk score,

while GLA had a significant positive correlation with the risk

score (Figure 3F). In addition, we calculated the prognostic risk

score for each patient and divided the UVM patients into high-

risk and low-risk groups based on the median score of score.

(Figure 3G) demonstrates the distribution of 4-SMGs in the

high- and low-risk groups, with ARSH, GBA2 and GLB1 being

low expressed in patients in the high-risk group and GLA being

highly expressed in high-risk patients. In the TGCA-UVM

cohort, mortality in UVM patients increased with increasing

risk (Figures 3H, I), with a better prognosis in the low-risk group

(P<0.001) (Figure 3J). Time-dependent ROC curves were used to

assess the accuracy of the model developed to predict OS in

UVM patients. The time-dependent ROC curves showed 1-year
FIGURE 1

The flowchart summarizes the main design of the present study.
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AUC of 0.749, 2-year AUC of 0.875, 3-year AUC of 0.906, 4-year

AUC of 0.927, and 5-year AUC of 0.925 (Figure 3K). PCA is

often used to visualize the distribution of risk in different

populations. When based on a risk model, high- and low-risk

patients showed significant differences and showed a clear

separation (Figure 3L). In the GSE84976 cohort, we

demonstrated the same results as in the TCGA-UVM cohort.

mortality in UVM patients increased with increasing risk
Frontiers in Endocrinology 06
(Figures 3M, N). KM survival analysis showed that low-risk

patients had a better prognosis compared to high-risk patients

(P<0.001) (Figure 3O). The time-dependent ROC curve showed

a 2-year AUC of 0.783, a 3-year AUC of 0.789, a 5-year AUC of

0.893, an 8-year AUC of 0.929and a 10-year AUC of 0.927

(Figure 3P). PCA analysis showed that low- and high-risk

patients exhibited significant differences, showing a clear

separation (Figure 3Q). Based on these results, we can
A B

D E F

G

C

IH

FIGURE 2

Consensus clustering identified the molecular subtypes of SMGs. (A) Consensus clustering CDF for k = 2 to 9. (B) Relative change in area under
the cumulative CDF curve for k = 2 to 9. (C) Consensus matrix for k = 2. (D) The different OS between Cluster A and Cluster B. (E) PCA plot .
(F) Relationships between SMGs expression and clinicopathological parameters. (G) KEGG enrichment analysis of different clusters. * P < 0.05,
** P < 0.01, *** P < 0.001, ns>0.05. (H) Immune cell scores between Cluster A and Cluster B. (I) Different expressions of immune checkpoints
between Cluster A and Cluster B.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1056310
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chi et al. 10.3389/fendo.2022.1056310
conclude that the construction of our prognostic model is

quite superior.
Clinical correlation and survival analysis
of SMGs in UVM patients

To analyze the correlation between high- and low-risk

groups and clinical characteristics, heat maps were drawn
Frontiers in Endocrinology 07
based on the expression of clinical characteristics, risk scores,

and 4-SMGs, the heat maps showed the association between the

4-SMGs identified in the prognostic risk model and the age,

gender, clinical stage, T stage, and risk scores of all UVM patient

samples in TCGA (Figure 4A). In addition, we further analyzed

the difference in the proportion of patients with various

clinicopathological characteristics between the high-risk and

low-risk groups and found that SMGs had a significant impact

on the proportion of patients with different clinicopathological
I

A B D

E F G

JH K

L

M

N

O

C

P Q

FIGURE 3

Construction and validation of 4-SMGs Signature. (A) Ten‐time cross‐validation for tuning parameter selection in the LASSO model. (B) LASSO
coefficient profiles. (C, D) Biomarker signature gene expression validation by SVM-RFE algorithm selection. (E) Two algorithmic venn diagram
screening genes. (F) Correlation of 4-SMGs with riskscore. (G) Heatmap of risk factors in high- and low-risk patients. (H) Distribution of risk
scores between low- and high-risk groups in the TCGA cohort. (I) Survival status of UVM patients in the low- and high-risk groups in the TCGA
cohort. (J) KM curve compares the overall UVM patients between low- and high-risk groups in the TCGA cohort. (K) Time-dependent ROC
curves analysis in the TCGA cohort. (L) PCA plot in the TCGA cohort. (M) Distribution of risk scores between low- and high-risk groups in the
GEO cohort. (N) Survival status of UVM patients in the low- and high-risk groups in the GEO cohort. (O) KM curve compares the overall UVM
patients between low- and high-risk groups in the GEO cohort. (P) Time-dependent ROC curves analysis in the GEO cohort. (Q) PCA plot in the
GEO cohort.
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characteristics (Figures 4B–E). To better understand whether the

prognosis of patients in different clinical subgroups differed, a

clinical analysis was performed on the entire sample subgroup,

all samples were divided into different subgroups by age (>65

and ≤65 years), gender (male and female), clinical stage (II and

III-IV) and T stage (T2 and T3-4) for further survival analysis.

Survival times were significantly shorter in high-risk patients

than in low-risk patients in all subgroups (Figures 4F–M). The

currently identified risk model for SMGs also seems to be able to
Frontiers in Endocrinology 08
reliably predict the prognosis of certain subgroups of UVM

based on their clinical characteristics.
Establishment of nomograms in
combination with clinical characteristics

Considering the strong correlation between the constructed

risk model and poor prognosis, we combined the OS of UVM
I

A B

D E

F G

J

H

K L M

C

FIGURE 4

Clinical correlation and survival analysis of SMGs in patients with UVM (A) heatmap showing the associations between the high-risk and low-risk
score of patients with UVM and UVM related clinical characteristics in the dataset from TCGA. (B-E) The percentage Stacked histogram of
clinical characteristics. The risk score based on 4-SMGs signature is a valuable marker for poor prognosis in various subgroups divided by
clinicopathological characteristics. The SMGs could distinguish high-risk patients in a variety of subgroups divided by clinicopathological
characteristics including (F, G) T stage, (H, I) clinical stage, (J, K) gender and (L, M) age.
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patients and their clinical characteristics in univariate and

multivariate Cox analyses to determine whether our

prognostic characteristics constructed based on the 4-SMGs

could be used as independent predictors of prognosis. Based

on the results of univariate analysis of variables, age, stage,

gender, T, and risk score, risk score was found to be

significantly associated with prognosis in patients with UVM

(P<0.001) (Figure 5A). Similarly, risk score remained the most

reliable and independent predictor in the cohort after

multifactorial analysis (P<0.001) (Figure 5B). To extend the

clinical application and usability of the constructed risk model,

we constructed Nomogram plots based on age, gender, clinical

stage, T stage, and risk score as a predictor of 1-, 2-, and 3-year

prognostic survival probabilities in patients with UVM. As a

result, it was observed from the model results that the risk score

had the greatest impact on predicting OS, indicating that the

SMGs-based risk model could better predict the prognosis of

UVM (Figure 5C). The calibration curves also showed a more

satisfactory consensus between the predicted and observed

values in terms of the probability of OS at 1-, 2- and 3- years

(Figure 5D). Comparing Nomogram, risk and common
Frontiers in Endocrinology 09
clinicopathological features again, risk (AUC=0.917), as well as

Nomogram (AUC=0.857), were better predictors of UVM

prognosis than age, gender, clinical stage and T stage

(Figure 5E). This implies that the predictive performance of

our constructed SMGs signature was significantly better than

other clinical features.
Functional enrichment analysis of SMGs

KEGG enrichment analysis and GO functional analysis

were performed to assess differential genes in UVM to

elucidate the relevance of bioactivity and signaling pathways

to risk scores. The threshold FDR<0.05 and P<0.05 were used

to select significantly enriched items (Figures 6A, B;

Supplementary Table 3). Biological processes (BP) mainly

included such as lymphocyte and T-cell differentiation,

leukocyte adhesion, etc. The cellular component (CC) mainly

included the plasma membrane signal transduction receptor

complex, synaptic membrane intrinsic components and

plasma membrane signal transduction receptor complex.
A B

D

E

C

FIGURE 5

Establishment of nomograms in combination with clinical characteristics. (A) Univariate and (B) multivariate COX regression analysis of the
signature and different clinical feature. Green squares: univariate cox analysis of HR values for each variable. Red squares: multivariate cox
analysis of HR values for each variable. (C) A nomogram combining the SMGs, age, gender, clinical stage, and T stage. (D) The calibration curve
of the constructed nomogram of 1-year, 2-year and 3-year survival. (E) The nomogram’s time-dependent ROC curves.
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Molecular function (MF) mainly included receptor ligand

activity, immune receptor activity, cytokine binding, and

signaling receptor activator activity. GSVA analysis identified

186 significantly enriched pathways (Figure 6C; Supplementary

Table 4), and among low-risk individuals, cystine and

methionine metabolism, regulation of autophagy, and cancer-

related pathways were enriched, while in the high-risk group,

pathway enrichment mostly involved immune function,

including natural killer cell-mediated cytotoxicity, T-cytokine

cytokine receptor interaction, sterol hormone biosynthesis and

other related KEGG pathways. In summary, we were surprised
Frontiers in Endocrinology 10
to find a strong correlation between enrichment analysis results

and immune response, and therefore we conducted a

systematic analysis of the immune landscape in the

UVM patients.
SMGs risk score predicts TME and
immune cell infiltration

Crosstalk between cancer cells and the TME has been proven

to play an important role in tumor progression and metastasis
A B

C

FIGURE 6

Functional enrichment analysis of SMGs in TCGA-UVM. (A, B) Gene Ontology (GO) enrichment analysis was used to analyze the differential
genes between UVM and normal samples. The x axis represents the ratio of genes associated with the term, and the y axis represents the
pathway term. The p value of each item is colored according to the legend. (C) GSVA analysis between the high-risk cohort and the low-risk
cohort with KEGG.
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(43). And TIICs are an important component of the TME, and

their composition and distribution are closely related to

tumorigenesis and development (44). First, we explored the

correlation between risk score and infiltrating immune cell

abundance according to XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, CIBERSORT, CIBERSORT-ABS and EPIC

algorithms, where the CD8+ T cell, NK cell infiltration were

all positively correlated with the risk score (Figure 7A).We then

independently assessed immune cell infiltration between high

and low-risk groups in UVM using the CIBERSORT algorithm

and showed that the expression of plasma cells, B cells naïve,

Monocytes, and Mast cells resting was significantly higher in the

high-risk group (Figure 7B). Given the importance of

checkpoint-based immunotherapy, we analyzed the expression

of immune checkpoint genes in the high- and low-risk groups.

Most of the immune checkpoint genes were found to be

significantly upregulated in the high-risk group, including

IDO1, CTLA-4, TIGIT, KIR3DL1, BTLA, CD28, etc.

(Figure 7C), suggesting that patients in the high-risk group

may have better efficacy with ICB therapy. Because immune

cells with immune checkpoints can significantly affect immune

function, we performed a comparison of ssGSEA scores for

immune function, and multiple immune function scores were

significantly greater in the high-risk group than in the low-risk

group (Figure 7D). As infiltrating immune cells are an important

component and one of the characteristics of the TME, alterations

in the expression of immune cell types lead to changes in TME

composition, so we analyzed the TME composition of UVM

samples. The results showed that the immune score (P<0.001),

ESTIMATE score (P<0.001) and Stromal Score (P<0.001) were

lower in the low-risk group compared with the high-risk group,

indicating that the overall immune level and immunogenicity of

the TME were higher in the high-risk group (Figure 7E). More

importantly, we obtained immunotherapy response outcomes

for UVM patients through the immuneAI portal and found that

patients with higher risk scores were more likely to benefit from

immunotherapy (Figure 7F), and had a better predictive

performance for 4-SMGs signature (Figure 7G). Since ICB

response plays an important role in immune checkpoint

therapy, we further analyzed the correlation between risk score

and ICB response signature (Figures 7H, J) and found that

among them, Systemic lupus erythematosus, Base excision

repair, p53 signaling pathway, Proteasome, and Cytokine-

cytokine receptor interaction were significantly positively

correlated, while significantly negatively correlated with

Alcoholism and Spliceosome. The correlation analysis between

risk score and tumor immune cycle steps was also performed,

and it was found that only MDSC recruiting, Th2 cell recruiting,

and Monocyte recruiting (step 4) were not significantly

correlated with risk score, while other immune cycle steps

were positively correlated with our risk score (Figures 7I, K).
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4-SMGs signature predicts
chemotherapy sensitivity

Based on the risk score, we further evaluated the potential

value of 4-SMGs in predicting chemotherapy sensitivity through

the GDSC database to enhance accurate drug therapy. A total of

51 chemotherapeutic or targeted agents with significant

differences in chemosensitivity between high and low risk were

analyzed by the “pRRophetic” R package (Supplementary

Figure 1). Figure 8 showed nine common inhibitors or drugs.

KRAS (G12C) Inhibitor-12, Daporinad, Selumetinib,

Telomerase Inhibitor IX, Trametinib, Uprosertib and

Vincristine had relatively high IC50 in the high-risk group. In

contrast, Rapamycin and Rapamycin had lower IC50s in the

high-risk group.
Correlation of SMGs with tumor
microenvironment

We used the single-cell dataset UVM_GSE139829 from the

TISCH database to analyze the expression of 4-SMGs in the

immune microenvironment. There were 31 cell populations and

8 immune cell types in the UVM_GSE139829 dataset

(Figures 9A, B), showing the distribution and number of

various cell types (Figures 9C, D). Expression levels of each

SMGs in immune cells were barely expressed in ARSH in the

immune microenvironment (Figure 9E), GBA2, GLA, and GLB1

were expressed in various immune cells (Figures 9F–H). GLA

was mainly expressed in Mono/Marco.
Discussion

Despite its low incidence, UVM is still the most common

primary intraocular malignant tumor and is known for its high

metastasis, high malignancy, and high mortality (45). Surgical

removal is the first-line treatment of UVM. Although it has a

great impact on the appearance and psychology of patients, the

prognosis of UVM patients after surgery is also unsatisfactory,

and the five-year survival rate is only 17%-53% (46). In addition,

the 5-year and 10-year metastasis rates of UVM are about 25%

and 34%, respectively. The mortality rate of UVM within 1 year

after metastasis is 80%. Most patients with metastatic UVM have

a survival time of 6-12 months after diagnosis, and there are

almost no relevant management strategies and treatment

measures for metastatic UVM (47–49). Therefore, the early

diagnosis and treatment of UVM are particularly important to

improve the prognosis of patients. The diagnosis and prognosis

prediction of UVM is based on clinical manifestations and

histopathological evaluation, but they are not enough to judge
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FIGURE 7

SMGs risk score predicts TME and immune cell infiltration. (A) Immune cell bubble map. (B) Differences in immune cell infiltration between
high- and low-risk groups. (C) Immune checkpoint differences between high and low risk groups. (D) Immune cell and immune function
ssGSEA scores between high- and low-risk groups. (E) The TME component analysis. (F) 4-SMGs predict immunotherapy response outcomes in
patients. (G) Excellent predictive performance of ROC curve labeling model (H) Correlation between risk score and ICB response signature.
(I) Correlation of risk scores with each step of the tumor immune cycle. (J) The plot of the difference in enrichment scores between the high-
risk and low-risk groups on the immunotherapy prediction pathway. (K) The plot of differences between the high-risk and low-risk groups on
each step of the cancer-immune cycle. * P <0.05; ** P <0.01; *** P <0.001.
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the heterogeneity and development trend of tumors. At the same

time, they have limitations in predicting the prognosis and

treatment response of UVM patients, while molecular

prognosis prediction methods have better performance (50).

Sphingolipid metabolism is a highly regulated intracellular

process that controls the synthesis and degradation of

bioactive lipids, including ceramide and sphingosine-1-

phosphate (51). A large number of studies have explored the

relationship between sphingolipids and cancer. We noted that

gangliosides in sphingolipids were closely associated with liver

metastasis and host immune response in a human UVM nude

mouse model and that anti-gangliosides antibodies could inhibit

the spread of tumor cells in nude mice (52, 53). In addition,

sphingolipid metabolites promote tumor progression by

promoting cell proliferation and stimulating chemotactic

migration and invasion, such as SP1 in ovarian cancer (54–

57). This is exciting and may imply that sphingolipids play an

important role in UVM proliferation, metastasis, and phenotype

and can be used as a target for monoclonal antibodies and
Frontiers in Endocrinology 13
immunotherapy. Unfortunately, there are still gaps in this

research. Given the great potential of sphingolipids for UVM,

we used mRNA expression data from the TCGA-UVM dataset

to identify important prognostic genes and constructed a multi-

biomarker prognostic model based on SMGs. Our results suggest

that SMGs-based signatures can be used for risk stratification,

prognosis prediction and immunotherapy efficacy assessment

of UVM, thus providing a valuable reference for

individualized treatment.

In this study, we integrated the expression profiles of 97

SMGs in the TCGA-UVM dataset and selected four genes

(ARSH, GBA2, GLA and GLB1) to construct a new prognostic

model for SMGs by using Lasso regression analysis, SVM-RFE,

and stepwise multivariate COX regression analysis. The SMGs

signature we constructed proved to be an independent

prognostic factor for UVM. UVM patients were divided into

high and low risk groups according to the median risk score, and

significant prognostic differences were found between the two

groups. In other reports, non-lysosomal b-glucosidase (GBA2)
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FIGURE 8

4-SMGs signature predicts chemotherapy sensitivity. (A) KRAS (G12C) Inhibitor-12, (B) Daporinad, (C) Rapamycin, (D) Rapamycin, (E) Selumetinib,
(F) Telomerase Inhibitor IX, (G) Trametinib, (H) Uprosertib and (I) Vincristine.
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hydrolyzed GlcCer to release ceramide and glucose on the

cytoplasmic side of ER and golgi membrane, potentially

affecting tumor drug resistance (58, 59). Alpha-galactosidase

(GLA) has long been considered a key link in Fabry’s disease

(60), but has rarely been studied in tumors, which seems to

provide a way to link Fabry’s disease and tumors. Lysosomal b-
galactosidase (GLB1) hydrolyzed b-galactosidase from a sugar

conjugate, representing the origin of the aging-associated b-
galactosidase SA-SS-GAL, was reported to be a reliable

biomarker of aging in prostate cancer (61). However, other

studies have shown that the expression of lysosomal

galactosidase b-1 (GLB1) is not associated with aging and is

active in some types of cancer cells (62). The effect of GLB1 on

various types of tumors is still inconclusive, and a large number

of related mechanism studies are needed to elucidate. ROC curve

and calibration curve analysis proved the outstanding predictive

performance of SMGs signature. In order to expand the

predictive ability of SMGs signature and prove its practical

value in assessing the prognosis of UVM patients, we

constructed a nomogram based on clinical factors and risk

scores and found that SMGs signature has better predictive

efficacy than clinicopathological features, which can provide a

basis for clinicians to make decisions.

In order to have a comprehensive and clear demonstration

of SMGs signature function, we carried out enrichment analysis

of action pathways. The results showed that SMGs signature was

associated with many immune or tumor related pathways, such

as monocyte differentiation, lymphocyte differentiation, T cell

differentiation, regulation of T cell activation, cell adhesion,

cytokine and its receptor activity, etc. The cytotoxicity of

lymphocytes to UVM cells with hematologic metastasis may
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imply that SMGs can promote lymphocyte differentiation to

prevent UVM from migrating along the blood. Lentz et al. found

that monocyte and melanocyte destruction invaded the uveal

tract in UVM patients (63), suggesting that SMGs are associated

with primary changes in UVM. UVM cells express PD-L1 to

regulate T cell function by inhibiting IL-2 production, thus

achieving immune escape (64). SMGs may activate T cell

function, thereby achieving better efficacy of PD-1/PD-L1

targeted therapy. The enrichment of various adhesion

pathways suggests that SMGs play an important role in UVM

metastasis. We found many interesting results when we

performed KEGG enrichment analysis. The low-risk group is

enriched in the autophagy regulatory pathway, but the specific

mechanism of this aspect is lacking. Given the importance of

autophagy for tumor behavior and treatment, this represents a

huge research prospect. UVM is protected from complement

mediated cleavage in vitro and in vivo by expressing three types

of CRP (CD46, CD55, and CD59) (65), while the high-risk group

is enriched in complement related pathways. Therefore, it is

hypothesized that patients in the high-risk group may prevent

the immune escape of UVM by stimulating complement, but

experimental verification is needed, which will be our next

research direction.

The TME plays a key role in the occurrence, progression,

metastasis and treatment resistance of tumors (66). Immune

components in the TME play a key role in promoting immune

escape and inflammation formation (67). A deeper

understanding of immune infiltration in TME is essential to

reveal the underlying molecular mechanisms and provide novel

immunotherapy strategies to improve clinical outcomes (68–71).

Hence, We analyzed the immune cell infiltration in the high -
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FIGURE 9

Correlation of SMGs with tumor microenvironment. (A–D) Annotation of all cell types in UVM_GSE139829 and the percentage of each cell type.
Percentages and expressions of (E) ARSH, (F) GBA2, (G) GLA and (H) GLB1.
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and low-risk groups. Activated naive B cells have been shown to

promote Th1 polarization, thereby preventing further tumor

growth (72). Plasma cells are the end functional state of the B-

cell lineage and are involved in solid tumor progression. A large

number of literature have shown that tumor-infiltrating plasma

cells have a positive prognostic effect on cancer (73, 74). The

increased expression of naive B cells and plasma cells in the low-

risk group may indicate a better prognosis in the low-risk group.

In addition, we also noted that mast cell infiltration was

significantly higher in the low-risk group than in the high-risk

group. Mast cells have many effects on tumors, including mast

cell-mediated cytotoxicity, mast cell-directed angiogenesis,

tissue remodeling in the adjacent environment, and immune

cell recruitment (75). Some studies have suggested that mast cells

have a great influence on tumor angiogenesis in UVM (76).

However, the actual role of mast cells in UVM and the specific

mechanism still need a lot of experiments to explain. The high-

risk group has higher infiltration of CD8+T cells. It has been

found that the major histocompatibility complex II (MHC II)

UVM vaccine can activate tumor-specific CD8+T cells and CD4

+T cells, thereby killing tumor cells but does not affect normal

cells, suggesting that the high-risk group receiving the MHC II

UVM vaccine may have better efficacy (77). DC cocultured with

UVM cells showed reduced expression of CD1a and CD83,

which failed to activate T cells for immune response, revealing

the possibility of tumor-pulsed dendritic cell vaccines as

therapeutic measures for UVM (78). In addition, the degree of

infiltration of resting dendritic cells in the high-risk group was

higher than that in low-risk group, but there was no significant

difference in activated dendritic cells, which may imply that

UVM in high-risk group can change the status of dendritic cells

to achieve immune escape.

With the increasing attention to tumor immune checkpoint,

immunotherapy based on immune checkpoint inhibitors also has

a good performance in clinical practice. But for UVM, immune

checkpoint therapy has little effect (79). Some studies have pointed

out that the retrospective data show that the response rate is very

low (80). Therefore, there is an urgent need to analyze the

expression of immune checkpoint genes in patients to identify

patients who can benefit from immune checkpoint therapy. We

found that the expression of most immune checkpoints was

higher in the high-risk group compared with the low-risk

group, suggesting that the high-risk group is more likely to

benefit from ICB therapy. However, due to the rarity of UVM,

the sample size limits the applicability and generality of almost all

relevant studies, and there is still a need to increase the sample and

conduct randomized prospective trials (81). In general, SMGs

model can accurately identify UVM patients who are sensitive to

ICB therapy, which has guiding significance for clinicians’

immunotherapy strategy. Given the influence of immune cells

and immune checkpoints on immune function, we further

explored the differences in immune function between high and
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low-risk groups. We found that HLA expression was higher in the

high-risk group than in the low-risk group. It is generally assumed

that low HLA expression will allow tumor cells to escape from

CTL-mediated lysis, resulting in metastasis. However, a large

number of studies have shown that the role of HLA in UVM is

contrary to that of other common tumors. UVM cells reduce the

expression of HLA antigens during liver metastasis through the

blood route, thereby escaping the killing effect mediated by NK

cells and cytotoxic T cells (82–84). This provides a new direction

for the treatment of high-risk patients by increasing the expression

of HLA antigens in UVM cells. Interestingly, we also found that

the type II interferon response was also enhanced in the high-risk

group. Bosch et al. developed an MHC II -matched vaccine that

induces type II interferon secretion, thereby allowing the

generation of a CD8 cell immune response in the eye (85) and

may be more effective in high-risk patients.

Although our study has greater clinical implications for the

prognostic assessment and selection of treatment options for

patients with UVM, our study still has some limitations. First,

our study is a retrospective study that needs to be validated in

future prospective studies. Second, the mechanisms by which

SMGs affect the prognosis of UVM patients need to be explored

in more in vivo and in vitro experiments. Finally, the

predominant race in the TCGA-UVM cohort was white, with

a lack of data on Asians or blacks. This makes it critical to

include other ethnic groups in future studies.
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